Jean-Luc Brouillet | 4fb1e85 | 2017-08-20 18:16:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2017 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "Memory" |
| 18 | |
| 19 | #include "Memory.h" |
| 20 | |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 21 | #include <algorithm> |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 22 | #include <memory> |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 23 | #include <set> |
| 24 | #include <tuple> |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 25 | #include <utility> |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 26 | #include <vector> |
| 27 | |
| 28 | #include "CompilationBuilder.h" |
Xusong Wang | 52b860b | 2019-11-27 16:23:36 -0800 | [diff] [blame] | 29 | #include "CpuExecutor.h" |
Michael Butler | 50032c0 | 2019-03-14 17:34:48 -0700 | [diff] [blame] | 30 | #include "ExecutionBurstController.h" |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 31 | #include "Manager.h" |
Slava Shklyaev | 79534bc | 2019-05-22 11:10:13 +0100 | [diff] [blame] | 32 | #include "MemoryUtils.h" |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 33 | #include "TypeManager.h" |
Jean-Luc Brouillet | 4fb1e85 | 2017-08-20 18:16:36 -0700 | [diff] [blame] | 34 | #include "Utils.h" |
| 35 | |
| 36 | namespace android { |
| 37 | namespace nn { |
| 38 | |
Michael Butler | 6bf05b2 | 2019-07-11 11:45:01 -0700 | [diff] [blame] | 39 | using namespace hal; |
| 40 | |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 41 | namespace { |
| 42 | |
| 43 | // The validator for a client-managed single-dimensional memory pool with a known size. |
| 44 | // The memory may be used for request inputs, request outputs, or model constants. |
| 45 | class SizedMemoryValidator : public MemoryValidatorBase { |
| 46 | public: |
| 47 | SizedMemoryValidator(uint32_t size) : kSize(size) {} |
| 48 | |
| 49 | bool validate(const CompilationBuilder*, IOType, uint32_t, const ANeuralNetworksOperandType*, |
| 50 | uint32_t offset, uint32_t length) const override { |
| 51 | NN_RET_CHECK(offset + length <= kSize) << "request size larger than the memory size."; |
| 52 | NN_RET_CHECK(offset != 0 || length != 0) << "memory size cannot be implied."; |
| 53 | return true; |
| 54 | } |
| 55 | |
Xusong Wang | 52b860b | 2019-11-27 16:23:36 -0800 | [diff] [blame] | 56 | Metadata getMetadata() const override { return {.logicalSize = kSize}; } |
| 57 | bool updateMetadata(const Metadata& metadata) override { |
| 58 | return metadata.logicalSize == 0 || metadata.logicalSize == kSize; |
| 59 | } |
| 60 | |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 61 | private: |
| 62 | const uint32_t kSize; |
| 63 | }; |
| 64 | |
| 65 | // The validator for an AHardwareBuffer with Non-BLOB format. |
| 66 | // We require the memory only used for request inputs or request outputs, |
| 67 | // with both offset and length set to zero. |
| 68 | class AHardwareBufferNonBlobValidator : public MemoryValidatorBase { |
| 69 | public: |
| 70 | AHardwareBufferNonBlobValidator() = default; |
| 71 | |
| 72 | bool validate(const CompilationBuilder* compilation, IOType, uint32_t, |
| 73 | const ANeuralNetworksOperandType*, uint32_t offset, |
| 74 | uint32_t length) const override { |
| 75 | NN_RET_CHECK(compilation != nullptr) |
| 76 | << "cannot use Non-BLOB AHardwareBuffer as model constant"; |
| 77 | NN_RET_CHECK(offset == 0 && length == 0) |
| 78 | << "non-zero offset (" << offset << ") and/or length (" << length |
| 79 | << ") for Non-BLOB format AHardwareBuffer."; |
| 80 | return true; |
| 81 | } |
Xusong Wang | 52b860b | 2019-11-27 16:23:36 -0800 | [diff] [blame] | 82 | |
| 83 | Metadata getMetadata() const override { return {}; } |
| 84 | bool updateMetadata(const Metadata&) override { return true; } |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 85 | }; |
| 86 | |
| 87 | // The validator for a memory created from ANNMemory_createFromDesc. |
| 88 | // We require the memory only used as one of the pre-specified roles, |
