| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <android-base/logging.h> |
| #include <android-base/properties.h> |
| #include <ftw.h> |
| #include <gtest/gtest.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <fstream> |
| #include <iostream> |
| #include <map> |
| #include <memory> |
| #include <set> |
| #include <string> |
| #include <thread> |
| #include <utility> |
| #include <vector> |
| |
| #include "AndroidVersionUtil.h" |
| #include "GeneratedTestUtils.h" |
| #include "NeuralNetworks.h" |
| #include "NeuralNetworksTypes.h" |
| #include "TestHarness.h" |
| #include "TestNeuralNetworksWrapper.h" |
| #include "TestUtils.h" |
| #include "TmpDirectoryUtils.h" |
| |
| // Systrace is not available from CTS tests due to platform layering |
| // constraints. We reuse the NNTEST_ONLY_PUBLIC_API flag, as that should also be |
| // the case for CTS (public APIs only). |
| #ifndef NNTEST_ONLY_PUBLIC_API |
| #include <Tracing.h> |
| #else |
| #define NNTRACE_FULL_RAW(...) |
| #define NNTRACE_APP(...) |
| #define NNTRACE_APP_SWITCH(...) |
| #endif |
| |
| #ifdef NNTEST_CTS |
| #define NNTEST_COMPUTE_MODE |
| #endif |
| |
| namespace android::nn::generated_tests { |
| using namespace test_wrapper; |
| using namespace test_helper; |
| |
| class GeneratedTests : public GeneratedTestBase { |
| protected: |
| void SetUp() override; |
| void TearDown() override; |
| |
| bool shouldSkipTest(); |
| |
| std::optional<Compilation> compileModel(const Model& model); |
| void executeInternal(const Compilation& compilation, const TestModel& testModel, |
| bool testReusableExecution); |
| void executeWithCompilation(const Compilation& compilation, const TestModel& testModel); |
| void executeOnce(const Model& model, const TestModel& testModel); |
| void executeMultithreadedOwnCompilation(const Model& model, const TestModel& testModel); |
| void executeMultithreadedSharedCompilation(const Model& model, const TestModel& testModel); |
| // Test driver for those generated from ml/nn/runtime/test/spec |
| void execute(const TestModel& testModel); |
| |
| // VNDK version of the device under test. |
| static int mVndkVersion; |
| |
| std::string mCacheDir; |
| std::vector<uint8_t> mToken; |
| bool mTestCompilationCaching = false; |
| bool mTestDynamicOutputShape = false; |
| bool mExpectFailure = false; |
| bool mTestQuantizationCoupling = false; |
| bool mTestDeviceMemory = false; |
| bool mTestReusableExecution = true; |
| Execution::ComputeMode mComputeMode = Execution::getComputeMode(); |
| }; |
| |
| int GeneratedTests::mVndkVersion = __ANDROID_API_FUTURE__; |
| |
| // Tag for the dynamic output shape tests |
| class DynamicOutputShapeTest : public GeneratedTests { |
| protected: |
| DynamicOutputShapeTest() { mTestDynamicOutputShape = true; } |
| }; |
| |
| // Tag for the fenced execute tests |
| class FencedComputeTest : public GeneratedTests {}; |
| |
| // Tag for the generated validation tests |
| class GeneratedValidationTests : public GeneratedTests { |
| protected: |
| GeneratedValidationTests() { mExpectFailure = true; } |
| }; |
| |
| class QuantizationCouplingTest : public GeneratedTests { |
| protected: |
| QuantizationCouplingTest() { |
| mTestQuantizationCoupling = true; |
| // QuantizationCouplingTest is intended for verifying if a driver supports ASYMM quant8, it |
| // must support SYMM quant8. All the models in QuantizationCouplingTest will also be |
| // executed in other test suites, so there is no need to test reusable execution again. |
