Jean-Luc Brouillet | 4fb1e85 | 2017-08-20 18:16:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2017 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "Memory" |
| 18 | |
| 19 | #include "Memory.h" |
| 20 | |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 21 | #include <algorithm> |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 22 | #include <memory> |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 23 | #include <set> |
| 24 | #include <tuple> |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 25 | #include <utility> |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 26 | #include <vector> |
| 27 | |
| 28 | #include "CompilationBuilder.h" |
Michael Butler | 50032c0 | 2019-03-14 17:34:48 -0700 | [diff] [blame] | 29 | #include "ExecutionBurstController.h" |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 30 | #include "Manager.h" |
Slava Shklyaev | 79534bc | 2019-05-22 11:10:13 +0100 | [diff] [blame] | 31 | #include "MemoryUtils.h" |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 32 | #include "TypeManager.h" |
Jean-Luc Brouillet | 4fb1e85 | 2017-08-20 18:16:36 -0700 | [diff] [blame] | 33 | #include "Utils.h" |
| 34 | |
| 35 | namespace android { |
| 36 | namespace nn { |
| 37 | |
Michael Butler | 6bf05b2 | 2019-07-11 11:45:01 -0700 | [diff] [blame] | 38 | using namespace hal; |
| 39 | |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame^] | 40 | namespace { |
| 41 | |
| 42 | // The validator for a client-managed single-dimensional memory pool with a known size. |
| 43 | // The memory may be used for request inputs, request outputs, or model constants. |
| 44 | class SizedMemoryValidator : public MemoryValidatorBase { |
| 45 | public: |
| 46 | SizedMemoryValidator(uint32_t size) : kSize(size) {} |
| 47 | |
| 48 | bool validate(const CompilationBuilder*, IOType, uint32_t, const ANeuralNetworksOperandType*, |
| 49 | uint32_t offset, uint32_t length) const override { |
| 50 | NN_RET_CHECK(offset + length <= kSize) << "request size larger than the memory size."; |
| 51 | NN_RET_CHECK(offset != 0 || length != 0) << "memory size cannot be implied."; |
| 52 | return true; |
| 53 | } |
| 54 | |
| 55 | private: |
| 56 | const uint32_t kSize; |
| 57 | }; |
| 58 | |
| 59 | // The validator for an AHardwareBuffer with Non-BLOB format. |
| 60 | // We require the memory only used for request inputs or request outputs, |
| 61 | // with both offset and length set to zero. |
| 62 | class AHardwareBufferNonBlobValidator : public MemoryValidatorBase { |
| 63 | public: |
| 64 | AHardwareBufferNonBlobValidator() = default; |
| 65 | |
| 66 | bool validate(const CompilationBuilder* compilation, IOType, uint32_t, |
| 67 | const ANeuralNetworksOperandType*, uint32_t offset, |
| 68 | uint32_t length) const override { |
| 69 | NN_RET_CHECK(compilation != nullptr) |
| 70 | << "cannot use Non-BLOB AHardwareBuffer as model constant"; |
| 71 | NN_RET_CHECK(offset == 0 && length == 0) |
| 72 | << "non-zero offset (" << offset << ") and/or length (" << length |
| 73 | << ") for Non-BLOB format AHardwareBuffer."; |
| 74 | return true; |
| 75 | } |
| 76 | }; |
| 77 | |
| 78 | // The validator for a memory created from ANNMemory_createFromDesc. |
| 79 | // We require the memory only used as one of the pre-specified roles, |
| 80 | // with both offset and length set to zero. |
| 81 | class DeviceMemoryValidator : public MemoryValidatorBase { |
| 82 | public: |
