blob: f1fbd484d387318bb16930101bb8c7410886c1d8 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "NeuralNetworksWrapper.h"
#include <gtest/gtest.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>
using namespace android::nn::wrapper;
namespace {
typedef float Matrix3x4[3][4];
// Tests the various ways to pass weights and input/output data.
class MemoryTest : public ::testing::Test {
protected:
virtual void SetUp() { ASSERT_EQ(Initialize(), Result::NO_ERROR); }
virtual void TearDown() { Shutdown(); }
const Matrix3x4 matrix1 = {{1.f, 2.f, 3.f, 4.f}, {5.f, 6.f, 7.f, 8.f}, {9.f, 10.f, 11.f, 12.f}};
const Matrix3x4 matrix2 = {{100.f, 200.f, 300.f, 400.f},
{500.f, 600.f, 700.f, 800.f},
{900.f, 1000.f, 1100.f, 1200.f}};
const Matrix3x4 matrix3 = {{20.f, 30.f, 40.f, 50.f},
{21.f, 22.f, 23.f, 24.f},
{31.f, 32.f, 33.f, 34.f}};
const Matrix3x4 expected3 = {{121.f, 232.f, 343.f, 454.f},
{526.f, 628.f, 730.f, 832.f},
{940.f, 1042.f, 1144.f, 1246.f}};
const Matrix3x4 expected3b = {{22.f, 34.f, 46.f, 58.f},
{31.f, 34.f, 37.f, 40.f},
{49.f, 52.f, 55.f, 58.f}};
};
// Check that the values are the same. This works only if dealing with integer
// value, otherwise we should accept values that are similar if not exact.
int CompareMatrices(const Matrix3x4& expected, const Matrix3x4& actual) {
int errors = 0;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 4; j++) {
if (expected[i][j] != actual[i][j]) {
printf("expected[%d][%d] != actual[%d][%d], %f != %f\n", i, j, i, j,
static_cast<double>(expected[i][j]), static_cast<double>(actual[i][j]));
errors++;
}
}
}
return errors;
}
TEST_F(MemoryTest, TestAllocatedMemory) {
// Layout where to place matrix2 and matrix3 in the memory we'll allocate.
// We have gaps to test that we don't assume contiguity.
constexpr uint32_t offsetForMatrix2 = 20;
constexpr uint32_t offsetForMatrix3 = offsetForMatrix2 + sizeof(matrix2) + 30;
constexpr uint32_t memorySize = offsetForMatrix3 + sizeof(matrix3) + 60;
Memory weights(memorySize);
ASSERT_TRUE(weights.isValid());
uint8_t* data = nullptr;
ASSERT_EQ(weights.getPointer(&data), Result::NO_ERROR);
ASSERT_NE(data, nullptr);
memcpy(data + offsetForMatrix2, matrix2, sizeof(matrix2));
memcpy(data + offsetForMatrix3, matrix3, sizeof(matrix3));
Model model;
OperandType matrixType(Type::TENSOR_FLOAT32, {3, 4});
OperandType scalarType(Type::INT32, {});
int32_t activation(0);
auto a = model.addOperand(&matrixType);
auto b = model.addOperand(&matrixType);
auto c = model.addOperand(&matrixType);
auto d = model.addOperand(&matrixType);
auto e = model.addOperand(&matrixType);
auto f = model.addOperand(&scalarType);
model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4));
model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4));
model.setOperandValue(f, &activation, sizeof(activation));
model.addOperation(ANEURALNETWORKS_ADD, {a, c, f}, {b});
model.addOperation(ANEURALNETWORKS_ADD, {b, e, f}, {d});
model.setInputsAndOutputs({c}, {d});
ASSERT_TRUE(model.isValid());
// Test the two node model.
constexpr uint32_t offsetForMatrix1 = 20;
Memory input(offsetForMatrix1 + sizeof(Matrix3x4));
ASSERT_TRUE(input.isValid());
ASSERT_EQ(input.getPointer(&data), Result::NO_ERROR);
memcpy(data + offsetForMatrix1, matrix1, sizeof(Matrix3x4));
constexpr uint32_t offsetForActual = 32;
Memory actual(offsetForActual + sizeof(Matrix3x4));
ASSERT_TRUE(actual.isValid());
ASSERT_EQ(actual.getPointer(&data), Result::NO_ERROR);
memset(data, 0, offsetForActual + sizeof(Matrix3x4));
Request request2(&model);
ASSERT_EQ(request2.setInputFromMemory(0, &input, offsetForMatrix1, sizeof(Matrix3x4)),
Result::NO_ERROR);
ASSERT_EQ(request2.setOutputFromMemory(0, &actual, offsetForActual, sizeof(Matrix3x4)),
Result::NO_ERROR);
ASSERT_EQ(request2.compute(), Result::NO_ERROR);
data = nullptr;
ASSERT_EQ(actual.getPointer(&data), Result::NO_ERROR);
ASSERT_EQ(CompareMatrices(expected3, *reinterpret_cast<Matrix3x4*>(data + offsetForActual)), 0);
}
TEST_F(MemoryTest, TestFd) {
// Create a file that contains matrix2 and matrix3.
char path[] = "/data/local/tmp/TestMemoryXXXXXX";
int fd = mkstemp(path);
const uint32_t offsetForMatrix2 = 20;
const uint32_t offsetForMatrix3 = 200;
static_assert(offsetForMatrix2 + sizeof(matrix2) < offsetForMatrix3, "matrices overlap");
lseek(fd, offsetForMatrix2, SEEK_SET);
write(fd, matrix2, sizeof(matrix2));
lseek(fd, offsetForMatrix3, SEEK_SET);
write(fd, matrix3, sizeof(matrix3));
fsync(fd);
Memory weights(offsetForMatrix3 + sizeof(matrix3), PROT_READ, fd);
ASSERT_TRUE(weights.isValid());
Model model;
OperandType matrixType(Type::TENSOR_FLOAT32, {3, 4});
OperandType scalarType(Type::INT32, {});
int32_t activation(0);
auto a = model.addOperand(&matrixType);
auto b = model.addOperand(&matrixType);
auto c = model.addOperand(&matrixType);
auto d = model.addOperand(&matrixType);
auto e = model.addOperand(&matrixType);
auto f = model.addOperand(&scalarType);
model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4));
model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4));
model.setOperandValue(f, &activation, sizeof(activation));
model.addOperation(ANEURALNETWORKS_ADD, {a, c, f}, {b});
model.addOperation(ANEURALNETWORKS_ADD, {b, e, f}, {d});
model.setInputsAndOutputs({c}, {d});
ASSERT_TRUE(model.isValid());
// Test the three node model.
Matrix3x4 actual;
memset(&actual, 0, sizeof(actual));
Request request2(&model);
ASSERT_EQ(request2.setInput(0, matrix1, sizeof(Matrix3x4)), Result::NO_ERROR);
ASSERT_EQ(request2.setOutput(0, actual, sizeof(Matrix3x4)), Result::NO_ERROR);
ASSERT_EQ(request2.compute(), Result::NO_ERROR);
ASSERT_EQ(CompareMatrices(expected3, actual), 0);
close(fd);
unlink(path);
}
} // end namespace