| mTestReusableExecution = false; |
| } |
| }; |
| |
| class DeviceMemoryTest : public GeneratedTests { |
| protected: |
| DeviceMemoryTest() { mTestDeviceMemory = true; } |
| }; |
| |
| std::optional<Compilation> GeneratedTests::compileModel(const Model& model) { |
| NNTRACE_APP(NNTRACE_PHASE_COMPILATION, "compileModel"); |
| if (mTestCompilationCaching) { |
| // Compile the model twice with the same token, so that compilation caching will be |
| // exercised if supported by the driver. |
| // No invalid model will be passed to this branch. |
| EXPECT_FALSE(mExpectFailure); |
| Compilation compilation1(&model); |
| EXPECT_EQ(compilation1.setCaching(mCacheDir, mToken), Result::NO_ERROR); |
| EXPECT_EQ(compilation1.finish(), Result::NO_ERROR); |
| Compilation compilation2(&model); |
| EXPECT_EQ(compilation2.setCaching(mCacheDir, mToken), Result::NO_ERROR); |
| EXPECT_EQ(compilation2.finish(), Result::NO_ERROR); |
| return compilation2; |
| } else { |
| Compilation compilation(&model); |
| Result result = compilation.finish(); |
| |
| // For valid model, we check the compilation result == NO_ERROR. |
| // For invalid model, the driver may fail at compilation or execution, so any result code is |
| // permitted at this point. |
| if (mExpectFailure && result != Result::NO_ERROR) return std::nullopt; |
| EXPECT_EQ(result, Result::NO_ERROR); |
| return compilation; |
| } |
| } |
| |
| static ANeuralNetworksMemory* createDeviceMemoryForInput(const Compilation& compilation, |
| uint32_t index) { |
| ANeuralNetworksMemoryDesc* desc = nullptr; |
| EXPECT_EQ(ANeuralNetworksMemoryDesc_create(&desc), ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksMemoryDesc_addInputRole(desc, compilation.getHandle(), index, 1.0f), |
| ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksMemoryDesc_finish(desc), ANEURALNETWORKS_NO_ERROR); |
| ANeuralNetworksMemory* memory = nullptr; |
| EXPECT_EQ(ANeuralNetworksMemory_createFromDesc(desc, &memory), ANEURALNETWORKS_NO_ERROR); |
| ANeuralNetworksMemoryDesc_free(desc); |
| return memory; |
| } |
| |
| static ANeuralNetworksMemory* createDeviceMemoryForOutput(const Compilation& compilation, |
| uint32_t index) { |
| ANeuralNetworksMemoryDesc* desc = nullptr; |
| EXPECT_EQ(ANeuralNetworksMemoryDesc_create(&desc), ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksMemoryDesc_addOutputRole(desc, compilation.getHandle(), index, 1.0f), |
| ANEURALNETWORKS_NO_ERROR); |
| EXPECT_EQ(ANeuralNetworksMemoryDesc_finish(desc), ANEURALNETWORKS_NO_ERROR); |
| ANeuralNetworksMemory* memory = nullptr; |
| EXPECT_EQ(ANeuralNetworksMemory_createFromDesc(desc, &memory), ANEURALNETWORKS_NO_ERROR); |
| ANeuralNetworksMemoryDesc_free(desc); |
| return memory; |
| } |
| |
| static void createRequestWithDeviceMemories(const Compilation& compilation, |
| const TestModel& testModel, Execution* execution, |
| std::vector<Memory>* inputMemories, |
| std::vector<Memory>* outputMemories) { |
| ASSERT_NE(execution, nullptr); |
| ASSERT_NE(inputMemories, nullptr); |
| ASSERT_NE(outputMemories, nullptr); |
| |
| // Model inputs. |
| for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) { |
| SCOPED_TRACE("Input index: " + std::to_string(i)); |
| const auto& operand = testModel.main.operands[testModel.main.inputIndexes[i]]; |
| // Omitted input. |
| if (operand.data.size() == 0) { |
| ASSERT_EQ(Result::NO_ERROR, execution->setInput(i, nullptr, 0)); |
| continue; |
