| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "NeuralNetworksWrapper.h" |
| |
| #include <gtest/gtest.h> |
| #include <sys/mman.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| using namespace android::nn::wrapper; |
| |
| namespace { |
| |
| typedef float Matrix3x4[3][4]; |
| |
| // Tests the various ways to pass weights and input/output data. |
| class MemoryTest : public ::testing::Test { |
| protected: |
| virtual void SetUp() { ASSERT_EQ(Initialize(), Result::NO_ERROR); } |
| virtual void TearDown() { Shutdown(); } |
| |
| const Matrix3x4 matrix1 = {{1.f, 2.f, 3.f, 4.f}, {5.f, 6.f, 7.f, 8.f}, {9.f, 10.f, 11.f, 12.f}}; |
| const Matrix3x4 matrix2 = {{100.f, 200.f, 300.f, 400.f}, |
| {500.f, 600.f, 700.f, 800.f}, |
| {900.f, 1000.f, 1100.f, 1200.f}}; |
| const Matrix3x4 matrix3 = {{20.f, 30.f, 40.f, 50.f}, |
| {21.f, 22.f, 23.f, 24.f}, |
| {31.f, 32.f, 33.f, 34.f}}; |
| const Matrix3x4 expected3 = {{121.f, 232.f, 343.f, 454.f}, |
| {526.f, 628.f, 730.f, 832.f}, |
| {940.f, 1042.f, 1144.f, 1246.f}}; |
| const Matrix3x4 expected3b = {{22.f, 34.f, 46.f, 58.f}, |
| {31.f, 34.f, 37.f, 40.f}, |
| {49.f, 52.f, 55.f, 58.f}}; |
| }; |
| |
| // Check that the values are the same. This works only if dealing with integer |
| // value, otherwise we should accept values that are similar if not exact. |
| int CompareMatrices(const Matrix3x4& expected, const Matrix3x4& actual) { |
| int errors = 0; |
| for (int i = 0; i < 3; i++) { |
| for (int j = 0; j < 4; j++) { |
| if (expected[i][j] != actual[i][j]) { |
| printf("expected[%d][%d] != actual[%d][%d], %f != %f\n", i, j, i, j, |
| static_cast<double>(expected[i][j]), static_cast<double>(actual[i][j])); |
| errors++; |
| } |
| } |
| } |
| return errors; |
| } |
| |
| TEST_F(MemoryTest, TestAllocatedMemory) { |
| // Layout where to place matrix2 and matrix3 in the memory we'll allocate. |
| // We have gaps to test that we don't assume contiguity. |
| constexpr uint32_t offsetForMatrix2 = 20; |
| constexpr uint32_t offsetForMatrix3 = offsetForMatrix2 + sizeof(matrix2) + 30; |
| constexpr uint32_t memorySize = offsetForMatrix3 + sizeof(matrix3) + 60; |
| |
| Memory weights(memorySize); |
| ASSERT_TRUE(weights.isValid()); |
| uint8_t* data = nullptr; |
| ASSERT_EQ(weights.getPointer(&data), Result::NO_ERROR); |
| ASSERT_NE(data, nullptr); |
| memcpy(data + offsetForMatrix2, matrix2, sizeof(matrix2)); |
| memcpy(data + offsetForMatrix3, matrix3, sizeof(matrix3)); |
| |
| Model model; |
| OperandType matrixType(Type::TENSOR_FLOAT32, {3, 4}); |
| OperandType scalarType(Type::INT32, {}); |
| int32_t activation(0); |
| auto a = model.addOperand(&matrixType); |
| auto b = model.addOperand(&matrixType); |
| auto c = model.addOperand(&matrixType); |
| auto d = model.addOperand(&matrixType); |
| auto e = model.addOperand(&matrixType); |
| auto f = model.addOperand(&scalarType); |
| |
| model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4)); |
| model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4)); |
| model.setOperandValue(f, &activation, sizeof(activation)); |
| model.addOperation(ANEURALNETWORKS_ADD, {a, c, f}, {b}); |
