| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <gtest/gtest.h> |
| |
| #include <chrono> |
| #include <iterator> |
| #include <map> |
| #include <queue> |
| #include <set> |
| #include <string> |
| #include <tuple> |
| #include <vector> |
| |
| #include "CompilationBuilder.h" |
| #include "ExecutionBurstServer.h" |
| #include "HalInterfaces.h" |
| #include "Manager.h" |
| #include "NeuralNetworks.h" |
| #include "NeuralNetworksOEM.h" |
| #include "SampleDriver.h" |
| #include "TestNeuralNetworksWrapper.h" |
| #include "Utils.h" |
| #include "ValidateHal.h" |
| |
| namespace { |
| |
| using namespace ::android; |
| using namespace nn::hal; |
| |
| using CompilationBuilder = nn::CompilationBuilder; |
| using Device = nn::Device; |
| using DeviceManager = nn::DeviceManager; |
| using ExecutePreference = nn::test_wrapper::ExecutePreference; |
| using ExecutionBurstServer = nn::ExecutionBurstServer; |
| using HidlModel = V1_3::Model; |
| using PreparedModelCallback = nn::PreparedModelCallback; |
| using Result = nn::test_wrapper::Result; |
| using SampleDriver = nn::sample_driver::SampleDriver; |
| using SamplePreparedModel = nn::sample_driver::SamplePreparedModel; |
| using WrapperModel = nn::test_wrapper::Model; |
| using WrapperOperandType = nn::test_wrapper::OperandType; |
| using WrapperType = nn::test_wrapper::Type; |
| using nn::convertToV1_0; |
| using nn::convertToV1_3; |
| |
| template <typename T> |
| using MQDescriptorSync = hardware::MQDescriptorSync<T>; |
| |
| constexpr Timing kBadTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX}; |
| constexpr Timing kGoodTiming = {.timeOnDevice = 123, .timeInDriver = 456}; |
| |
| // This is an IDevice for testing purposes. The test driver has customized |
| // getCapabilities_1_3 and getSupportedOperations_1_3. |
| class TestDriver : public SampleDriver { |
| public: |
| TestDriver(const char* name, Capabilities capabilities, const std::vector<bool>& supportedOps) |
| : SampleDriver(name), mCapabilities(capabilities), mSupportedOps(supportedOps) {} |
| ~TestDriver() override {} |
| |
| Return<void> getCapabilities_1_3(getCapabilities_1_3_cb cb) override { |
| cb(V1_3::ErrorStatus::NONE, mCapabilities); |
| return Void(); |
| } |
| |
| Return<void> getSupportedOperations_1_3(const Model& model, |
| getSupportedOperations_1_3_cb cb) override { |
| if (!android::nn::validateModel(model)) { |
| cb(V1_3::ErrorStatus::INVALID_ARGUMENT, std::vector<bool>()); |
| return Void(); |
| } |
| const size_t count = model.main.operations.size(); |
| std::vector<bool> supported(count); |
| std::transform( |
| model.main.operations.begin(), model.main.operations.end(), supported.begin(), |
| [this](Operation op) { return mSupportedOps[static_cast<int32_t>(op.type)]; }); |
| cb(V1_3::ErrorStatus::NONE, supported); |
| return Void(); |
| } |
| |
| private: |
| Capabilities mCapabilities; |
| std::vector<bool> mSupportedOps; |
| }; |
| |
| class IntrospectionControlTest : public ::testing::Test { |
| protected: |
| virtual void SetUp() {} |
| virtual void TearDown() { |
| if (mEvent) { |
| ANeuralNetworksEvent_free(mEvent); |
| } |
| if (mExecution) { |
| ANeuralNetworksExecution_free(mExecution); |
| } |
| if (mCompilation) { |
| ANeuralNetworksCompilation_free(mCompilation); |
| } |
| DeviceManager::get()->forTest_reInitializeDeviceList(); |
| } |
| |
| struct DeviceSpecification { |
| DeviceSpecification(const std::string& name, float perf, std::vector<bool>& supportedOps) |
| : mName(name), mSupportedOps(supportedOps) { |
| PerformanceInfo perfInfo = {.execTime = perf, .powerUsage = perf}; |
| mCapabilities = { |
| .relaxedFloat32toFloat16PerformanceScalar = perfInfo, |
| .relaxedFloat32toFloat16PerformanceTensor = perfInfo, |
| .operandPerformance = |
| nn::nonExtensionOperandPerformance<nn::HalVersion::V1_3>(perfInfo)}; |
| } |
| std::string mName; |
| Capabilities mCapabilities; |
| std::vector<bool> mSupportedOps; |
| }; |
| |
| // From a vector of DeviceSpecification, register new Devices. |
| void registerDevices(std::vector<DeviceSpecification> specifications) { |
| for (const auto& specification : specifications) { |
| DeviceManager::get()->forTest_registerDevice( |
| specification.mName.c_str(), |
| new TestDriver(specification.mName.c_str(), specification.mCapabilities, |
| specification.mSupportedOps)); |
| } |
| } |
| |
| bool selectDeviceByName(const std::string& name) { |
| uint32_t numDevices = 0; |
| EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); |
| EXPECT_GE(numDevices, (uint32_t)1); |
| |
| for (uint32_t i = 0; i < numDevices; i++) { |
| ANeuralNetworksDevice* device = nullptr; |
| EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR); |
| const char* buffer = nullptr; |
| int result = ANeuralNetworksDevice_getName(device, &buffer); |
| if (result == ANEURALNETWORKS_NO_ERROR && name.compare(buffer) == 0) { |
| mDevices.push_back(device); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool isSupportedOpListExpected(const std::vector<bool>& expected) { |
| const uint32_t kMaxNumberOperations = 256; |
| EXPECT_LE(expected.size(), kMaxNumberOperations); |
| ANeuralNetworksModel* modelHandle = mModel.getHandle(); |
| bool supported[kMaxNumberOperations] = {false}; |
| EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices( |
| modelHandle, mDevices.data(), mDevices.size(), supported), |