| } |
| |
| // Create device memory. |
| ANeuralNetworksMemory* memory = createDeviceMemoryForInput(compilation, i); |
| ASSERT_NE(memory, nullptr); |
| auto& wrapperMemory = inputMemories->emplace_back(memory); |
| |
| // Copy data from TestBuffer to device memory. |
| auto ashmem = TestAshmem::createFrom(operand.data); |
| ASSERT_NE(ashmem, nullptr); |
| ASSERT_EQ(ANeuralNetworksMemory_copy(ashmem->get()->get(), memory), |
| ANEURALNETWORKS_NO_ERROR); |
| ASSERT_EQ(Result::NO_ERROR, execution->setInputFromMemory(i, &wrapperMemory, 0, 0)); |
| } |
| |
| // Model outputs. |
| for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) { |
| SCOPED_TRACE("Output index: " + std::to_string(i)); |
| ANeuralNetworksMemory* memory = createDeviceMemoryForOutput(compilation, i); |
| ASSERT_NE(memory, nullptr); |
| auto& wrapperMemory = outputMemories->emplace_back(memory); |
| ASSERT_EQ(Result::NO_ERROR, execution->setOutputFromMemory(i, &wrapperMemory, 0, 0)); |
| } |
| } |
| |
| static void copyResultsFromDeviceMemories(const TestModel& testModel, |
| const std::vector<Memory>& outputMemories, |
| std::vector<TestBuffer>* outputs) { |
| ASSERT_NE(outputs, nullptr); |
| ASSERT_EQ(testModel.main.outputIndexes.size(), outputMemories.size()); |
| outputs->clear(); |
| |
| // Copy out output results. |
| for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) { |
| SCOPED_TRACE("Output index: " + std::to_string(i)); |
| const auto& operand = testModel.main.operands[testModel.main.outputIndexes[i]]; |
| const size_t bufferSize = operand.data.size(); |
| auto& output = outputs->emplace_back(bufferSize); |
| |
| auto ashmem = TestAshmem::createFrom(output); |
| ASSERT_NE(ashmem, nullptr); |
| ASSERT_EQ(ANeuralNetworksMemory_copy(outputMemories[i].get(), ashmem->get()->get()), |
| ANEURALNETWORKS_NO_ERROR); |
| std::copy(ashmem->dataAs<uint8_t>(), ashmem->dataAs<uint8_t>() + bufferSize, |
| output.getMutable<uint8_t>()); |
| } |
| } |
| |
| void GeneratedTests::executeInternal(const Compilation& compilation, const TestModel& testModel, |
| bool testReusableExecution) { |
| NNTRACE_APP(NNTRACE_PHASE_EXECUTION, "executeInternal example"); |
| |
| Execution execution(&compilation); |
| if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) { |
| execution.setReusable(testReusableExecution); |
| } |
| |
| std::vector<TestBuffer> outputs; |
| std::vector<Memory> inputMemories, outputMemories; |
| |
| if (mTestDeviceMemory) { |
| createRequestWithDeviceMemories(compilation, testModel, &execution, &inputMemories, |
| &outputMemories); |
| } else { |
| createRequest(testModel, &execution, &outputs); |
| } |
| |
| const auto computeAndCheckResults = [this, &testModel, &execution, &outputs, &outputMemories] { |
| Result result = execution.compute(mComputeMode); |
| if (mTestDeviceMemory) { |
| copyResultsFromDeviceMemories(testModel, outputMemories, &outputs); |
| } |
| |
| if (result == Result::NO_ERROR && outputs.empty()) { |
| return; |
| } |
| |
| { |
| NNTRACE_APP(NNTRACE_PHASE_RESULTS, "executeInternal example"); |
| if (mExpectFailure) { |
| ASSERT_NE(result, Result::NO_ERROR); |
| return; |
| } else { |
| ASSERT_EQ(result, Result::NO_ERROR); |
| } |
| |
| // Check output dimensions. |
| for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) { |
| SCOPED_TRACE("Output index: " + std::to_string(i)); |
| const auto& output = testModel.main.operands[testModel.main.outputIndexes[i]]; |
| if (output.isIgnored) continue; |
