| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "Operations" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <vector> |
| |
| #include "IndexedShapeWrapper.h" |
| #include "OperationResolver.h" |
| #include "OperationsUtils.h" |
| #include "Tracing.h" |
| |
| namespace android { |
| namespace nn { |
| namespace elu { |
| |
| constexpr uint32_t kNumInputs = 2; |
| constexpr uint32_t kInputTensor = 0; |
| constexpr uint32_t kAlphaScalar = 1; |
| |
| constexpr uint32_t kNumOutputs = 1; |
| constexpr uint32_t kOutputTensor = 0; |
| |
| namespace { |
| |
| template <typename T> |
| bool eluFloat(const T* inputData, const Shape& inputShape, const T alpha, T* outputData, |
| const Shape& outputShape) { |
| NNTRACE_COMP("ELU"); |
| int numElements = getNumberOfElements(inputShape); |
| for (int i = 0; i < numElements; ++i) { |
| float x = static_cast<float>(inputData[i]); |
| outputData[i] = static_cast<T>(std::max(0.f, x) + std::min(0.f, alpha * (std::exp(x) - 1))); |
| } |
| return true; |
| } |
| |
| } // namespace |
| |
| Result<Version> validate(const IOperationValidationContext* context) { |
| NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs); |
| NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); |
| auto inputType = context->getInputType(kInputTensor); |
| auto minSupportedVersion = Version::ANDROID_OC_MR1; |
| if (inputType == OperandType::TENSOR_FLOAT16 || inputType == OperandType::TENSOR_FLOAT32) { |
| minSupportedVersion = Version::ANDROID_R; |
| } else { |
| NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation ELU"; |
| } |
| auto scalarType = |
| inputType == OperandType::TENSOR_FLOAT16 ? OperandType::FLOAT16 : OperandType::FLOAT32; |
| NN_RET_CHECK(validateInputTypes(context, {inputType, scalarType})); |
| NN_RET_CHECK(validateOutputTypes(context, {inputType})); |
| return minSupportedVersion; |
| } |
| |
| bool prepare(IOperationExecutionContext* context) { |
| Shape inputShape = context->getInputShape(kInputTensor); |
| return context->setOutputShape(kOutputTensor, inputShape); |
| } |
| |
| bool execute(IOperationExecutionContext* context) { |
| // Bypass execution in the case of zero-sized input. |
| if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; |
| switch (context->getInputType(kInputTensor)) { |
| case OperandType::TENSOR_FLOAT16: |
| return eluFloat(context->getInputBuffer<_Float16>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getInputValue<_Float16>(kAlphaScalar), |
| context->getOutputBuffer<_Float16>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| case OperandType::TENSOR_FLOAT32: |
| return eluFloat(context->getInputBuffer<float>(kInputTensor), |
| context->getInputShape(kInputTensor), |
| context->getInputValue<float>(kAlphaScalar), |
| context->getOutputBuffer<float>(kOutputTensor), |
| context->getOutputShape(kOutputTensor)); |
| default: |
| NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation ELU"; |
| } |
| } |
| |
| } // namespace elu |
| |
| NN_REGISTER_OPERATION(ELU, "ELU", elu::validate, elu::prepare, elu::execute); |
| |
| } // namespace nn |
| } // namespace android |