| ANEURALNETWORKS_NO_ERROR); |
| return std::equal(expected.begin(), expected.end(), supported); |
| } |
| |
| int prepareForExecution(bool measureTiming = false) { |
| ANeuralNetworksModel* modelHandle = mModel.getHandle(); |
| int result = ANeuralNetworksCompilation_createForDevices(modelHandle, mDevices.data(), |
| mDevices.size(), &mCompilation); |
| if (result != ANEURALNETWORKS_NO_ERROR) { |
| return result; |
| } |
| EXPECT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &mExecution), |
| ANEURALNETWORKS_NO_ERROR); |
| if (measureTiming) { |
| // Don't call setMeasureTiming unless we need to -- cannot call this |
| // API unless there is exactly one device. |
| EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(mExecution, true), |
| ANEURALNETWORKS_NO_ERROR); |
| } |
| return ANEURALNETWORKS_NO_ERROR; |
| } |
| |
| std::vector<ANeuralNetworksDevice*> mDevices; |
| ANeuralNetworksEvent* mEvent = nullptr; |
| ANeuralNetworksExecution* mExecution = nullptr; |
| ANeuralNetworksCompilation* mCompilation = nullptr; |
| WrapperModel mModel; |
| }; |
| |
| void createSimpleAddModel(WrapperModel* model) { |
| WrapperOperandType type0(WrapperType::TENSOR_FLOAT32, {2}); |
| WrapperOperandType type1(WrapperType::INT32, {}); |
| // Phase 1, operands |
| auto op1 = model->addOperand(&type0); |
| auto op2 = model->addOperand(&type0); |
| auto act = model->addOperand(&type1); |
| auto op3 = model->addOperand(&type0); |
| // Phase 2, operations |
| static int32_t act_init[] = {0}; |
| model->setOperandValue(act, act_init, sizeof(act_init)); |
| model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); |
| // Phase 3, inputs and outputs |
| model->identifyInputsAndOutputs({op1, op2}, {op3}); |
| model->finish(); |
| ASSERT_TRUE(model->isValid()); |
| } |
| |
| // This test verifies that a simple ADD model is able to run on a single device that claims being |
| // able to handle all operations. |
| TEST_F(IntrospectionControlTest, SimpleAddModel) { |
| // This is needed before we have the CPU fallback path being treated as a Device. |
| // TODO(miaowang): remove once b/72506261 is fixed. |
| if (DeviceManager::get()->getUseCpuOnly()) { |
| GTEST_SKIP(); |
| } |
| |
| createSimpleAddModel(&mModel); |
| |
| std::string driverName = "test-all"; |
| std::vector<bool> ops(android::nn::kNumberOfOperationTypes, true); |
| registerDevices({{driverName, 0.9, ops}}); |
| |
| EXPECT_TRUE(selectDeviceByName(driverName)); |
| EXPECT_TRUE(isSupportedOpListExpected({true})); |
| EXPECT_EQ(prepareForExecution(), ANEURALNETWORKS_NO_ERROR); |
| |
| // Verify that the mCompilation is actually using the "test-all" device. |
| CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(mCompilation); |
| const std::string& deviceNameBuffer = |
| c->forTest_getExecutionPlan().forTest_simpleGetDevice()->getName(); |
| EXPECT_EQ(driverName, deviceNameBuffer); |
| |
| float input1[2] = {1.0f, 2.0f}; |
| float input2[2] = {3.0f, 4.0f}; |
| float output[2]; |
| EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, input1, sizeof(input1)), |
| ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, input2, sizeof(input2)), |
| ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, output, sizeof(output)), |
| ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(mExecution, true), |
| ANEURALNETWORKS_NO_ERROR); |
| |
| EXPECT_EQ(ANeuralNetworksExecution_startCompute(mExecution, &mEvent), ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksEvent_wait(mEvent), ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(output[0], input1[0] + input2[0]); |
| EXPECT_EQ(output[1], input1[1] + input2[1]); |
| |
| uint64_t timeOnHardware, timeInDriver; |
| EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, ANEURALNETWORKS_DURATION_ON_HARDWARE, |
| &timeOnHardware), |
| ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, ANEURALNETWORKS_DURATION_IN_DRIVER, |
| &timeInDriver), |
| ANEURALNETWORKS_NO_ERROR); |
| if (timeOnHardware != UINT64_MAX && timeInDriver != UINT64_MAX) { |
| EXPECT_LE(timeOnHardware, timeInDriver); |
| } |
| } |
| |
| /*-- Begin test drivers -------------------------------------------------------------------------*/ |
| |
| namespace test_drivers { |
| |
| enum class Success { |
| // ASYNC: Return ErrorStatus::NONE; notify ErrorStatus::NONE and timing |
| // SYNC, BURST: Return ErrorStatus::NONE and timing |
| PASS_NEITHER, // timing = kBadTiming |
| PASS_DEVICE, // timing = kGoodTiming.timeOnDevice, kBadTiming.timeInDriver |
| PASS_DRIVER, // timing = kBadTiming.timeOnDevice, kGoodTiming.timeInDriver |
| PASS_BOTH, // timing = kGoodTiming |
| PASS_CPU, // timing = { kBadTiming.timeOnDevice or 0, kBadTiming.timeInDriver or 0 } |
| |
| // ASYNC: Return ErrorStatus::GENERAL_FAILURE; notify ErrorStatus::GENERAL_FAILURE and |
| // kBadTiming |
| // SYNC, BURST: Return ErrorStatus::GENERAL_FAILURE and kBadTiming |
| FAIL_LAUNCH, |
| |
| // ASYNC: Return ErrorStatus::NONE; notify ErrorStatus::GENERAL_FAILURE and kBadTiming |
| FAIL_WAIT |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, Success success) { |
| const char* names[] = {"PASS_NEITHER", "PASS_DEVICE", "PASS_DRIVER", "PASS_BOTH", |
| "PASS_CPU", "FAIL_LAUNCH", "FAIL_WAIT"}; |
| const uint32_t index = static_cast<uint32_t>(success); |
| CHECK(index < std::size(names)); |