| std::vector<uint32_t> actualDimensions; |
| ASSERT_EQ(Result::NO_ERROR, |
| execution.getOutputOperandDimensions(i, &actualDimensions)); |
| ASSERT_EQ(output.dimensions, actualDimensions); |
| } |
| |
| checkResults(testModel, outputs); |
| } |
| }; |
| |
| computeAndCheckResults(); |
| if (testReusableExecution) { |
| computeAndCheckResults(); |
| } |
| } |
| |
| void GeneratedTests::executeWithCompilation(const Compilation& compilation, |
| const TestModel& testModel) { |
| // Single-time and reusable executions have different code paths, so test both. |
| executeInternal(compilation, testModel, /*testReusableExecution=*/false); |
| if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) { |
| if (mTestReusableExecution) { |
| executeInternal(compilation, testModel, /*testReusableExecution=*/true); |
| } |
| } |
| } |
| |
| static bool isPowerOfTwo(uint32_t x) { |
| return x > 0 && ((x & (x - 1)) == 0); |
| } |
| |
| static void validateCompilationMemoryPreferences(const Compilation& compilation, |
| const TestModel& testModel) { |
| if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) { |
| for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) { |
| SCOPED_TRACE("Input index: " + std::to_string(i)); |
| uint32_t alignment = 0, padding = 0; |
| ASSERT_EQ(compilation.getPreferredMemoryAlignmentForInput(i, &alignment), |
| Result::NO_ERROR); |
| ASSERT_EQ(compilation.getPreferredMemoryPaddingForInput(i, &padding), Result::NO_ERROR); |
| EXPECT_TRUE(isPowerOfTwo(alignment)) << "alignment: " << alignment; |
| EXPECT_TRUE(isPowerOfTwo(padding)) << "padding: " << padding; |
| } |
| for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) { |
| SCOPED_TRACE("Output index: " + std::to_string(i)); |
| uint32_t alignment = 0, padding = 0; |
| ASSERT_EQ(compilation.getPreferredMemoryAlignmentForOutput(i, &alignment), |
| Result::NO_ERROR); |
| ASSERT_EQ(compilation.getPreferredMemoryPaddingForOutput(i, &padding), |
| Result::NO_ERROR); |
| EXPECT_TRUE(isPowerOfTwo(alignment)) << "alignment: " << alignment; |
| EXPECT_TRUE(isPowerOfTwo(padding)) << "padding: " << padding; |
| } |
| } |
| } |
| |
| void GeneratedTests::executeOnce(const Model& model, const TestModel& testModel) { |
| NNTRACE_APP(NNTRACE_PHASE_OVERALL, "executeOnce"); |
| std::optional<Compilation> compilation = compileModel(model); |
| // Early return if compilation fails. The compilation result code is checked in compileModel. |
| if (!compilation) return; |
| validateCompilationMemoryPreferences(compilation.value(), testModel); |
| executeWithCompilation(compilation.value(), testModel); |
| } |
| |
| void GeneratedTests::executeMultithreadedOwnCompilation(const Model& model, |
| const TestModel& testModel) { |
| NNTRACE_APP(NNTRACE_PHASE_OVERALL, "executeMultithreadedOwnCompilation"); |
| SCOPED_TRACE("MultithreadedOwnCompilation"); |
| std::vector<std::thread> threads; |
| for (int i = 0; i < 10; i++) { |
| threads.push_back(std::thread([&]() { executeOnce(model, testModel); })); |
| } |
| std::for_each(threads.begin(), threads.end(), [](std::thread& t) { t.join(); }); |
| } |
| |
| void GeneratedTests::executeMultithreadedSharedCompilation(const Model& model, |
| const TestModel& testModel) { |
| NNTRACE_APP(NNTRACE_PHASE_OVERALL, "executeMultithreadedSharedCompilation"); |
| SCOPED_TRACE("MultithreadedSharedCompilation"); |
| std::optional<Compilation> compilation = compileModel(model); |