| 89 | // with both offset and length set to zero. |
| 90 | class DeviceMemoryValidator : public MemoryValidatorBase { |
| 91 | public: |
Xusong Wang | 52b860b | 2019-11-27 16:23:36 -0800 | [diff] [blame] | 92 | DeviceMemoryValidator(std::set<CompilationRole> roles, Operand operand, |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 93 | std::vector<uint32_t> dimensions) |
| 94 | : kCompilationRoles(std::move(roles)), |
Xusong Wang | 52b860b | 2019-11-27 16:23:36 -0800 | [diff] [blame] | 95 | kOperand(std::move(operand)), |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 96 | kInitialDimensions(std::move(dimensions)), |
| 97 | mUpdatedDimensions(kInitialDimensions) {} |
| 98 | |
| 99 | bool validate(const CompilationBuilder* compilation, IOType ioType, uint32_t index, |
| 100 | const ANeuralNetworksOperandType* type, uint32_t offset, |
| 101 | uint32_t length) const override { |
| 102 | NN_RET_CHECK(kCompilationRoles.count({compilation, ioType, index}) > 0) |
| 103 | << "invalid compilation role."; |
| 104 | NN_RET_CHECK(offset == 0 && length == 0) |
| 105 | << "non-zero offset and/or length for driver-allocated memory."; |
| 106 | if (type) { |
Xusong Wang | 52b860b | 2019-11-27 16:23:36 -0800 | [diff] [blame] | 107 | const bool isTensor = TypeManager::get()->isTensorType(kOperand.type); |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 108 | NN_RET_CHECK(isTensor || type->dimensionCount == 0) |
| 109 | << "invalid dimensions for scalar memory."; |
| 110 | std::vector<uint32_t> dimensions(type->dimensions, |
| 111 | type->dimensions + type->dimensionCount); |
| 112 | // We only check against kInitialDimensions here. |
| 113 | // For input memories, mUpdatedDimensions will be checked in validateInputDimensions |
| 114 | // at the beginning of a computation. |
| 115 | const auto combined = combineDimensions(dimensions, kInitialDimensions); |
| 116 | NN_RET_CHECK(combined.has_value()) |
| 117 | << "incompatible dimensions between request and memory. (request: " |
| 118 | << toString(dimensions) << ", memory: " << toString(kInitialDimensions) << ")"; |
| 119 | } |
| 120 | return true; |
| 121 | } |
| 122 | |
| 123 | bool validateInputDimensions(const std::vector<uint32_t>& dimensions) const override { |
| 124 | NN_RET_CHECK(mInitialized) << "using an uninitialized memory as input"; |
| 125 | NN_RET_CHECK(dimensions == mUpdatedDimensions) |
| 126 | << "incompatible input dimensions between request and memory. (request: " |
| 127 | << toString(dimensions) << ", memory: " << toString(mUpdatedDimensions) << ")"; |
| 128 | return true; |
| 129 | } |
| 130 | |
Xusong Wang | 52b860b | 2019-11-27 16:23:36 -0800 | [diff] [blame] | 131 | Metadata getMetadata() const override { |
| 132 | CHECK(mInitialized); |
| 133 | return {.logicalSize = TypeManager::get()->getSizeOfData(kOperand.type, mUpdatedDimensions), |
| 134 | .dimensions = mUpdatedDimensions, |
| 135 | .operand = kOperand}; |
| 136 | } |
| 137 | |
| 138 | bool updateMetadata(const Metadata& metadata) override { |
| 139 | NN_RET_CHECK(!metadata.operand.has_value() || |
| 140 | (metadata.operand->type == kOperand.type && |
| 141 | metadata.operand->scale == kOperand.scale && |
| 142 | metadata.operand->zeroPoint == kOperand.zeroPoint && |
| 143 | metadata.operand->extraParams == kOperand.extraParams)); |
| 144 | |
| 145 | NN_RET_CHECK(metadata.dimensions.empty() || |
| 146 | TypeManager::get()->isTensorType(kOperand.type)); |
| 147 | auto combined = combineDimensions(metadata.dimensions, kInitialDimensions); |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 148 | NN_RET_CHECK(combined.has_value()); |
Xusong Wang | 52b860b | 2019-11-27 16:23:36 -0800 | [diff] [blame] | 149 | NN_RET_CHECK(metadata.logicalSize == 0 || |
| 150 | metadata.logicalSize == |
| 151 | TypeManager::get()->getSizeOfData(kOperand.type, combined.value())); |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 152 | mUpdatedDimensions = std::move(combined.value()); |
| 153 | return true; |
| 154 | } |