| return os << names[index]; |
| } |
| |
| std::map<Success, Timing> expectedTimingMap = { |
| {Success::PASS_NEITHER, kBadTiming}, |
| {Success::PASS_DEVICE, |
| {.timeOnDevice = kGoodTiming.timeOnDevice, .timeInDriver = kBadTiming.timeInDriver}}, |
| {Success::PASS_DRIVER, |
| {.timeOnDevice = kBadTiming.timeOnDevice, .timeInDriver = kGoodTiming.timeInDriver}}, |
| {Success::PASS_BOTH, kGoodTiming}, |
| {Success::FAIL_LAUNCH, kBadTiming}, |
| {Success::FAIL_WAIT, kBadTiming}}; |
| |
| std::set<Success> expectedPassSet = {Success::PASS_NEITHER, Success::PASS_DEVICE, |
| Success::PASS_DRIVER, Success::PASS_BOTH, Success::PASS_CPU}; |
| |
| // For these tests we don't care about actually running an inference -- we |
| // just want to dummy up execution status and timing results. |
| class TestPreparedModelLatest : public SamplePreparedModel { |
| public: |
| TestPreparedModelLatest(const HidlModel& model, const SampleDriver* driver, Success success) |
| : SamplePreparedModel(model, driver, ExecutionPreference::FAST_SINGLE_ANSWER), |
| mSuccess(success) {} |
| |
| Return<V1_0::ErrorStatus> execute(const V1_0::Request&, |
| const sp<V1_0::IExecutionCallback>& callback) override { |
| switch (mSuccess) { |
| case Success::PASS_NEITHER: |
| callback->notify(V1_0::ErrorStatus::NONE); |
| return V1_0::ErrorStatus::NONE; |
| case Success::FAIL_LAUNCH: |
| callback->notify(V1_0::ErrorStatus::GENERAL_FAILURE); |
| return V1_0::ErrorStatus::GENERAL_FAILURE; |
| case Success::FAIL_WAIT: |
| callback->notify(V1_0::ErrorStatus::GENERAL_FAILURE); |
| return V1_0::ErrorStatus::NONE; |
| default: |
| ADD_FAILURE() << "Unexpected Success kind"; |
| return V1_0::ErrorStatus::GENERAL_FAILURE; |
| } |
| } |
| |
| Return<V1_0::ErrorStatus> execute_1_2(const V1_0::Request&, MeasureTiming measure, |
| const sp<V1_2::IExecutionCallback>& callback) override { |
| EXPECT_EQ(measure, MeasureTiming::YES); |
| switch (mSuccess) { |
| case Success::PASS_NEITHER: |
| case Success::PASS_DEVICE: |
| case Success::PASS_DRIVER: |
| case Success::PASS_BOTH: |
| callback->notify_1_2(V1_0::ErrorStatus::NONE, {}, expectedTimingMap.at(mSuccess)); |
| return V1_0::ErrorStatus::NONE; |
| case Success::FAIL_LAUNCH: |
| callback->notify(V1_0::ErrorStatus::GENERAL_FAILURE); |
| return V1_0::ErrorStatus::GENERAL_FAILURE; |
| case Success::FAIL_WAIT: |
| callback->notify(V1_0::ErrorStatus::GENERAL_FAILURE); |
| return V1_0::ErrorStatus::NONE; |
| default: |
| ADD_FAILURE() << "Unexpected Success kind"; |
| return V1_0::ErrorStatus::GENERAL_FAILURE; |
| } |
| } |
| |
| Return<V1_3::ErrorStatus> execute_1_3(const V1_3::Request&, MeasureTiming measure, |
| const OptionalTimePoint&, |
| const sp<V1_3::IExecutionCallback>& callback) override { |
| // Use a dummy V1_0::Request because execute_1_2 ignores request entirely. |
| const V1_0::ErrorStatus status = execute_1_2(V1_0::Request{}, measure, callback); |
| return convertToV1_3(status); |
| } |
| |
| Return<void> executeSynchronously(const V1_0::Request&, MeasureTiming measure, |
| executeSynchronously_cb cb) override { |
| EXPECT_EQ(measure, MeasureTiming::YES); |
| switch (mSuccess) { |
| case Success::PASS_NEITHER: |
| case Success::PASS_DEVICE: |
| case Success::PASS_DRIVER: |
| case Success::PASS_BOTH: |
| cb(V1_0::ErrorStatus::NONE, {}, expectedTimingMap.at(mSuccess)); |
| return Void(); |
| case Success::FAIL_LAUNCH: |
| case Success::FAIL_WAIT: |
| // While this is a synchronous execution method, the NNAPI |
| // runtime may call it even for asynchronous execution, so we |
| // need to tolerate Success::FAIL_WAIT here, not just |
| // Success::FAIL_LAUNCH. |
| cb(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kBadTiming); |
| return Void(); |
| default: |
| ADD_FAILURE() << "Unexpected Success kind"; |
| cb(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kBadTiming); |
| return Void(); |
| } |
| } |
| |
| Return<void> executeSynchronously_1_3(const V1_3::Request&, MeasureTiming measure, |
| const OptionalTimePoint&, |
| executeSynchronously_1_3_cb cb) override { |
| const auto wrappedCb = [&cb](V1_0::ErrorStatus status, |
| const hidl_vec<OutputShape>& outputShapes, Timing timing) { |
| cb(convertToV1_3(status), outputShapes, timing); |
| }; |
| // Use a dummy V1_0::Request because executeSynchronously ignores request entirely. |
| return executeSynchronously(V1_0::Request{}, measure, wrappedCb); |
| } |
| |
| // ExecutionBurstServer::create has an overload that will use |
| // IPreparedModel::executeSynchronously(), so we can rely on that, rather |
| // than having to implement ExecutionBurstServer::IExecutorWithCache. |
| Return<void> configureExecutionBurst( |
| const sp<V1_2::IBurstCallback>& callback, |
| const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel, |
| const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel, |
| configureExecutionBurst_cb cb) override { |
| const sp<V1_2::IBurstContext> burst = ExecutionBurstServer::create( |
| callback, requestChannel, resultChannel, this, std::chrono::microseconds{0}); |
| |
| cb(burst == nullptr ? V1_0::ErrorStatus::GENERAL_FAILURE : V1_0::ErrorStatus::NONE, burst); |
| return Void(); |
| } |
| |
| private: |
| Success mSuccess; |
| }; |
| |
| using TestPreparedModel13 = TestPreparedModelLatest; |
| |
| // Like TestPreparedModelLatest, but implementing 1.2 |