| // Early return if compilation fails. The ompilation result code is checked in compileModel. |
| if (!compilation) return; |
| std::vector<std::thread> threads; |
| for (int i = 0; i < 10; i++) { |
| threads.push_back( |
| std::thread([&]() { executeWithCompilation(compilation.value(), testModel); })); |
| } |
| std::for_each(threads.begin(), threads.end(), [](std::thread& t) { t.join(); }); |
| } |
| |
| // Test driver for those generated from ml/nn/runtime/test/spec |
| void GeneratedTests::execute(const TestModel& testModel) { |
| NNTRACE_APP(NNTRACE_PHASE_OVERALL, "execute"); |
| GeneratedModel model; |
| createModel(testModel, mTestDynamicOutputShape, &model); |
| if (testModel.expectFailure && !model.isValid()) { |
| return; |
| } |
| ASSERT_EQ(model.finish(), Result::NO_ERROR); |
| ASSERT_TRUE(model.isValid()); |
| auto executeInternal = [&testModel, &model, this]() { |
| SCOPED_TRACE("TestCompilationCaching = " + std::to_string(mTestCompilationCaching)); |
| #ifndef NNTEST_MULTITHREADED |
| executeOnce(model, testModel); |
| #else // defined(NNTEST_MULTITHREADED) |
| executeMultithreadedOwnCompilation(model, testModel); |
| executeMultithreadedSharedCompilation(model, testModel); |
| #endif // !defined(NNTEST_MULTITHREADED) |
| }; |
| mTestCompilationCaching = false; |
| executeInternal(); |
| if (!mExpectFailure) { |
| mTestCompilationCaching = true; |
| executeInternal(); |
| } |
| } |
| |
| static int64_t getRuntimeFeatureLevel() { |
| if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) { |
| return ANeuralNetworks_getRuntimeFeatureLevel(); |
| } |
| #if defined(__BIONIC__) |
| return android_get_device_api_level(); |
| #else |
| return __ANDROID_API__; |
| #endif // __BIONIC__ |
| } |
| |
| static std::optional<int64_t> halVersionToFeatureLevel(TestHalVersion halVersion) { |
| switch (halVersion) { |
| case TestHalVersion::UNKNOWN: |
| return std::nullopt; |
| case TestHalVersion::V1_0: |
| return ANEURALNETWORKS_FEATURE_LEVEL_1; |
| case TestHalVersion::V1_1: |
| return ANEURALNETWORKS_FEATURE_LEVEL_2; |
| case TestHalVersion::V1_2: |
| return ANEURALNETWORKS_FEATURE_LEVEL_3; |
| case TestHalVersion::V1_3: |
| return ANEURALNETWORKS_FEATURE_LEVEL_4; |
| case TestHalVersion::AIDL_V1: |
| return ANEURALNETWORKS_FEATURE_LEVEL_5; |
| case TestHalVersion::AIDL_V2: |
| return ANEURALNETWORKS_FEATURE_LEVEL_6; |
| case TestHalVersion::AIDL_V3: |
| return ANEURALNETWORKS_FEATURE_LEVEL_7; |
| } |
| LOG(FATAL) << "Unrecognized TestHalVersion " |
| << static_cast<std::underlying_type_t<TestHalVersion>>(halVersion); |
| return std::nullopt; |
| } |
| |
| bool GeneratedTests::shouldSkipTest() { |
| // A map of {min VNDK version -> tests that should be skipped with earlier VNDK versions}. |
| // The listed tests are added in a later release, but exercising old APIs. They should be |
| // skipped if the device has a mixed build of system and vendor partitions. |
| static const std::map<int, std::set<std::string>> kMapOfMinVndkVersionToTests = { |
| { |
| __ANDROID_API_R__, |
| { |
| "add_broadcast_quant8_all_inputs_as_internal", |
| }, |
| }, |
| }; |
| for (const auto& [minVersion, names] : kMapOfMinVndkVersionToTests) { |
| if (mVndkVersion < minVersion && names.count(kTestName) > 0) { |
| return true; |
| } |
| } |
| |
| // Skip test cases that are newer than what is allowed by |
| // ANeuralNetworks_getRuntimeFeatureLevel. |
| if (const auto featureLevelNeeded = halVersionToFeatureLevel(testModel.minSupportedVersion)) { |