| 155 | |
| 156 | void setInitialized(bool initialized) override { mInitialized = initialized; } |
Xusong Wang | 52b860b | 2019-11-27 16:23:36 -0800 | [diff] [blame] | 157 | bool isInitialized() const override { return mInitialized; } |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 158 | |
| 159 | private: |
| 160 | const std::set<CompilationRole> kCompilationRoles; |
Xusong Wang | 52b860b | 2019-11-27 16:23:36 -0800 | [diff] [blame] | 161 | |
| 162 | // Keep track of the data type, scale, zero point, and extra parameters of the target operand. |
| 163 | // Other fields will be ignored, including dimensions, lifetime, location, etc. |
| 164 | const Operand kOperand; |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 165 | |
| 166 | // The dimensions of the memory when the memory object is created. |
| 167 | // May have unknown dimensions or rank. |
| 168 | const std::vector<uint32_t> kInitialDimensions; |
| 169 | |
| 170 | // The updated dimensions after a successful execution or memory copying. |
| 171 | std::vector<uint32_t> mUpdatedDimensions; |
| 172 | |
| 173 | bool mInitialized = false; |
| 174 | }; |
| 175 | |
| 176 | } // namespace |
| 177 | |
| 178 | Memory::Memory(hal::hidl_memory memory) |
| 179 | : kHidlMemory(std::move(memory)), |
| 180 | mValidator(std::make_unique<SizedMemoryValidator>(kHidlMemory.size())) {} |
| 181 | |
| 182 | Memory::Memory(hal::hidl_memory memory, std::unique_ptr<MemoryValidatorBase> validator) |
| 183 | : kHidlMemory(std::move(memory)), mValidator(std::move(validator)) {} |
| 184 | |
Michael Butler | 7f621bb | 2020-02-04 16:08:11 -0800 | [diff] [blame] | 185 | Memory::Memory(sp<hal::IBuffer> buffer, uint32_t token) |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 186 | : kBuffer(std::move(buffer)), kToken(token) {} |
| 187 | |
Michael Butler | 50032c0 | 2019-03-14 17:34:48 -0700 | [diff] [blame] | 188 | Memory::~Memory() { |
| 189 | for (const auto [ptr, weakBurst] : mUsedBy) { |
| 190 | if (const std::shared_ptr<ExecutionBurstController> burst = weakBurst.lock()) { |
| 191 | burst->freeMemory(getKey()); |
| 192 | } |
| 193 | } |
| 194 | } |
| 195 | |
Xusong Wang | 085d000 | 2020-01-08 16:52:37 -0800 | [diff] [blame] | 196 | hal::Request::MemoryPool Memory::getMemoryPool() const { |
| 197 | hal::Request::MemoryPool pool; |
| 198 | if (kToken > 0) { |
| 199 | pool.token(kToken); |
| 200 | } else { |
| 201 | pool.hidlMemory(kHidlMemory); |
| 202 | } |
| 203 | return pool; |
| 204 | } |
| 205 | |
Slava Shklyaev | 342358d | 2020-03-05 18:02:19 +0000 | [diff] [blame] | 206 | std::optional<RunTimePoolInfo> Memory::getRunTimePoolInfo() const { |
| 207 | // TODO(b/147777318): Cache memory mapping within the memory object. |
| 208 | return RunTimePoolInfo::createFromHidlMemory(kHidlMemory); |
| 209 | } |
| 210 | |
Michael Butler | 50032c0 | 2019-03-14 17:34:48 -0700 | [diff] [blame] | 211 | intptr_t Memory::getKey() const { |
| 212 | return reinterpret_cast<intptr_t>(this); |
| 213 | } |
| 214 | |
| 215 | void Memory::usedBy(const std::shared_ptr<ExecutionBurstController>& burst) const { |
| 216 | std::lock_guard<std::mutex> guard(mMutex); |
| 217 | mUsedBy.emplace(burst.get(), burst); |
| 218 | } |
| 219 | |
Xusong Wang | 52b860b | 2019-11-27 16:23:36 -0800 | [diff] [blame] | 220 | static int copyHidlMemories(const hidl_memory& src, const hidl_memory& dst) { |
| 221 | if (src.size() != dst.size()) { |
| 222 | LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memory size"; |
| 223 | return ANEURALNETWORKS_BAD_DATA; |
| 224 | } |
| 225 | auto srcPool = RunTimePoolInfo::createFromHidlMemory(src); |
| 226 | auto dstPool = RunTimePoolInfo::createFromHidlMemory(dst); |
| 227 | if (!srcPool.has_value() || !dstPool.has_value()) { |
| 228 | LOG(ERROR) << "ANeuralNetworksMemory_copy -- unable to map memory"; |
| 229 | return ANEURALNETWORKS_UNMAPPABLE; |
| 230 | } |
| 231 | CHECK(srcPool->getBuffer() != nullptr); |
| 232 | CHECK(dstPool->getBuffer() != nullptr); |