| 83 | DeviceMemoryValidator(std::set<CompilationRole> roles, hal::OperandType type, |
| 84 | std::vector<uint32_t> dimensions) |
| 85 | : kCompilationRoles(std::move(roles)), |
| 86 | mDataType(type), |
| 87 | kInitialDimensions(std::move(dimensions)), |
| 88 | mUpdatedDimensions(kInitialDimensions) {} |
| 89 | |
| 90 | bool validate(const CompilationBuilder* compilation, IOType ioType, uint32_t index, |
| 91 | const ANeuralNetworksOperandType* type, uint32_t offset, |
| 92 | uint32_t length) const override { |
| 93 | NN_RET_CHECK(kCompilationRoles.count({compilation, ioType, index}) > 0) |
| 94 | << "invalid compilation role."; |
| 95 | NN_RET_CHECK(offset == 0 && length == 0) |
| 96 | << "non-zero offset and/or length for driver-allocated memory."; |
| 97 | if (type) { |
| 98 | const bool isTensor = TypeManager::get()->isTensorType(mDataType); |
| 99 | NN_RET_CHECK(isTensor || type->dimensionCount == 0) |
| 100 | << "invalid dimensions for scalar memory."; |
| 101 | std::vector<uint32_t> dimensions(type->dimensions, |
| 102 | type->dimensions + type->dimensionCount); |
| 103 | // We only check against kInitialDimensions here. |
| 104 | // For input memories, mUpdatedDimensions will be checked in validateInputDimensions |
| 105 | // at the beginning of a computation. |
| 106 | const auto combined = combineDimensions(dimensions, kInitialDimensions); |
| 107 | NN_RET_CHECK(combined.has_value()) |
| 108 | << "incompatible dimensions between request and memory. (request: " |
| 109 | << toString(dimensions) << ", memory: " << toString(kInitialDimensions) << ")"; |
| 110 | } |
| 111 | return true; |
| 112 | } |
| 113 | |
| 114 | bool validateInputDimensions(const std::vector<uint32_t>& dimensions) const override { |
| 115 | NN_RET_CHECK(mInitialized) << "using an uninitialized memory as input"; |
| 116 | NN_RET_CHECK(dimensions == mUpdatedDimensions) |
| 117 | << "incompatible input dimensions between request and memory. (request: " |
| 118 | << toString(dimensions) << ", memory: " << toString(mUpdatedDimensions) << ")"; |
| 119 | return true; |
| 120 | } |
| 121 | |
| 122 | bool updateDimensions(const std::vector<uint32_t>& dimensions) override { |
| 123 | NN_RET_CHECK(TypeManager::get()->isTensorType(mDataType) || dimensions.empty()); |
| 124 | auto combined = combineDimensions(dimensions, kInitialDimensions); |
| 125 | NN_RET_CHECK(combined.has_value()); |
| 126 | mUpdatedDimensions = std::move(combined.value()); |
| 127 | return true; |
| 128 | } |
| 129 | |
| 130 | void setInitialized(bool initialized) override { mInitialized = initialized; } |
| 131 | |
| 132 | private: |
| 133 | const std::set<CompilationRole> kCompilationRoles; |
| 134 | OperandType mDataType; |
| 135 | |
| 136 | // The dimensions of the memory when the memory object is created. |
| 137 | // May have unknown dimensions or rank. |
| 138 | const std::vector<uint32_t> kInitialDimensions; |
| 139 | |
| 140 | // The updated dimensions after a successful execution or memory copying. |
| 141 | std::vector<uint32_t> mUpdatedDimensions; |
| 142 | |
| 143 | bool mInitialized = false; |
| 144 | }; |
| 145 | |
| 146 | } // namespace |
| 147 | |
| 148 | Memory::Memory(hal::hidl_memory memory) |
| 149 | : kHidlMemory(std::move(memory)), |
| 150 | mValidator(std::make_unique<SizedMemoryValidator>(kHidlMemory.size())) {} |
| 151 | |
| 152 | Memory::Memory(hal::hidl_memory memory, std::unique_ptr<MemoryValidatorBase> validator) |