| class TestPreparedModel12 : public V1_2::IPreparedModel { |
| public: |
| TestPreparedModel12(const HidlModel& model, const SampleDriver* driver, Success success) |
| : mLatestPreparedModel(new TestPreparedModelLatest(model, driver, success)) {} |
| |
| Return<V1_0::ErrorStatus> execute(const V1_0::Request& request, |
| const sp<V1_0::IExecutionCallback>& callback) override { |
| return mLatestPreparedModel->execute(request, callback); |
| } |
| |
| Return<V1_0::ErrorStatus> execute_1_2(const V1_0::Request& request, MeasureTiming measure, |
| const sp<V1_2::IExecutionCallback>& callback) override { |
| return mLatestPreparedModel->execute_1_2(request, measure, callback); |
| } |
| |
| Return<void> executeSynchronously(const V1_0::Request& request, MeasureTiming measure, |
| executeSynchronously_cb cb) override { |
| return mLatestPreparedModel->executeSynchronously(request, measure, cb); |
| } |
| |
| Return<void> configureExecutionBurst( |
| const sp<V1_2::IBurstCallback>& callback, |
| const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel, |
| const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel, |
| configureExecutionBurst_cb cb) override { |
| return mLatestPreparedModel->configureExecutionBurst(callback, requestChannel, |
| resultChannel, cb); |
| } |
| |
| private: |
| const sp<IPreparedModel> mLatestPreparedModel; |
| }; |
| |
| // Like TestPreparedModelLatest, but implementing 1.0 |
| class TestPreparedModel10 : public V1_0::IPreparedModel { |
| public: |
| TestPreparedModel10(const HidlModel& model, const SampleDriver* driver, Success success) |
| : mLatestPreparedModel(new TestPreparedModelLatest(model, driver, success)) {} |
| |
| Return<V1_0::ErrorStatus> execute(const V1_0::Request& request, |
| const sp<V1_0::IExecutionCallback>& callback) override { |
| return mLatestPreparedModel->execute(request, callback); |
| } |
| |
| private: |
| const sp<IPreparedModel> mLatestPreparedModel; |
| }; |
| |
| // Behaves like SampleDriver, except that it produces customized IPrepareModel. |
| class TestDriver13 : public SampleDriver { |
| public: |
| TestDriver13(const std::string& name, Success success) |
| : SampleDriver(name.c_str()), mSuccess(success) {} |
| |
| Return<void> getCapabilities_1_3(getCapabilities_1_3_cb _hidl_cb) override { |
| android::nn::initVLogMask(); |
| const PerformanceInfo kPerf = {.execTime = 0.75f, .powerUsage = 0.75f}; |
| Capabilities capabilities = { |
| .relaxedFloat32toFloat16PerformanceScalar = kPerf, |
| .relaxedFloat32toFloat16PerformanceTensor = kPerf, |
| .operandPerformance = |
| nn::nonExtensionOperandPerformance<nn::HalVersion::V1_3>(kPerf)}; |
| _hidl_cb(V1_3::ErrorStatus::NONE, capabilities); |
| return Void(); |
| } |
| |
| Return<void> getSupportedOperations_1_3(const HidlModel& model, |
| getSupportedOperations_1_3_cb cb) override { |
| if (nn::validateModel(model)) { |
| std::vector<bool> supported(model.main.operations.size(), true); |
| cb(V1_3::ErrorStatus::NONE, supported); |
| } else { |
| cb(V1_3::ErrorStatus::INVALID_ARGUMENT, {}); |
| } |
| return Void(); |
| } |
| |
| Return<void> getSupportedOperations_1_2(const V1_2::Model& model, |
| getSupportedOperations_1_2_cb cb) override { |
| if (nn::validateModel(model)) { |
| std::vector<bool> supported(model.operations.size(), true); |
| cb(V1_0::ErrorStatus::NONE, supported); |
| } else { |
| std::vector<bool> supported; |
| cb(V1_0::ErrorStatus::INVALID_ARGUMENT, supported); |
| } |
| return Void(); |
| } |
| |
| Return<V1_3::ErrorStatus> prepareModel_1_3( |
| const HidlModel& model, ExecutionPreference, Priority, const OptionalTimePoint&, |
| const hidl_vec<hidl_handle>&, const hidl_vec<hidl_handle>&, const CacheToken&, |
| const sp<V1_3::IPreparedModelCallback>& callback) override { |
| callback->notify_1_3(V1_3::ErrorStatus::NONE, |
| new TestPreparedModel13(model, this, mSuccess)); |
| return V1_3::ErrorStatus::NONE; |
| } |
| |
| Return<V1_0::ErrorStatus> prepareModel_1_2( |
| const V1_2::Model& model, ExecutionPreference, const hidl_vec<hidl_handle>&, |
| const hidl_vec<hidl_handle>&, const CacheToken&, |
| const sp<V1_2::IPreparedModelCallback>& callback) override { |
| callback->notify_1_2(V1_0::ErrorStatus::NONE, |
| new TestPreparedModel12(nn::convertToV1_3(model), this, mSuccess)); |
| return V1_0::ErrorStatus::NONE; |
| } |
| |
| Return<V1_0::ErrorStatus> prepareModel_1_1( |
| const V1_1::Model& model, ExecutionPreference, |
| const sp<V1_0::IPreparedModelCallback>& callback) override { |
| callback->notify(V1_0::ErrorStatus::NONE, |
| new TestPreparedModel10(nn::convertToV1_3(model), this, mSuccess)); |
| return V1_0::ErrorStatus::NONE; |
| } |
| |
| Return<V1_0::ErrorStatus> prepareModel( |
| const V1_0::Model& model, const sp<V1_0::IPreparedModelCallback>& callback) override { |
| return prepareModel_1_1(nn::convertToV1_1(model), ExecutionPreference::FAST_SINGLE_ANSWER, |
| callback); |
| } |
| |
| private: |
| Success mSuccess; |
| }; |
| |
| // Like TestDriver, but implementing 1.2 |
| class TestDriver12 : public V1_2::IDevice { |
| public: |
| TestDriver12(const std::string& name, Success success) |
| : mLatestDriver(new TestDriver13(name, success)) {} |
| Return<void> getCapabilities_1_2(getCapabilities_1_2_cb _hidl_cb) override { |
| return mLatestDriver->getCapabilities_1_2(_hidl_cb); |