| 233 | std::copy(srcPool->getBuffer(), srcPool->getBuffer() + src.size(), dstPool->getBuffer()); |
| 234 | dstPool->flush(); |
| 235 | return ANEURALNETWORKS_NO_ERROR; |
| 236 | } |
| 237 | |
| 238 | static int copyIBufferToHidlMemory(const sp<IBuffer>& src, const hidl_memory& dst) { |
| 239 | const auto ret = src->copyTo(dst); |
| 240 | if (!ret.isOk()) { |
| 241 | LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.description(); |
| 242 | return ANEURALNETWORKS_OP_FAILED; |
| 243 | } |
| 244 | return convertErrorStatusToResultCode(static_cast<ErrorStatus>(ret)); |
| 245 | } |
| 246 | |
| 247 | static int copyHidlMemoryToIBuffer(const hidl_memory& src, const sp<IBuffer>& dst, |
| 248 | const std::vector<uint32_t>& dimensions) { |
| 249 | const auto ret = dst->copyFrom(src, dimensions); |
| 250 | if (!ret.isOk()) { |
| 251 | LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.description(); |
| 252 | return ANEURALNETWORKS_OP_FAILED; |
| 253 | } |
| 254 | return convertErrorStatusToResultCode(static_cast<ErrorStatus>(ret)); |
| 255 | } |
| 256 | |
| 257 | static int copyIBuffers(const sp<IBuffer>& src, const sp<IBuffer>& dst, |
| 258 | const MemoryValidatorBase::Metadata& srcMetadata) { |
| 259 | // TODO(xusongw): Use BLOB mode AHardwareBuffer. |
| 260 | hidl_memory hidlMemory = allocateSharedMemory(srcMetadata.logicalSize); |
| 261 | if (!hidlMemory.valid()) return ANEURALNETWORKS_OUT_OF_MEMORY; |
| 262 | NN_RETURN_IF_ERROR(copyIBufferToHidlMemory(src, hidlMemory)); |
| 263 | NN_RETURN_IF_ERROR(copyHidlMemoryToIBuffer(hidlMemory, dst, srcMetadata.dimensions)); |
| 264 | return ANEURALNETWORKS_NO_ERROR; |
| 265 | } |
| 266 | |
| 267 | static int copyInternal(const Memory& src, const Memory& dst) { |
| 268 | if (&src == &dst) return ANEURALNETWORKS_NO_ERROR; |
| 269 | |
| 270 | if (!src.getValidator().isInitialized()) { |
| 271 | LOG(ERROR) << "ANeuralNetworksMemory_copy -- uninitialized source memory"; |
| 272 | return ANEURALNETWORKS_BAD_DATA; |
| 273 | } |
| 274 | |
| 275 | const auto srcMetadata = src.getValidator().getMetadata(); |
| 276 | if (!dst.getValidator().updateMetadata(srcMetadata)) { |
| 277 | LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memories"; |
| 278 | return ANEURALNETWORKS_BAD_DATA; |
| 279 | } |
| 280 | |
| 281 | bool srcHasHidlMemory = src.getHidlMemory().valid(); |
| 282 | bool dstHasHidlMemory = dst.getHidlMemory().valid(); |
| 283 | bool srcHasIBuffer = src.getIBuffer() != nullptr; |
| 284 | bool dstHasIBuffer = dst.getIBuffer() != nullptr; |
| 285 | if (srcHasIBuffer && dstHasIBuffer) { |
| 286 | return copyIBuffers(src.getIBuffer(), dst.getIBuffer(), srcMetadata); |
| 287 | } else if (srcHasHidlMemory && dstHasHidlMemory) { |
| 288 | return copyHidlMemories(src.getHidlMemory(), dst.getHidlMemory()); |
| 289 | } else if (srcHasHidlMemory && dstHasIBuffer) { |
| 290 | return copyHidlMemoryToIBuffer(src.getHidlMemory(), dst.getIBuffer(), |
| 291 | srcMetadata.dimensions); |
| 292 | } else if (srcHasIBuffer && dstHasHidlMemory) { |
| 293 | return copyIBufferToHidlMemory(src.getIBuffer(), dst.getHidlMemory()); |
| 294 | } |
| 295 | return ANEURALNETWORKS_OP_FAILED; |
| 296 | } |
| 297 | |
| 298 | int Memory::copy(const Memory& src, const Memory& dst) { |
| 299 | int n = copyInternal(src, dst); |
| 300 | dst.getValidator().setInitialized(n == ANEURALNETWORKS_NO_ERROR); |
| 301 | return n; |
| 302 | } |
| 303 | |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 304 | bool MemoryBuilder::badState(const char* name) const { |
| 305 | if (mFinished) { |
| 306 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << name << " can't modify after finished"; |
| 307 | return true; |
| 308 | } |
| 309 | return false; |
| 310 | } |
| 311 | |
| 312 | int MemoryBuilder::addRole(const CompilationBuilder& compilation, IOType ioType, uint32_t index, |
| 313 | float freq) { |
| 314 | const char* tag = ioType == IOType::INPUT ? "addInputRole" : "addOutputRole"; |
| 315 | if (badState(tag)) { |
| 316 | return ANEURALNETWORKS_BAD_STATE; |
| 317 | } |