| model.addOperation(ANEURALNETWORKS_ADD, {b, e, f}, {d}); |
| model.setInputsAndOutputs({c}, {d}); |
| ASSERT_TRUE(model.isValid()); |
| |
| // Test the two node model. |
| constexpr uint32_t offsetForMatrix1 = 20; |
| Memory input(offsetForMatrix1 + sizeof(Matrix3x4)); |
| ASSERT_TRUE(input.isValid()); |
| ASSERT_EQ(input.getPointer(&data), Result::NO_ERROR); |
| memcpy(data + offsetForMatrix1, matrix1, sizeof(Matrix3x4)); |
| |
| constexpr uint32_t offsetForActual = 32; |
| Memory actual(offsetForActual + sizeof(Matrix3x4)); |
| ASSERT_TRUE(actual.isValid()); |
| ASSERT_EQ(actual.getPointer(&data), Result::NO_ERROR); |
| memset(data, 0, offsetForActual + sizeof(Matrix3x4)); |
| |
| Request request2(&model); |
| ASSERT_EQ(request2.setInputFromMemory(0, &input, offsetForMatrix1, sizeof(Matrix3x4)), |
| Result::NO_ERROR); |
| ASSERT_EQ(request2.setOutputFromMemory(0, &actual, offsetForActual, sizeof(Matrix3x4)), |
| Result::NO_ERROR); |
| ASSERT_EQ(request2.compute(), Result::NO_ERROR); |
| data = nullptr; |
| ASSERT_EQ(actual.getPointer(&data), Result::NO_ERROR); |
| ASSERT_EQ(CompareMatrices(expected3, *reinterpret_cast<Matrix3x4*>(data + offsetForActual)), 0); |
| } |
| |
| TEST_F(MemoryTest, TestFd) { |
| // Create a file that contains matrix2 and matrix3. |
| char path[] = "/data/local/tmp/TestMemoryXXXXXX"; |
| int fd = mkstemp(path); |
| const uint32_t offsetForMatrix2 = 20; |
| const uint32_t offsetForMatrix3 = 200; |
| static_assert(offsetForMatrix2 + sizeof(matrix2) < offsetForMatrix3, "matrices overlap"); |
| lseek(fd, offsetForMatrix2, SEEK_SET); |
| write(fd, matrix2, sizeof(matrix2)); |
| lseek(fd, offsetForMatrix3, SEEK_SET); |
| write(fd, matrix3, sizeof(matrix3)); |
| fsync(fd); |
| |
| Memory weights(offsetForMatrix3 + sizeof(matrix3), PROT_READ, fd); |
| ASSERT_TRUE(weights.isValid()); |
| |
| Model model; |
| OperandType matrixType(Type::TENSOR_FLOAT32, {3, 4}); |
| OperandType scalarType(Type::INT32, {}); |
| int32_t activation(0); |
| auto a = model.addOperand(&matrixType); |
| auto b = model.addOperand(&matrixType); |
| auto c = model.addOperand(&matrixType); |
| auto d = model.addOperand(&matrixType); |
| auto e = model.addOperand(&matrixType); |
| auto f = model.addOperand(&scalarType); |
| |
| model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4)); |
| model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4)); |
| model.setOperandValue(f, &activation, sizeof(activation)); |
| model.addOperation(ANEURALNETWORKS_ADD, {a, c, f}, {b}); |
| model.addOperation(ANEURALNETWORKS_ADD, {b, e, f}, {d}); |
| model.setInputsAndOutputs({c}, {d}); |
| ASSERT_TRUE(model.isValid()); |
| |
| // Test the three node model. |
| Matrix3x4 actual; |
| memset(&actual, 0, sizeof(actual)); |
| Request request2(&model); |
| ASSERT_EQ(request2.setInput(0, matrix1, sizeof(Matrix3x4)), Result::NO_ERROR); |
| ASSERT_EQ(request2.setOutput(0, actual, sizeof(Matrix3x4)), Result::NO_ERROR); |
| ASSERT_EQ(request2.compute(), Result::NO_ERROR); |
| ASSERT_EQ(CompareMatrices(expected3, actual), 0); |
| |
| close(fd); |
| unlink(path); |
| } |
| |
| } // end namespace |