| } |
| Return<void> getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override { |
| return mLatestDriver->getCapabilities_1_1(_hidl_cb); |
| } |
| Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override { |
| return mLatestDriver->getCapabilities(_hidl_cb); |
| } |
| Return<void> getSupportedOperations_1_2(const V1_2::Model& model, |
| getSupportedOperations_1_2_cb _hidl_cb) override { |
| return mLatestDriver->getSupportedOperations_1_2(model, _hidl_cb); |
| } |
| Return<void> getSupportedOperations_1_1(const V1_1::Model& model, |
| getSupportedOperations_1_1_cb _hidl_cb) override { |
| return mLatestDriver->getSupportedOperations_1_1(model, _hidl_cb); |
| } |
| Return<void> getSupportedOperations(const V1_0::Model& model, |
| getSupportedOperations_cb _hidl_cb) override { |
| return mLatestDriver->getSupportedOperations(model, _hidl_cb); |
| } |
| Return<V1_0::ErrorStatus> prepareModel_1_2( |
| const V1_2::Model& model, ExecutionPreference preference, |
| const hidl_vec<hidl_handle>& modelCache, const hidl_vec<hidl_handle>& dataCache, |
| const CacheToken& token, const sp<V1_2::IPreparedModelCallback>& callback) override { |
| return mLatestDriver->prepareModel_1_2(model, preference, modelCache, dataCache, token, |
| callback); |
| } |
| Return<V1_0::ErrorStatus> prepareModel_1_1( |
| const V1_1::Model& model, ExecutionPreference preference, |
| const sp<V1_0::IPreparedModelCallback>& actualCallback) override { |
| return mLatestDriver->prepareModel_1_1(model, preference, actualCallback); |
| } |
| Return<V1_0::ErrorStatus> prepareModel( |
| const V1_0::Model& model, |
| const sp<V1_0::IPreparedModelCallback>& actualCallback) override { |
| return mLatestDriver->prepareModel(model, actualCallback); |
| } |
| Return<DeviceStatus> getStatus() override { return mLatestDriver->getStatus(); } |
| Return<void> getVersionString(getVersionString_cb _hidl_cb) override { |
| return mLatestDriver->getVersionString(_hidl_cb); |
| } |
| Return<void> getType(getType_cb _hidl_cb) override { return mLatestDriver->getType(_hidl_cb); } |
| Return<void> getSupportedExtensions(getSupportedExtensions_cb _hidl_cb) { |
| return mLatestDriver->getSupportedExtensions(_hidl_cb); |
| } |
| Return<void> getNumberOfCacheFilesNeeded(getNumberOfCacheFilesNeeded_cb _hidl_cb) { |
| return mLatestDriver->getNumberOfCacheFilesNeeded(_hidl_cb); |
| } |
| Return<V1_0::ErrorStatus> prepareModelFromCache( |
| const hidl_vec<hidl_handle>& modelCache, const hidl_vec<hidl_handle>& dataCache, |
| const CacheToken& token, const sp<V1_2::IPreparedModelCallback>& callback) { |
| return mLatestDriver->prepareModelFromCache(modelCache, dataCache, token, callback); |
| } |
| |
| private: |
| const sp<V1_3::IDevice> mLatestDriver; |
| }; |
| |
| // Like TestDriver, but implementing 1.1 |
| class TestDriver11 : public V1_1::IDevice { |
| public: |
| TestDriver11(const std::string& name, Success success) |
| : mLatestDriver(new TestDriver13(name, success)) {} |
| Return<void> getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override { |
| return mLatestDriver->getCapabilities_1_1(_hidl_cb); |
| } |
| Return<void> getSupportedOperations_1_1(const V1_1::Model& model, |
| getSupportedOperations_1_1_cb _hidl_cb) override { |
| return mLatestDriver->getSupportedOperations_1_1(model, _hidl_cb); |
| } |
| Return<V1_0::ErrorStatus> prepareModel_1_1( |
| const V1_1::Model& model, ExecutionPreference preference, |
| const sp<V1_0::IPreparedModelCallback>& actualCallback) override { |
| return mLatestDriver->prepareModel_1_1(model, preference, actualCallback); |
| } |
| Return<DeviceStatus> getStatus() override { return mLatestDriver->getStatus(); } |
| Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override { |
| return mLatestDriver->getCapabilities(_hidl_cb); |
| } |
| Return<void> getSupportedOperations(const V1_0::Model& model, |
| getSupportedOperations_cb _hidl_cb) override { |
| return mLatestDriver->getSupportedOperations(model, _hidl_cb); |
| } |
| Return<V1_0::ErrorStatus> prepareModel( |
| const V1_0::Model& model, |
| const sp<V1_0::IPreparedModelCallback>& actualCallback) override { |
| return mLatestDriver->prepareModel(model, actualCallback); |
| } |
| |
| private: |
| const sp<V1_3::IDevice> mLatestDriver; |
| }; |
| |
| } // namespace test_drivers |
| |
| /*-- End test drivers -------------------------------------------------------------------------*/ |
| |
| /*-- Begin timing tests -------------------------------------------------------------------------*/ |
| |
| namespace timing_tests { |
| |
| using namespace test_drivers; |
| |
| enum class DriverKind { |
| CPU, |
| OLD, // too old to support timing (1.1 or earlier) |
| NEW // new enough to support timing (1.2 or later) |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, DriverKind kind) { |
| const char* names[] = {"CPU", "OLD", "NEW"}; |
| const uint32_t index = static_cast<uint32_t>(kind); |
| CHECK(index < std::size(names)); |
| return os << names[index]; |
| } |
| |
| enum class Compute { ASYNC, SYNC, BURST }; |
| |
| std::ostream& operator<<(std::ostream& os, Compute compute) { |
| const char* names[] = {"ASYNC", "SYNC", "BURST"}; |
| const uint32_t index = static_cast<uint32_t>(compute); |
| CHECK(index < std::size(names)); |
| return os << names[index]; |
| } |
| |