| 318 | if (mRoles.count({&compilation, ioType, index}) > 0) { |
| 319 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag |
| 320 | << " -- the same operand is specified twice."; |
| 321 | return ANEURALNETWORKS_BAD_DATA; |
| 322 | } |
| 323 | |
| 324 | std::vector<std::tuple<const PreparedModel*, IOType, uint32_t>> roles; |
| 325 | auto callback = [&roles](const auto* preparedModel, IOType type, uint32_t index) { |
| 326 | roles.emplace_back(preparedModel, type, index); |
| 327 | }; |
| 328 | if (ioType == IOType::INPUT) { |
| 329 | if (compilation.forEachStepRoleOfInput(index, callback) != ANEURALNETWORKS_NO_ERROR) { |
| 330 | return ANEURALNETWORKS_BAD_DATA; |
| 331 | } |
| 332 | } else { |
| 333 | if (compilation.forEachStepRoleOfOutput(index, callback) != ANEURALNETWORKS_NO_ERROR) { |
| 334 | return ANEURALNETWORKS_BAD_DATA; |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | const ModelBuilder* model = compilation.getModel(); |
| 339 | CHECK(model != nullptr); |
| 340 | Operand operand; |
| 341 | if (ioType == IOType::INPUT) { |
| 342 | if (index >= model->inputCount()) { |
| 343 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_addInputRole -- input index out of range."; |
| 344 | return ANEURALNETWORKS_BAD_DATA; |
| 345 | } |
| 346 | operand = model->getInputOperand(index); |
| 347 | } else { |
| 348 | if (index >= model->outputCount()) { |
| 349 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_addOutputRole -- output index out of range."; |
| 350 | return ANEURALNETWORKS_BAD_DATA; |
| 351 | } |
| 352 | operand = model->getOutputOperand(index); |
| 353 | } |
| 354 | if (mOperand.has_value()) { |
| 355 | if (operand.type != mOperand->type || operand.scale != mOperand->scale || |
| 356 | operand.zeroPoint != mOperand->zeroPoint || |
| 357 | operand.extraParams != mOperand->extraParams) { |
| 358 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag |
| 359 | << " -- incompatible operand metadata."; |
| 360 | return ANEURALNETWORKS_BAD_DATA; |
| 361 | } |
| 362 | } |
| 363 | if (!TypeManager::get()->isTensorType(operand.type) && !mDesc.dimensions.empty()) { |
| 364 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions."; |
| 365 | return ANEURALNETWORKS_BAD_DATA; |
| 366 | } |
| 367 | auto combined = combineDimensions(mDesc.dimensions, operand.dimensions); |
| 368 | if (!combined.has_value()) { |
| 369 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions."; |
| 370 | return ANEURALNETWORKS_BAD_DATA; |
| 371 | } |
| 372 | |
| 373 | if (freq > 1.0f || freq <= 0.0f) { |
| 374 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- invalid frequency " << freq; |
| 375 | return ANEURALNETWORKS_BAD_DATA; |
| 376 | } |
| 377 | |
| 378 | mRoles.emplace(&compilation, ioType, index); |
| 379 | for (const auto [preparedModel, type, ind] : roles) { |
| 380 | uint32_t modelIndex = mDesc.preparedModels.add(preparedModel); |
| 381 | BufferRole role = {.modelIndex = modelIndex, .ioIndex = ind, .frequency = freq}; |
| 382 | if (type == IOType::INPUT) { |
| 383 | mDesc.inputRoles.push_back(role); |
| 384 | } else { |
| 385 | mDesc.outputRoles.push_back(role); |
| 386 | } |
| 387 | } |
| 388 | mOperand = std::move(operand); |
| 389 | mDesc.dimensions = std::move(combined.value()); |
| 390 | return ANEURALNETWORKS_NO_ERROR; |
| 391 | } |
| 392 | |
| 393 | int MemoryBuilder::setDimensions(const std::vector<uint32_t>& dimensions) { |
| 394 | if (badState("setDimensions")) return ANEURALNETWORKS_BAD_STATE; |
| 395 | if (mOperand.has_value() && !TypeManager::get()->isTensorType(mOperand->type) && |
| 396 | !dimensions.empty()) { |
| 397 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions for " |
| 398 | "scalars."; |
| 399 | return ANEURALNETWORKS_BAD_DATA; |
| 400 | } |
| 401 | auto combined = combineDimensions(mDesc.dimensions, dimensions); |
| 402 | if (!combined.has_value()) { |
| 403 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions."; |
| 404 | return ANEURALNETWORKS_BAD_DATA; |
| 405 | } |