| return featureLevelNeeded.value() > getRuntimeFeatureLevel(); |
| } |
| |
| return false; |
| } |
| |
| void GeneratedTests::SetUp() { |
| GeneratedTestBase::SetUp(); |
| |
| mVndkVersion = ::android::base::GetIntProperty("ro.vndk.version", __ANDROID_API_FUTURE__); |
| if (shouldSkipTest()) { |
| GTEST_SKIP(); |
| return; |
| } |
| |
| char cacheDirTemp[] = NN_TMP_DIR "/TestCompilationCachingXXXXXX"; |
| char* cacheDir = mkdtemp(cacheDirTemp); |
| ASSERT_NE(cacheDir, nullptr); |
| mCacheDir = cacheDir; |
| mToken = std::vector<uint8_t>(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); |
| } |
| |
| void GeneratedTests::TearDown() { |
| if (!::testing::Test::HasFailure()) { |
| // TODO: Switch to std::filesystem::remove_all once libc++fs is made available in CTS. |
| // Remove the cache directory specified by path recursively. |
| auto callback = [](const char* child, const struct stat*, int, struct FTW*) { |
| return remove(child); |
| }; |
| nftw(mCacheDir.c_str(), callback, 128, FTW_DEPTH | FTW_MOUNT | FTW_PHYS); |
| } |
| GeneratedTestBase::TearDown(); |
| } |
| |
| #ifdef NNTEST_COMPUTE_MODE |
| TEST_P(GeneratedTests, Sync) { |
| mComputeMode = Execution::ComputeMode::SYNC; |
| execute(testModel); |
| } |
| |
| TEST_P(GeneratedTests, Async) { |
| mComputeMode = Execution::ComputeMode::ASYNC; |
| execute(testModel); |
| } |
| |
| TEST_P(GeneratedTests, Burst) { |
| mComputeMode = Execution::ComputeMode::BURST; |
| execute(testModel); |
| } |
| #else |
| TEST_P(GeneratedTests, Test) { |
| execute(testModel); |
| } |
| #endif |
| |
| TEST_P(DynamicOutputShapeTest, Test) { |
| execute(testModel); |
| } |
| |
| TEST_P(GeneratedValidationTests, Test) { |
| execute(testModel); |
| } |
| |
| TEST_P(QuantizationCouplingTest, Test) { |
| execute(convertQuant8AsymmOperandsToSigned(testModel)); |
| } |
| |
| TEST_P(DeviceMemoryTest, Test) { |
| execute(testModel); |
| } |
| |
| TEST_P(FencedComputeTest, Test) { |
| mComputeMode = Execution::ComputeMode::FENCED; |
| execute(testModel); |
| } |
| |
| INSTANTIATE_GENERATED_TEST(GeneratedTests, |
| [](const TestModel& testModel) { return !testModel.expectFailure; }); |
| |
| INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest, [](const TestModel& testModel) { |
| return !testModel.expectFailure && !testModel.hasScalarOutputs(); |
| }); |
| |
| INSTANTIATE_GENERATED_TEST(GeneratedValidationTests, [](const TestModel& testModel) { |
| return testModel.expectFailure && !testModel.isInfiniteLoopTimeoutTest(); |
| }); |
| |
| INSTANTIATE_GENERATED_TEST(QuantizationCouplingTest, [](const TestModel& testModel) { |
| return !testModel.expectFailure && testModel.main.operations.size() == 1 && |
| testModel.referenced.size() == 0 && testModel.hasQuant8CoupledOperands(); |
| }); |
| |
| INSTANTIATE_GENERATED_TEST(DeviceMemoryTest, [](const TestModel& testModel) { |
| return !testModel.expectFailure && |
| std::all_of(testModel.main.outputIndexes.begin(), testModel.main.outputIndexes.end(), |
| [&testModel](uint32_t index) { |
| return testModel.main.operands[index].data.size() > 0; |
| }); |
| }); |
| |
| INSTANTIATE_GENERATED_TEST(FencedComputeTest, [](const TestModel& testModel) { |
| return !testModel.expectFailure && |
| std::all_of(testModel.main.outputIndexes.begin(), testModel.main.outputIndexes.end(), |
| [&testModel](uint32_t index) { |
| return testModel.main.operands[index].data.size() > 0; |
| }); |
| }); |
| |
| } // namespace android::nn::generated_tests |