| 153 | : kHidlMemory(std::move(memory)), mValidator(std::move(validator)) {} |
| 154 | |
| 155 | Memory::Memory(sp<hal::IBuffer> buffer, int32_t token) |
| 156 | : kBuffer(std::move(buffer)), kToken(token) {} |
| 157 | |
Michael Butler | 50032c0 | 2019-03-14 17:34:48 -0700 | [diff] [blame] | 158 | Memory::~Memory() { |
| 159 | for (const auto [ptr, weakBurst] : mUsedBy) { |
| 160 | if (const std::shared_ptr<ExecutionBurstController> burst = weakBurst.lock()) { |
| 161 | burst->freeMemory(getKey()); |
| 162 | } |
| 163 | } |
| 164 | } |
| 165 | |
Xusong Wang | 085d000 | 2020-01-08 16:52:37 -0800 | [diff] [blame] | 166 | hal::Request::MemoryPool Memory::getMemoryPool() const { |
| 167 | hal::Request::MemoryPool pool; |
| 168 | if (kToken > 0) { |
| 169 | pool.token(kToken); |
| 170 | } else { |
| 171 | pool.hidlMemory(kHidlMemory); |
| 172 | } |
| 173 | return pool; |
| 174 | } |
| 175 | |
Michael Butler | 50032c0 | 2019-03-14 17:34:48 -0700 | [diff] [blame] | 176 | intptr_t Memory::getKey() const { |
| 177 | return reinterpret_cast<intptr_t>(this); |
| 178 | } |
| 179 | |
| 180 | void Memory::usedBy(const std::shared_ptr<ExecutionBurstController>& burst) const { |
| 181 | std::lock_guard<std::mutex> guard(mMutex); |
| 182 | mUsedBy.emplace(burst.get(), burst); |
| 183 | } |
| 184 | |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 185 | bool MemoryBuilder::badState(const char* name) const { |
| 186 | if (mFinished) { |
| 187 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << name << " can't modify after finished"; |
| 188 | return true; |
| 189 | } |
| 190 | return false; |
| 191 | } |
| 192 | |
| 193 | int MemoryBuilder::addRole(const CompilationBuilder& compilation, IOType ioType, uint32_t index, |
| 194 | float freq) { |
| 195 | const char* tag = ioType == IOType::INPUT ? "addInputRole" : "addOutputRole"; |
| 196 | if (badState(tag)) { |
| 197 | return ANEURALNETWORKS_BAD_STATE; |
| 198 | } |
| 199 | if (mRoles.count({&compilation, ioType, index}) > 0) { |
| 200 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag |
| 201 | << " -- the same operand is specified twice."; |
| 202 | return ANEURALNETWORKS_BAD_DATA; |
| 203 | } |
| 204 | |
| 205 | std::vector<std::tuple<const PreparedModel*, IOType, uint32_t>> roles; |
| 206 | auto callback = [&roles](const auto* preparedModel, IOType type, uint32_t index) { |
| 207 | roles.emplace_back(preparedModel, type, index); |
| 208 | }; |
| 209 | if (ioType == IOType::INPUT) { |
| 210 | if (compilation.forEachStepRoleOfInput(index, callback) != ANEURALNETWORKS_NO_ERROR) { |
| 211 | return ANEURALNETWORKS_BAD_DATA; |
| 212 | } |
| 213 | } else { |
| 214 | if (compilation.forEachStepRoleOfOutput(index, callback) != ANEURALNETWORKS_NO_ERROR) { |
| 215 | return ANEURALNETWORKS_BAD_DATA; |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | const ModelBuilder* model = compilation.getModel(); |
| 220 | CHECK(model != nullptr); |
| 221 | Operand operand; |
| 222 | if (ioType == IOType::INPUT) { |
| 223 | if (index >= model->inputCount()) { |
| 224 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_addInputRole -- input index out of range."; |
| 225 | return ANEURALNETWORKS_BAD_DATA; |
| 226 | } |
| 227 | operand = model->getInputOperand(index); |
| 228 | } else { |
| 229 | if (index >= model->outputCount()) { |
| 230 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_addOutputRole -- output index out of range."; |