| 406 | mDesc.dimensions = std::move(combined.value()); |
| 407 | return ANEURALNETWORKS_NO_ERROR; |
| 408 | } |
| 409 | |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 410 | static void logMemoryDescriptorToInfo(const MemoryDescriptor& desc, const Operand& operand) { |
| 411 | LOG(INFO) << "MemoryDescriptor start"; |
| 412 | LOG(INFO) << " Data type: " << toString(operand.type); |
| 413 | LOG(INFO) << " Scale: " << toString(operand.scale); |
| 414 | LOG(INFO) << " Zero point: " << toString(operand.zeroPoint); |
| 415 | LOG(INFO) << " Extra params: " << toString(operand.extraParams); |
| 416 | LOG(INFO) << " Dimensions: " << toString(desc.dimensions); |
| 417 | LOG(INFO) << " Submodels [" << desc.preparedModels.size() << "]:"; |
| 418 | for (const auto* preparedModel : desc.preparedModels) { |
| 419 | LOG(INFO) << " service = " << preparedModel->getDevice()->getName(); |
| 420 | } |
| 421 | LOG(INFO) << " Input roles [" << desc.inputRoles.size() << "]:"; |
| 422 | for (const auto& usage : desc.inputRoles) { |
| 423 | LOG(INFO) << " " << toString(usage); |
| 424 | } |
| 425 | LOG(INFO) << " Output roles [" << desc.outputRoles.size() << "]:"; |
| 426 | for (const auto& usage : desc.outputRoles) { |
| 427 | LOG(INFO) << " " << toString(usage); |
| 428 | } |
| 429 | LOG(INFO) << "MemoryDescriptor end"; |
| 430 | } |
| 431 | |
| 432 | static const Device* selectDeviceMemoryAllocator(const MemoryDescriptor& desc) { |
| 433 | const Device* allocator = nullptr; |
| 434 | for (const auto* preparedModel : desc.preparedModels) { |
| 435 | const auto* device = preparedModel->getDevice(); |
| 436 | if (allocator == nullptr) { |
| 437 | allocator = device; |
| 438 | } else if (allocator != device) { |
| 439 | LOG(INFO) << "selectDeviceMemoryAllocator -- cannot handle multiple devices."; |
| 440 | return nullptr; |
| 441 | } |
| 442 | } |
| 443 | CHECK(allocator != nullptr); |
| 444 | VLOG(MEMORY) << "Using " << allocator->getName() << " as allocator."; |
| 445 | return allocator; |
| 446 | } |
| 447 | |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 448 | int MemoryBuilder::finish() { |
| 449 | if (badState("finish")) return ANEURALNETWORKS_BAD_STATE; |
| 450 | if (mRoles.empty()) { |
| 451 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_finish -- no role has been specified."; |
| 452 | return ANEURALNETWORKS_BAD_DATA; |
| 453 | } |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 454 | CHECK(mOperand.has_value()); |
| 455 | if (VLOG_IS_ON(MEMORY)) { |
| 456 | logMemoryDescriptorToInfo(mDesc, mOperand.value()); |
| 457 | } |
| 458 | mAllocator = selectDeviceMemoryAllocator(mDesc); |
Xusong Wang | 4dce166 | 2020-02-06 15:14:59 -0800 | [diff] [blame^] | 459 | mShouldFallback = std::none_of(mRoles.begin(), mRoles.end(), [](const auto& role) { |
| 460 | const auto* cb = std::get<const CompilationBuilder*>(role); |
| 461 | return cb->createdWithExplicitDeviceList(); |
| 462 | }); |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 463 | mFinished = true; |
| 464 | return ANEURALNETWORKS_NO_ERROR; |
| 465 | } |
| 466 | |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 467 | std::pair<int, std::unique_ptr<Memory>> MemoryBuilder::allocate() const { |
| 468 | if (!mFinished) { |
| 469 | LOG(ERROR) << "ANeuralNetworksMemory_createFromDesc -- passed an unfinished descriptor"; |
| 470 | return {ANEURALNETWORKS_BAD_STATE, nullptr}; |
| 471 | } |
| 472 | |
| 473 | // TODO(xusongw): Does not support dynamic output shape for now. |
| 474 | CHECK(mOperand.has_value()); |
| 475 | uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions); |
| 476 | if (size == 0) { |
| 477 | LOG(ERROR) |
| 478 | << "ANeuralNetworksMemory_createFromDesc -- does not support unknown dimensions."; |
| 479 | return {ANEURALNETWORKS_OP_FAILED, nullptr}; |
| 480 | } |
| 481 | |
| 482 | int n = ANEURALNETWORKS_OP_FAILED; |
| 483 | std::unique_ptr<Memory> memory; |
| 484 | |
| 485 | // Try allocate the memory on device. |
| 486 | if (mAllocator != nullptr) { |