| class TimingTest : public IntrospectionControlTest, |
| public ::testing::WithParamInterface<std::tuple<DriverKind, Success, Compute>> { |
| public: |
| TimingTest() |
| : kDriverKind(std::get<0>(GetParam())), |
| kSuccess(std::get<1>(GetParam())), |
| kCompute(std::get<2>(GetParam())) {} |
| |
| protected: |
| const DriverKind kDriverKind; |
| const Success kSuccess; |
| const Compute kCompute; |
| }; |
| |
| TEST_P(TimingTest, Test) { |
| // There's no straightforward way to force CPU execution to fail. |
| ASSERT_EQ(kDriverKind == DriverKind::CPU, kSuccess == Success::PASS_CPU); |
| |
| // FAIL_WAIT only makes sense for ASYNC. |
| ASSERT_TRUE(kCompute == Compute::ASYNC || kSuccess != Success::FAIL_WAIT); |
| |
| if (DeviceManager::get()->getUseCpuOnly() != (kDriverKind == DriverKind::CPU)) { |
| // We don't have an elegant way to request the CPU driver. Therefore, |
| // we rely on our test framework to make the choice between CPU and |
| // non-CPU. |
| GTEST_SKIP(); |
| } |
| |
| createSimpleAddModel(&mModel); |
| |
| switch (kDriverKind) { |
| case DriverKind::CPU: { |
| // There should be only one driver -- the CPU |
| const std::string& name = DeviceManager::get()->getDrivers()[0]->getName(); |
| ASSERT_TRUE(selectDeviceByName(name)); |
| break; |
| } |
| case DriverKind::OLD: { |
| static const char name[] = "old"; |
| DeviceManager::get()->forTest_registerDevice(name, new TestDriver11(name, kSuccess)); |
| ASSERT_TRUE(selectDeviceByName(name)); |
| break; |
| } |
| case DriverKind::NEW: { |
| static const char name[] = "new"; |
| DeviceManager::get()->forTest_registerDevice(name, new TestDriver12(name, kSuccess)); |
| ASSERT_TRUE(selectDeviceByName(name)); |
| break; |
| } |
| default: |
| FAIL() << "Unexpected DriverKind"; |
| } |
| |
| EXPECT_EQ(prepareForExecution(true /*measureTiming*/), ANEURALNETWORKS_NO_ERROR); |
| |
| float input1[2] = {1.0f, 2.0f}; |
| float input2[2] = {3.0f, 4.0f}; |
| float output[2]; |
| EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, input1, sizeof(input1)), |
| ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, input2, sizeof(input2)), |
| ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, output, sizeof(output)), |
| ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(mExecution, true), |
| ANEURALNETWORKS_NO_ERROR); |
| |
| auto Check = [](bool expectPass, int result) { |
| if (expectPass) { |
| ASSERT_EQ(result, ANEURALNETWORKS_NO_ERROR); |
| } else { |
| ASSERT_NE(result, ANEURALNETWORKS_NO_ERROR); |
| } |
| }; |
| |
| const bool isPass = expectedPassSet.count(kSuccess) != 0; |
| |
| switch (kCompute) { |
| case Compute::ASYNC: { |
| // Ideally what we'd like to do here is |
| // |
| // Check(kSuccess != Success::FAIL_LAUNCH, |
| // ANeuralNetworksExecution_startCompute(mExecution, &mEvent)); |
| // Check(isPass, ANeuralNetworksEvent_wait(mEvent)); |
| // |
| // However, in the current implementation of the runtime, a launch |
| // failure at the HAL level does not show up as a launch failure at |
| // the NDK level ("startCompute"): The NNAPI runtime does not call a |
| // driver until it (the runtime) begins execution, so a launch |
| // failure at the HAL level looks like an execution failure at the |
| // NDK level ("wait"). |
| SCOPED_TRACE("ASYNC startCompute"); |
| Check(true, // rather than kSuccess != Success::FAIL_LAUNCH |
| ANeuralNetworksExecution_startCompute(mExecution, &mEvent)); |
| SCOPED_TRACE("ASYNC wait"); |
| Check(isPass, ANeuralNetworksEvent_wait(mEvent)); |
| break; |
| } |
| case Compute::SYNC: { |
| SCOPED_TRACE("SYNC"); |
| Check(isPass, ANeuralNetworksExecution_compute(mExecution)); |
| break; |
| } |
| case Compute::BURST: { |
| SCOPED_TRACE("BURST"); |
| ANeuralNetworksBurst* burst; |
| ASSERT_EQ(ANeuralNetworksBurst_create(mCompilation, &burst), ANEURALNETWORKS_NO_ERROR); |
| Check(isPass, ANeuralNetworksExecution_burstCompute(mExecution, burst)); |
| ANeuralNetworksBurst_free(burst); |
| break; |
| } |
| default: |
| FAIL() << "unreachable"; |
| } |
| |
| uint64_t timeOnHardware, timeInDriver; |
| EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, ANEURALNETWORKS_DURATION_ON_HARDWARE, |
| &timeOnHardware), |
| ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, ANEURALNETWORKS_DURATION_IN_DRIVER, |
| &timeInDriver), |
| ANEURALNETWORKS_NO_ERROR); |
| switch (kDriverKind) { |
| case DriverKind::CPU: { |
| // TODO: Should we require timing to be reported as 0? |
| EXPECT_TRUE(timeOnHardware == 0 || timeOnHardware == UINT64_MAX) |
| << "timeOnHardware = " << timeOnHardware; |
| EXPECT_TRUE(timeInDriver == 0 || timeInDriver == UINT64_MAX) |
| << "timeInDriver = " << timeOnHardware; |
| break; |
| } |
| case DriverKind::OLD: { |
| EXPECT_EQ(timeOnHardware, UINT64_MAX); |
| EXPECT_EQ(timeInDriver, UINT64_MAX); |
| break; |
| } |
| case DriverKind::NEW: { |
| auto microsToNanos = [](uint64_t micros) { |
| constexpr uint64_t kNanosPerMicro = 1000; |
| return micros == UINT64_MAX ? UINT64_MAX : kNanosPerMicro * micros; |
| }; |
| const Timing expectedTiming = expectedTimingMap.at(kSuccess); |
| EXPECT_EQ(timeOnHardware, microsToNanos(expectedTiming.timeOnDevice)); |
| EXPECT_EQ(timeInDriver, microsToNanos(expectedTiming.timeInDriver)); |
| break; |
| } |
| default: |
| FAIL() << "unreachable"; |
| } |
| if (timeOnHardware != UINT64_MAX && timeInDriver != UINT64_MAX) { |