| 231 | return ANEURALNETWORKS_BAD_DATA; |
| 232 | } |
| 233 | operand = model->getOutputOperand(index); |
| 234 | } |
| 235 | if (mOperand.has_value()) { |
| 236 | if (operand.type != mOperand->type || operand.scale != mOperand->scale || |
| 237 | operand.zeroPoint != mOperand->zeroPoint || |
| 238 | operand.extraParams != mOperand->extraParams) { |
| 239 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag |
| 240 | << " -- incompatible operand metadata."; |
| 241 | return ANEURALNETWORKS_BAD_DATA; |
| 242 | } |
| 243 | } |
| 244 | if (!TypeManager::get()->isTensorType(operand.type) && !mDesc.dimensions.empty()) { |
| 245 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions."; |
| 246 | return ANEURALNETWORKS_BAD_DATA; |
| 247 | } |
| 248 | auto combined = combineDimensions(mDesc.dimensions, operand.dimensions); |
| 249 | if (!combined.has_value()) { |
| 250 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions."; |
| 251 | return ANEURALNETWORKS_BAD_DATA; |
| 252 | } |
| 253 | |
| 254 | if (freq > 1.0f || freq <= 0.0f) { |
| 255 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- invalid frequency " << freq; |
| 256 | return ANEURALNETWORKS_BAD_DATA; |
| 257 | } |
| 258 | |
| 259 | mRoles.emplace(&compilation, ioType, index); |
| 260 | for (const auto [preparedModel, type, ind] : roles) { |
| 261 | uint32_t modelIndex = mDesc.preparedModels.add(preparedModel); |
| 262 | BufferRole role = {.modelIndex = modelIndex, .ioIndex = ind, .frequency = freq}; |
| 263 | if (type == IOType::INPUT) { |
| 264 | mDesc.inputRoles.push_back(role); |
| 265 | } else { |
| 266 | mDesc.outputRoles.push_back(role); |
| 267 | } |
| 268 | } |
| 269 | mOperand = std::move(operand); |
| 270 | mDesc.dimensions = std::move(combined.value()); |
| 271 | return ANEURALNETWORKS_NO_ERROR; |
| 272 | } |
| 273 | |
| 274 | int MemoryBuilder::setDimensions(const std::vector<uint32_t>& dimensions) { |
| 275 | if (badState("setDimensions")) return ANEURALNETWORKS_BAD_STATE; |
| 276 | if (mOperand.has_value() && !TypeManager::get()->isTensorType(mOperand->type) && |
| 277 | !dimensions.empty()) { |
| 278 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions for " |
| 279 | "scalars."; |
| 280 | return ANEURALNETWORKS_BAD_DATA; |
| 281 | } |
| 282 | auto combined = combineDimensions(mDesc.dimensions, dimensions); |
| 283 | if (!combined.has_value()) { |
| 284 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions."; |
| 285 | return ANEURALNETWORKS_BAD_DATA; |
| 286 | } |
| 287 | mDesc.dimensions = std::move(combined.value()); |
| 288 | return ANEURALNETWORKS_NO_ERROR; |
| 289 | } |
| 290 | |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 291 | static void logMemoryDescriptorToInfo(const MemoryDescriptor& desc, const Operand& operand) { |
| 292 | LOG(INFO) << "MemoryDescriptor start"; |
| 293 | LOG(INFO) << " Data type: " << toString(operand.type); |
| 294 | LOG(INFO) << " Scale: " << toString(operand.scale); |
| 295 | LOG(INFO) << " Zero point: " << toString(operand.zeroPoint); |
| 296 | LOG(INFO) << " Extra params: " << toString(operand.extraParams); |
| 297 | LOG(INFO) << " Dimensions: " << toString(desc.dimensions); |
| 298 | LOG(INFO) << " Submodels [" << desc.preparedModels.size() << "]:"; |
| 299 | for (const auto* preparedModel : desc.preparedModels) { |
| 300 | LOG(INFO) << " service = " << preparedModel->getDevice()->getName(); |
| 301 | } |