Xusong Wang | 4dce166 | 2020-02-06 15:14:59 -0800 | [diff] [blame^] | 487 | std::tie(n, memory) = mAllocator->allocate(mDesc, mOperand->type); |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 488 | } |
| 489 | |
| 490 | // If failed, fallback to ashmem. |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 491 | // TODO(xusongw): Use BLOB mode hardware buffer when possible. |
Xusong Wang | 4dce166 | 2020-02-06 15:14:59 -0800 | [diff] [blame^] | 492 | if (n != ANEURALNETWORKS_NO_ERROR && mShouldFallback) { |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 493 | VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to ashmem."; |
| 494 | std::tie(n, memory) = MemoryAshmem::create(size); |
| 495 | } |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 496 | |
| 497 | if (n == ANEURALNETWORKS_NO_ERROR) { |
| 498 | CHECK(memory != nullptr); |
| 499 | auto validator = |
Xusong Wang | 52b860b | 2019-11-27 16:23:36 -0800 | [diff] [blame] | 500 | std::make_unique<DeviceMemoryValidator>(mRoles, mOperand.value(), mDesc.dimensions); |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 501 | memory->setValidator(std::move(validator)); |
| 502 | } |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 503 | return {n, std::move(memory)}; |
| 504 | } |
| 505 | |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 506 | std::pair<int, std::unique_ptr<MemoryAshmem>> MemoryAshmem::create(uint32_t size) { |
| 507 | hidl_memory hidlMemory = allocateSharedMemory(size); |
| 508 | sp<IMemory> mapped = mapMemory(hidlMemory); |
| 509 | if (mapped == nullptr || mapped->getPointer() == nullptr) { |
| 510 | LOG(ERROR) << "Memory::create failed"; |
| 511 | return {ANEURALNETWORKS_OUT_OF_MEMORY, nullptr}; |
David Gross | f9a33a8 | 2017-11-22 11:41:55 -0800 | [diff] [blame] | 512 | } |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 513 | return {ANEURALNETWORKS_NO_ERROR, |
| 514 | std::make_unique<MemoryAshmem>(std::move(mapped), std::move(hidlMemory))}; |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 515 | } |
| 516 | |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 517 | uint8_t* MemoryAshmem::getPointer() const { |
| 518 | return static_cast<uint8_t*>(static_cast<void*>(kMappedMemory->getPointer())); |
| 519 | } |
| 520 | |
| 521 | MemoryAshmem::MemoryAshmem(sp<IMemory> mapped, hidl_memory memory) |
| 522 | : Memory(std::move(memory)), kMappedMemory(std::move(mapped)) {} |
| 523 | |
| 524 | std::pair<int, std::unique_ptr<MemoryFd>> MemoryFd::create(size_t size, int prot, int fd, |
| 525 | size_t offset) { |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 526 | if (size == 0 || fd < 0) { |
| 527 | LOG(ERROR) << "Invalid size or fd"; |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 528 | return {ANEURALNETWORKS_BAD_DATA, nullptr}; |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 529 | } |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 530 | |
| 531 | // Duplicate the file descriptor so MemoryFd owns its own version. |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 532 | int dupfd = dup(fd); |
| 533 | if (dupfd == -1) { |
| 534 | LOG(ERROR) << "Failed to dup the fd"; |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 535 | // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct |
| 536 | // error to return here? |
| 537 | return {ANEURALNETWORKS_UNEXPECTED_NULL, nullptr}; |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 538 | } |
| 539 | |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 540 | // Create a temporary native handle to own the dupfd. |
| 541 | native_handle_t* nativeHandle = native_handle_create(1, 3); |
| 542 | if (nativeHandle == nullptr) { |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 543 | LOG(ERROR) << "Failed to create native_handle"; |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 544 | // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct |
| 545 | // error to return here? |