| EXPECT_LE(timeOnHardware, timeInDriver); |
| } |
| } |
| |
| auto kTimingTestValues = ::testing::Values( |
| // NOTE: We cannot force CPU execution to fail |
| std::make_tuple(DriverKind::CPU, Success::PASS_CPU, Compute::ASYNC), |
| std::make_tuple(DriverKind::CPU, Success::PASS_CPU, Compute::SYNC), |
| std::make_tuple(DriverKind::CPU, Success::PASS_CPU, Compute::BURST), |
| |
| // NOTE: OLD driver does not provide timing |
| std::make_tuple(DriverKind::OLD, Success::PASS_NEITHER, Compute::ASYNC), |
| std::make_tuple(DriverKind::OLD, Success::PASS_NEITHER, Compute::SYNC), |
| std::make_tuple(DriverKind::OLD, Success::PASS_NEITHER, Compute::BURST), |
| |
| std::make_tuple(DriverKind::OLD, Success::FAIL_LAUNCH, Compute::ASYNC), |
| std::make_tuple(DriverKind::OLD, Success::FAIL_LAUNCH, Compute::SYNC), |
| std::make_tuple(DriverKind::OLD, Success::FAIL_LAUNCH, Compute::BURST), |
| |
| // NOTE: Only ASYNC is paired with a wait |
| std::make_tuple(DriverKind::OLD, Success::FAIL_WAIT, Compute::ASYNC), |
| |
| std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER, Compute::ASYNC), |
| std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER, Compute::SYNC), |
| std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER, Compute::BURST), |
| |
| std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE, Compute::ASYNC), |
| std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE, Compute::SYNC), |
| std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE, Compute::BURST), |
| |
| std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER, Compute::ASYNC), |
| std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER, Compute::SYNC), |
| std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER, Compute::BURST), |
| |
| std::make_tuple(DriverKind::NEW, Success::PASS_BOTH, Compute::ASYNC), |
| std::make_tuple(DriverKind::NEW, Success::PASS_BOTH, Compute::SYNC), |
| std::make_tuple(DriverKind::NEW, Success::PASS_BOTH, Compute::BURST), |
| |
| std::make_tuple(DriverKind::NEW, Success::FAIL_LAUNCH, Compute::ASYNC), |
| std::make_tuple(DriverKind::NEW, Success::FAIL_LAUNCH, Compute::SYNC), |
| std::make_tuple(DriverKind::NEW, Success::FAIL_LAUNCH, Compute::BURST), |
| |
| // NOTE: Only ASYNC is paired with a wait |
| std::make_tuple(DriverKind::NEW, Success::FAIL_WAIT, Compute::ASYNC)); |
| |
| INSTANTIATE_TEST_CASE_P(Flavor, TimingTest, kTimingTestValues); |
| |
| } // namespace timing_tests |
| |
| /*-- End timing tests -------------------------------------------------------------------------*/ |
| |
| const float kSimpleCeiling = 2.0f; |
| |
| void createAddMaxModel(WrapperModel* model, bool reverseOrder) { |
| WrapperOperandType type0(WrapperType::TENSOR_FLOAT32, {2}); |
| WrapperOperandType type1(WrapperType::INT32, {}); |
| // Phase 1, operands |
| auto op1 = model->addOperand(&type0); |
| auto op2 = model->addOperand(&type0); |
| auto act = model->addOperand(&type1); |
| auto op3 = model->addOperand(&type0); |
| auto op4 = model->addOperand(&type0); |
| auto op5 = model->addOperand(&type0); |
| // Phase 2, operations |
| static int32_t act_init[] = {0}; |
| model->setOperandValue(act, act_init, sizeof(act_init)); |
| static float ceiling[] = {kSimpleCeiling, kSimpleCeiling}; |
| model->setOperandValue(op4, ceiling, sizeof(ceiling)); |
| if (reverseOrder) { |
| // In this case, add MAXIMUM first, but the execution order is still ADD -> MAXIMUM. |
| model->addOperation(ANEURALNETWORKS_MAXIMUM, {op3, op4}, {op5}); |
| model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); |
| } else { |
| model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); |
| model->addOperation(ANEURALNETWORKS_MAXIMUM, {op3, op4}, {op5}); |
| } |
| // Phase 3, inputs and outputs |
| model->identifyInputsAndOutputs({op1, op2}, {op5}); |
| model->finish(); |
| ASSERT_TRUE(model->isValid()); |
| } |
| |
| TEST_F(IntrospectionControlTest, SlicingAddMax) { |
| // This is needed before we have the CPU fallback path being treated as a Device. |
| // TODO(dgross): remove once b/72506261 is fixed. |
| if (DeviceManager::get()->getUseCpuOnly()) { |
| GTEST_SKIP(); |
| } |
| |
| using namespace test_drivers; |
| |
| static const char name[] = "driver11"; |
| DeviceManager::get()->forTest_registerDevice(name, new TestDriver11(name, Success::PASS_BOTH)); |
| ASSERT_TRUE(selectDeviceByName(name)); |
| |
| createAddMaxModel(&mModel, false); |
| EXPECT_TRUE(isSupportedOpListExpected({true, false})); |
| } |
| |
| TEST_F(IntrospectionControlTest, SlicingMaxAdd) { |
| // This is needed before we have the CPU fallback path being treated as a Device. |
| // TODO(dgross): remove once b/72506261 is fixed. |
| if (DeviceManager::get()->getUseCpuOnly()) { |
| GTEST_SKIP(); |
| } |
| |
| using namespace test_drivers; |
| |
| static const char name[] = "driver11"; |
| DeviceManager::get()->forTest_registerDevice(name, new TestDriver11(name, Success::PASS_BOTH)); |
| ASSERT_TRUE(selectDeviceByName(name)); |
| |
| createAddMaxModel(&mModel, true); |
| EXPECT_TRUE(isSupportedOpListExpected({false, true})); |
| } |
| |
| const float kSimpleMultiplier = 2.0f; |
| |
| void createAddMulModel(WrapperModel* model, bool reverseOrder) { |
| WrapperOperandType type0(WrapperType::TENSOR_FLOAT32, {2}); |
| WrapperOperandType type1(WrapperType::INT32, {}); |
| // Phase 1, operands |