| 302 | LOG(INFO) << " Input roles [" << desc.inputRoles.size() << "]:"; |
| 303 | for (const auto& usage : desc.inputRoles) { |
| 304 | LOG(INFO) << " " << toString(usage); |
| 305 | } |
| 306 | LOG(INFO) << " Output roles [" << desc.outputRoles.size() << "]:"; |
| 307 | for (const auto& usage : desc.outputRoles) { |
| 308 | LOG(INFO) << " " << toString(usage); |
| 309 | } |
| 310 | LOG(INFO) << "MemoryDescriptor end"; |
| 311 | } |
| 312 | |
| 313 | static const Device* selectDeviceMemoryAllocator(const MemoryDescriptor& desc) { |
| 314 | const Device* allocator = nullptr; |
| 315 | for (const auto* preparedModel : desc.preparedModels) { |
| 316 | const auto* device = preparedModel->getDevice(); |
| 317 | if (allocator == nullptr) { |
| 318 | allocator = device; |
| 319 | } else if (allocator != device) { |
| 320 | LOG(INFO) << "selectDeviceMemoryAllocator -- cannot handle multiple devices."; |
| 321 | return nullptr; |
| 322 | } |
| 323 | } |
| 324 | CHECK(allocator != nullptr); |
| 325 | VLOG(MEMORY) << "Using " << allocator->getName() << " as allocator."; |
| 326 | return allocator; |
| 327 | } |
| 328 | |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 329 | int MemoryBuilder::finish() { |
| 330 | if (badState("finish")) return ANEURALNETWORKS_BAD_STATE; |
| 331 | if (mRoles.empty()) { |
| 332 | LOG(ERROR) << "ANeuralNetworksMemoryDesc_finish -- no role has been specified."; |
| 333 | return ANEURALNETWORKS_BAD_DATA; |
| 334 | } |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 335 | CHECK(mOperand.has_value()); |
| 336 | if (VLOG_IS_ON(MEMORY)) { |
| 337 | logMemoryDescriptorToInfo(mDesc, mOperand.value()); |
| 338 | } |
| 339 | mAllocator = selectDeviceMemoryAllocator(mDesc); |
Xusong Wang | 062ec50 | 2019-11-27 11:44:03 -0800 | [diff] [blame] | 340 | mFinished = true; |
| 341 | return ANEURALNETWORKS_NO_ERROR; |
| 342 | } |
| 343 | |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 344 | std::pair<int, std::unique_ptr<Memory>> MemoryBuilder::allocate() const { |
| 345 | if (!mFinished) { |
| 346 | LOG(ERROR) << "ANeuralNetworksMemory_createFromDesc -- passed an unfinished descriptor"; |
| 347 | return {ANEURALNETWORKS_BAD_STATE, nullptr}; |
| 348 | } |
| 349 | |
| 350 | // TODO(xusongw): Does not support dynamic output shape for now. |
| 351 | CHECK(mOperand.has_value()); |
| 352 | uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions); |
| 353 | if (size == 0) { |
| 354 | LOG(ERROR) |
| 355 | << "ANeuralNetworksMemory_createFromDesc -- does not support unknown dimensions."; |
| 356 | return {ANEURALNETWORKS_OP_FAILED, nullptr}; |
| 357 | } |
| 358 | |
| 359 | int n = ANEURALNETWORKS_OP_FAILED; |
| 360 | std::unique_ptr<Memory> memory; |
| 361 | |
| 362 | // Try allocate the memory on device. |
| 363 | if (mAllocator != nullptr) { |
| 364 | std::tie(n, memory) = mAllocator->allocate(mDesc); |
| 365 | } |
| 366 | |
| 367 | // If failed, fallback to ashmem. |
| 368 | // TODO(xusongw): Decide on the fallback strategy. |
| 369 | // TODO(xusongw): Use BLOB mode hardware buffer when possible. |
| 370 | if (n != ANEURALNETWORKS_NO_ERROR) { |
| 371 | VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to ashmem."; |
| 372 | std::tie(n, memory) = MemoryAshmem::create(size); |
| 373 | } |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame^] | 374 | |
| 375 | if (n == ANEURALNETWORKS_NO_ERROR) { |
| 376 | CHECK(memory != nullptr); |
| 377 | auto validator = |
