blob: 2c31a75041cd118f051ef680dfa5229734449a0e [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android-base/scopeguard.h>
#include <gtest/gtest.h>
#include <utility>
#include <vector>
#include "Telemetry.h"
#include "TestNeuralNetworksWrapper.h"
using android::nn::telemetry::DataClass;
using android::nn::test_wrapper::Compilation;
using android::nn::test_wrapper::Execution;
using android::nn::test_wrapper::Model;
using android::nn::test_wrapper::OperandType;
using android::nn::test_wrapper::Result;
using android::nn::test_wrapper::Type;
namespace {
typedef float Matrix3x4[3][4];
class TelemetryTest : public ::testing::Test {};
TEST_F(TelemetryTest, TestAtomGeneration) {
std::atomic_uint executions = 0;
std::atomic_uint compilations = 0;
android::nn::telemetry::registerTelemetryCallbacks(
[&compilations](const android::nn::telemetry::DiagnosticCompilationInfo*) {
compilations++;
},
[&executions](const android::nn::telemetry::DiagnosticExecutionInfo*) {
executions++;
});
Model modelAdd2;
OperandType matrixType(Type::TENSOR_FLOAT32, {3, 4});
OperandType scalarType(Type::INT32, {});
auto a = modelAdd2.addOperand(&matrixType);
auto b = modelAdd2.addOperand(&matrixType);
auto c = modelAdd2.addOperand(&matrixType);
auto d = modelAdd2.addConstantOperand(&scalarType, ANEURALNETWORKS_FUSED_NONE);
modelAdd2.addOperation(ANEURALNETWORKS_ADD, {a, b, d}, {c});
modelAdd2.identifyInputsAndOutputs({a, b}, {c});
ASSERT_TRUE(modelAdd2.isValid());
modelAdd2.finish();
Matrix3x4 matrix;
memset(&matrix, 0, sizeof(matrix));
Compilation compilation(&modelAdd2);
compilation.finish();
Execution execution(&compilation);
ASSERT_EQ(execution.setInput(0, matrix, sizeof(Matrix3x4)), Result::NO_ERROR);
ASSERT_EQ(execution.setInput(1, matrix, sizeof(Matrix3x4)), Result::NO_ERROR);
ASSERT_EQ(execution.setOutput(0, matrix, sizeof(Matrix3x4)), Result::NO_ERROR);
ASSERT_EQ(execution.compute(), Result::NO_ERROR);
ASSERT_EQ(executions, 1u);
ASSERT_EQ(compilations, 1u);
android::nn::telemetry::clearTelemetryCallbacks();
}
TEST_F(TelemetryTest, TestEvalDataClass) {
std::vector<std::pair<DataClass, std::vector<android::nn::OperandType>>> data = {
{DataClass::FLOAT32, {android::nn::OperandType::TENSOR_FLOAT32}},
{DataClass::FLOAT32,
{android::nn::OperandType::TENSOR_FLOAT32, android::nn::OperandType::FLOAT32}},
{DataClass::FLOAT32,
{android::nn::OperandType::FLOAT32, android::nn::OperandType::TENSOR_FLOAT32}},
{DataClass::OTHER, {android::nn::OperandType::FLOAT32}},
{DataClass::UNKNOWN, {}},
{DataClass::FLOAT16,
{android::nn::OperandType::FLOAT32, android::nn::OperandType::TENSOR_FLOAT16,
android::nn::OperandType::TENSOR_INT32}},
{DataClass::MIXED,
{android::nn::OperandType::FLOAT32, android::nn::OperandType::TENSOR_FLOAT16,
android::nn::OperandType::TENSOR_FLOAT32}},
{DataClass::QUANT,
{android::nn::OperandType::FLOAT32, android::nn::OperandType::TENSOR_QUANT8_ASYMM}},
};
for (auto& pair : data) {
DataClass result = DataClass::UNKNOWN;
for (auto v : pair.second) {
result = android::nn::telemetry::evalDataClass(v, result);
}
ASSERT_EQ(result, pair.first);
}
}
} // namespace