| auto op1 = model->addOperand(&type0); |
| auto op2 = model->addOperand(&type0); |
| auto act = model->addOperand(&type1); |
| auto op3 = model->addOperand(&type0); |
| auto op4 = model->addOperand(&type0); |
| auto op5 = model->addOperand(&type0); |
| // Phase 2, operations |
| static int32_t act_init[] = {0}; |
| model->setOperandValue(act, act_init, sizeof(act_init)); |
| static float multiplier[] = {kSimpleMultiplier, kSimpleMultiplier}; |
| model->setOperandValue(op4, multiplier, sizeof(multiplier)); |
| if (reverseOrder) { |
| // In this case, add MUL first, but the execution order is still ADD -> MUL. |
| model->addOperation(ANEURALNETWORKS_MUL, {op3, op4, act}, {op5}); |
| model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); |
| } else { |
| model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); |
| model->addOperation(ANEURALNETWORKS_MUL, {op3, op4, act}, {op5}); |
| } |
| // Phase 3, inputs and outputs |
| model->identifyInputsAndOutputs({op1, op2}, {op5}); |
| model->finish(); |
| ASSERT_TRUE(model->isValid()); |
| } |
| |
| // TODO(miaowang): add a test to make sure ANNCompilation_create() has CPU |
| // fallback. |
| // This test verifies that a device that could only handle ADD would correctly report that an |
| // ADD->MUL model could not be fully supported. |
| TEST_F(IntrospectionControlTest, PartialModelNotSupported) { |
| // This is needed before we have the CPU fallback path being treated as a Device. |
| // TODO(miaowang): remove once b/72506261 is fixed. |
| if (DeviceManager::get()->getUseCpuOnly()) { |
| GTEST_SKIP(); |
| } |
| |
| createAddMulModel(&mModel, false); |
| |
| std::string addOnlyDriver = "test-onlyAdd"; |
| std::vector<bool> addOnlyOp(android::nn::kNumberOfOperationTypes, false); |
| addOnlyOp[ANEURALNETWORKS_ADD] = true; |
| |
| registerDevices({{addOnlyDriver, 0.9, addOnlyOp}}); |
| |
| EXPECT_TRUE(selectDeviceByName(addOnlyDriver)); |
| EXPECT_TRUE(isSupportedOpListExpected({true, false})); |
| |
| ANeuralNetworksModel* modelHandle = mModel.getHandle(); |
| EXPECT_EQ(ANeuralNetworksCompilation_createForDevices(modelHandle, mDevices.data(), |
| mDevices.size(), &mCompilation), |
| ANEURALNETWORKS_NO_ERROR); |
| // The compilation must fail as there is no fallback when using |
| // Introspection API. |
| EXPECT_NE(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); |
| } |
| |
| // This test verifies that a device that could only handle ADD would correctly report that an |
| // ADD->MUL model could not be fully supported. Also verifies that the indices of returned |
| // supported op list correctly map to the order of operations being added by the user. |
| TEST_F(IntrospectionControlTest, PartialModelNotSupportedOrder) { |
| // This is needed before we have the CPU fallback path being treated as a Device. |
| // TODO(miaowang): remove once b/72506261 is fixed. |
| if (DeviceManager::get()->getUseCpuOnly()) { |
| GTEST_SKIP(); |
| } |
| |
| createAddMulModel(&mModel, true); |
| |
| std::string addOnlyDriver = "test-onlyAdd"; |
| std::vector<bool> addOnlyOp(android::nn::kNumberOfOperationTypes, false); |
| addOnlyOp[ANEURALNETWORKS_ADD] = true; |
| |
| registerDevices({{addOnlyDriver, 0.9, addOnlyOp}}); |
| |
| EXPECT_TRUE(selectDeviceByName(addOnlyDriver)); |
| EXPECT_TRUE(isSupportedOpListExpected({false, true})); |
| } |
| |
| // TODO(miaowang): update the test to make sure the model is actually running on the test devices. |
| // This test verifies that an ADD->MUL model is able to run on two selected devices that together |
| // can handle all operations. |
| TEST_F(IntrospectionControlTest, ModelNeedTwoDevices) { |
| // This is needed before we have the CPU fallback path being treated as a Device. |
| // TODO(miaowang): remove once b/72506261 is fixed. |
| if (DeviceManager::get()->getUseCpuOnly()) { |
| GTEST_SKIP(); |
| } |
| |
| createAddMulModel(&mModel, false); |
| |
| std::string addOnlyDriver = "test-onlyAdd"; |
| std::vector<bool> addOnlyOp(android::nn::kNumberOfOperationTypes, false); |
| addOnlyOp[ANEURALNETWORKS_ADD] = true; |
| |
| std::string mulOnlyDriver = "test-onlyMul"; |
| std::vector<bool> mulOnlyOp(android::nn::kNumberOfOperationTypes, false); |
| mulOnlyOp[ANEURALNETWORKS_MUL] = true; |
| |
| registerDevices({ |
| {addOnlyDriver, 0.9, addOnlyOp}, |
| {mulOnlyDriver, 0.9, mulOnlyOp}, |
| }); |
| |
| EXPECT_TRUE(selectDeviceByName(addOnlyDriver)); |
| EXPECT_TRUE(selectDeviceByName(mulOnlyDriver)); |
| EXPECT_TRUE(isSupportedOpListExpected({true, true})); |
| EXPECT_EQ(prepareForExecution(), ANEURALNETWORKS_NO_ERROR); |
| |
| float input1[2] = {1.0f, 2.0f}; |
| float input2[2] = {3.0f, 4.0f}; |
| float output[2]; |
| EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, input1, sizeof(input1)), |
| ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, input2, sizeof(input2)), |
| ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, output, sizeof(output)), |
| ANEURALNETWORKS_NO_ERROR); |
| |
| EXPECT_EQ(ANeuralNetworksExecution_startCompute(mExecution, &mEvent), ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksEvent_wait(mEvent), ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(output[0], kSimpleMultiplier * (input1[0] + input2[0])); |
| EXPECT_EQ(output[1], kSimpleMultiplier * (input1[1] + input2[1])); |
| } |
| } // namespace |