| 546 | return {ANEURALNETWORKS_UNEXPECTED_NULL, nullptr}; |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 547 | } |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 548 | nativeHandle->data[0] = dupfd; |
| 549 | nativeHandle->data[1] = prot; |
| 550 | const uint64_t bits = static_cast<uint64_t>(offset); |
| 551 | nativeHandle->data[2] = (int32_t)(uint32_t)(bits & 0xffffffff); |
| 552 | nativeHandle->data[3] = (int32_t)(uint32_t)(bits >> 32); |
| 553 | |
| 554 | // Create a hidl_handle which owns the native handle and fd so that we don't |
| 555 | // have to manually clean either the native handle or the fd. |
| 556 | hardware::hidl_handle hidlHandle; |
| 557 | hidlHandle.setTo(nativeHandle, /*shouldOwn=*/true); |
| 558 | |
| 559 | // Push the hidl_handle into a hidl_memory object. The hidl_memory object is |
| 560 | // responsible for cleaning the hidl_handle, the native handle, and the fd. |
| 561 | hidl_memory hidlMemory = hidl_memory("mmap_fd", std::move(hidlHandle), size); |
| 562 | |
| 563 | return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFd>(std::move(hidlMemory))}; |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 564 | } |
| 565 | |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 566 | MemoryFd::MemoryFd(hidl_memory memory) : Memory(std::move(memory)) {} |
David Gross | f9a33a8 | 2017-11-22 11:41:55 -0800 | [diff] [blame] | 567 | |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 568 | std::pair<int, std::unique_ptr<MemoryAHWB>> MemoryAHWB::create(const AHardwareBuffer& ahwb) { |
| 569 | AHardwareBuffer_Desc bufferDesc; |
| 570 | AHardwareBuffer_describe(&ahwb, &bufferDesc); |
| 571 | const native_handle_t* handle = AHardwareBuffer_getNativeHandle(&ahwb); |
| 572 | hidl_memory hidlMemory; |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 573 | std::unique_ptr<MemoryAHWB> memory; |
| 574 | std::unique_ptr<MemoryValidatorBase> validator; |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 575 | if (bufferDesc.format == AHARDWAREBUFFER_FORMAT_BLOB) { |
| 576 | hidlMemory = hidl_memory("hardware_buffer_blob", handle, bufferDesc.width); |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 577 | validator = std::make_unique<SizedMemoryValidator>(bufferDesc.width); |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 578 | } else { |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 579 | // memory size is not used. |
| 580 | hidlMemory = hidl_memory("hardware_buffer", handle, 0); |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 581 | validator = std::make_unique<AHardwareBufferNonBlobValidator>(); |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 582 | } |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame] | 583 | memory = std::make_unique<MemoryAHWB>(std::move(hidlMemory), std::move(validator)); |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 584 | return {ANEURALNETWORKS_NO_ERROR, std::move(memory)}; |
| 585 | }; |
| 586 | |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 587 | std::pair<int, std::unique_ptr<MemoryFromDevice>> MemoryFromDevice::create(sp<hal::IBuffer> buffer, |
Michael Butler | 7f621bb | 2020-02-04 16:08:11 -0800 | [diff] [blame] | 588 | uint32_t token) { |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 589 | if (buffer == nullptr) { |
| 590 | LOG(ERROR) << "nullptr IBuffer for device memory."; |
| 591 | return {ANEURALNETWORKS_BAD_DATA, nullptr}; |
| 592 | } |
| 593 | if (token <= 0) { |
| 594 | LOG(ERROR) << "Invalid token for device memory: " << token; |
| 595 | return {ANEURALNETWORKS_BAD_DATA, nullptr}; |
| 596 | } |
| 597 | return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFromDevice>(std::move(buffer), token)}; |
| 598 | }; |
| 599 | |
Michael Butler | 7f621bb | 2020-02-04 16:08:11 -0800 | [diff] [blame] | 600 | MemoryFromDevice::MemoryFromDevice(sp<hal::IBuffer> buffer, uint32_t token) |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 601 | : Memory(std::move(buffer), token) {} |
| 602 | |
Michael Butler | f20c5b5 | 2019-07-22 18:59:46 -0700 | [diff] [blame] | 603 | } // namespace nn |
| 604 | } // namespace android |