| 378 | std::make_unique<DeviceMemoryValidator>(mRoles, mOperand->type, mDesc.dimensions); |
| 379 | memory->setValidator(std::move(validator)); |
| 380 | } |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 381 | return {n, std::move(memory)}; |
| 382 | } |
| 383 | |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 384 | std::pair<int, std::unique_ptr<MemoryAshmem>> MemoryAshmem::create(uint32_t size) { |
| 385 | hidl_memory hidlMemory = allocateSharedMemory(size); |
| 386 | sp<IMemory> mapped = mapMemory(hidlMemory); |
| 387 | if (mapped == nullptr || mapped->getPointer() == nullptr) { |
| 388 | LOG(ERROR) << "Memory::create failed"; |
| 389 | return {ANEURALNETWORKS_OUT_OF_MEMORY, nullptr}; |
David Gross | f9a33a8 | 2017-11-22 11:41:55 -0800 | [diff] [blame] | 390 | } |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 391 | return {ANEURALNETWORKS_NO_ERROR, |
| 392 | std::make_unique<MemoryAshmem>(std::move(mapped), std::move(hidlMemory))}; |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 393 | } |
| 394 | |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 395 | uint8_t* MemoryAshmem::getPointer() const { |
| 396 | return static_cast<uint8_t*>(static_cast<void*>(kMappedMemory->getPointer())); |
| 397 | } |
| 398 | |
| 399 | MemoryAshmem::MemoryAshmem(sp<IMemory> mapped, hidl_memory memory) |
| 400 | : Memory(std::move(memory)), kMappedMemory(std::move(mapped)) {} |
| 401 | |
| 402 | std::pair<int, std::unique_ptr<MemoryFd>> MemoryFd::create(size_t size, int prot, int fd, |
| 403 | size_t offset) { |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 404 | if (size == 0 || fd < 0) { |
| 405 | LOG(ERROR) << "Invalid size or fd"; |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 406 | return {ANEURALNETWORKS_BAD_DATA, nullptr}; |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 407 | } |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 408 | |
| 409 | // Duplicate the file descriptor so MemoryFd owns its own version. |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 410 | int dupfd = dup(fd); |
| 411 | if (dupfd == -1) { |
| 412 | LOG(ERROR) << "Failed to dup the fd"; |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 413 | // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct |
| 414 | // error to return here? |
| 415 | return {ANEURALNETWORKS_UNEXPECTED_NULL, nullptr}; |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 416 | } |
| 417 | |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 418 | // Create a temporary native handle to own the dupfd. |
| 419 | native_handle_t* nativeHandle = native_handle_create(1, 3); |
| 420 | if (nativeHandle == nullptr) { |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 421 | LOG(ERROR) << "Failed to create native_handle"; |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 422 | // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct |
| 423 | // error to return here? |
| 424 | return {ANEURALNETWORKS_UNEXPECTED_NULL, nullptr}; |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 425 | } |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 426 | nativeHandle->data[0] = dupfd; |
| 427 | nativeHandle->data[1] = prot; |
| 428 | const uint64_t bits = static_cast<uint64_t>(offset); |
| 429 | nativeHandle->data[2] = (int32_t)(uint32_t)(bits & 0xffffffff); |
| 430 | nativeHandle->data[3] = (int32_t)(uint32_t)(bits >> 32); |
| 431 | |
| 432 | // Create a hidl_handle which owns the native handle and fd so that we don't |
