blob: 17d3d0eb902ba89abf9a187a02c2b32e40d8efd3 [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_PACKAGES_MODULES_NEURALNETWORKS_RUNTIME_OPERATION_CONVERTERS_SUBGRAPH_CONTEXT_H
#define ANDROID_PACKAGES_MODULES_NEURALNETWORKS_RUNTIME_OPERATION_CONVERTERS_SUBGRAPH_CONTEXT_H
#include <utility>
#include <vector>
#include "FlatbufferModelBuilderUtils.h"
#include "NeuralNetworks.h"
namespace android {
namespace nn {
// This keeps track of all the data needed to convert NNAPI subgraphs to TFLite subgraphs
// This also provides information needed to convert NNAPI Operations to TFLite Operators
// Once the subgraph is done building, call finish() to return the flatbuffer
class SubGraphContext {
public:
SubGraphContext(const Model* model, const Model::Subgraph* subgraph,
flatbuffers::FlatBufferBuilder* builder,
std::vector<OperatorCodeFlatbuffer>* opCodesVector,
std::vector<int>* opCodeIndexForOperationType,
std::vector<BufferFlatbuffer>* bufferVector);
SubGraphFlatbuffer finish();
// If the operandIdx is -1, it suggests that the tensor being added doesn't have a
// corresponding Operand from the NNAPI NDK model.
// Returns index of Tensor being added.
int addTensorFlatbuffer(TensorFlatbuffer tensor, int32_t operandIdx = -1);
void addOperatorFlatbuffer(OperatorFlatbuffer opFlatbuffer);
void addSubGraphInput(int32_t operandIdx);
void addSubGraphOutput(int32_t operandIdx);
const Model::Subgraph* getSubgraph() const { return mSubgraph; }
// Returns -1 if there is no corresponding tensor index
int getTensorIdxFromOperandIdx(int operandIdx) const;
uint32_t addOpCode(OperationType operationType);
flatbuffers::FlatBufferBuilder& getBuilder() { return *mBuilder; }
// OperandLifeTime must be CONSTANT_COPY or CONSTANT_REFERENCE
// Will crash if OperandLifeTime is not either of the two.
// dataSize is the size of data in bytes.
template <typename Type>
void copyConstantValueToData(const Operand& operand, Type* data, size_t dataSize);
template <typename Type>
Type getConstantScalar(const Operand& operand);
// Returns Buffer index
uint32_t addBufferFromData(const uint8_t* data, uint32_t length);
// makeSymmetric turns asymmetric tensors to symmetric by doing setting data = data - zeroPoint
// makeSymmetric is supported only for constant OperandType::TENSOR_QUANT8_ASYMM_SIGNED
// If unsupported type is passed, makeSymmetric is ignored
Result<void> createTensorFlatbufferFromOperand(uint32_t operandIdx, bool makeSymmetric = false);
private:
const Mapping& getMapping(uint32_t poolIndex);
std::pair<const uint8_t*, uint32_t> getConstantPointerAndLength(const Operand& operand);
const Model* mModel;
const Model::Subgraph* mSubgraph;
flatbuffers::FlatBufferBuilder* mBuilder;
std::vector<OperatorCodeFlatbuffer>* mOpCodesVector;
std::vector<int>* mOpCodeIndexForOperationType;
std::vector<BufferFlatbuffer>* mBufferVector;
std::vector<OperatorFlatbuffer> mOperatorVector;
std::vector<TensorFlatbuffer> mTensorVector;
std::vector<int32_t> mInputTensors;
std::vector<int32_t> mOutputTensors;
std::vector<int> mOperandToTensorIdx;
// Each index corresponds to the pool index of shared memory
std::vector<Mapping> mMappings;
};
template <typename Type>
void SubGraphContext::copyConstantValueToData(const Operand& operand, Type* data, size_t dataSize) {
auto [pointer, length] = getConstantPointerAndLength(operand);
CHECK_GE(dataSize, length);
std::memcpy(data, pointer, length);
}
template <typename Type>
Type SubGraphContext::getConstantScalar(const Operand& operand) {
Type data;
copyConstantValueToData(operand, &data, sizeof(Type));
return data;
}
} // namespace nn
} // namespace android
#endif // ANDROID_PACKAGES_MODULES_NEURALNETWORKS_RUNTIME_OPERATION_CONVERTERS_SUBGRAPH_CONTEXT_H