| 433 | // have to manually clean either the native handle or the fd. |
| 434 | hardware::hidl_handle hidlHandle; |
| 435 | hidlHandle.setTo(nativeHandle, /*shouldOwn=*/true); |
| 436 | |
| 437 | // Push the hidl_handle into a hidl_memory object. The hidl_memory object is |
| 438 | // responsible for cleaning the hidl_handle, the native handle, and the fd. |
| 439 | hidl_memory hidlMemory = hidl_memory("mmap_fd", std::move(hidlHandle), size); |
| 440 | |
| 441 | return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFd>(std::move(hidlMemory))}; |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 442 | } |
| 443 | |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 444 | MemoryFd::MemoryFd(hidl_memory memory) : Memory(std::move(memory)) {} |
David Gross | f9a33a8 | 2017-11-22 11:41:55 -0800 | [diff] [blame] | 445 | |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 446 | std::pair<int, std::unique_ptr<MemoryAHWB>> MemoryAHWB::create(const AHardwareBuffer& ahwb) { |
| 447 | AHardwareBuffer_Desc bufferDesc; |
| 448 | AHardwareBuffer_describe(&ahwb, &bufferDesc); |
| 449 | const native_handle_t* handle = AHardwareBuffer_getNativeHandle(&ahwb); |
| 450 | hidl_memory hidlMemory; |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame^] | 451 | std::unique_ptr<MemoryAHWB> memory; |
| 452 | std::unique_ptr<MemoryValidatorBase> validator; |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 453 | if (bufferDesc.format == AHARDWAREBUFFER_FORMAT_BLOB) { |
| 454 | hidlMemory = hidl_memory("hardware_buffer_blob", handle, bufferDesc.width); |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame^] | 455 | validator = std::make_unique<SizedMemoryValidator>(bufferDesc.width); |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 456 | } else { |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 457 | // memory size is not used. |
| 458 | hidlMemory = hidl_memory("hardware_buffer", handle, 0); |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame^] | 459 | validator = std::make_unique<AHardwareBufferNonBlobValidator>(); |
Jean-Luc Brouillet | d409e2c | 2017-09-27 23:59:20 -0700 | [diff] [blame] | 460 | } |
Xusong Wang | d39f919 | 2019-11-27 15:45:42 -0800 | [diff] [blame^] | 461 | memory = std::make_unique<MemoryAHWB>(std::move(hidlMemory), std::move(validator)); |
Michael Butler | 90fddbd | 2019-08-02 15:04:00 -0700 | [diff] [blame] | 462 | return {ANEURALNETWORKS_NO_ERROR, std::move(memory)}; |
| 463 | }; |
| 464 | |
Xusong Wang | 550e2a5 | 2019-11-27 12:18:19 -0800 | [diff] [blame] | 465 | std::pair<int, std::unique_ptr<MemoryFromDevice>> MemoryFromDevice::create(sp<hal::IBuffer> buffer, |
| 466 | int32_t token) { |
| 467 | if (buffer == nullptr) { |
| 468 | LOG(ERROR) << "nullptr IBuffer for device memory."; |
| 469 | return {ANEURALNETWORKS_BAD_DATA, nullptr}; |
| 470 | } |
| 471 | if (token <= 0) { |
| 472 | LOG(ERROR) << "Invalid token for device memory: " << token; |
| 473 | return {ANEURALNETWORKS_BAD_DATA, nullptr}; |
| 474 | } |
| 475 | return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFromDevice>(std::move(buffer), token)}; |
| 476 | }; |
| 477 | |
| 478 | MemoryFromDevice::MemoryFromDevice(sp<hal::IBuffer> buffer, int32_t token) |
| 479 | : Memory(std::move(buffer), token) {} |
| 480 | |
Michael Butler | f20c5b5 | 2019-07-22 18:59:46 -0700 | [diff] [blame] | 481 | } // namespace nn |
| 482 | } // namespace android |