| /* GENERATED SOURCE. DO NOT MODIFY. */ |
| // © 2016 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| /* |
| ******************************************************************************* |
| * Copyright (C) 2003-2016, International Business Machines Corporation and others. All Rights Reserved. |
| ******************************************************************************* |
| */ |
| |
| package android.icu.text; |
| |
| import java.text.ParsePosition; |
| import java.util.HashMap; |
| |
| import android.icu.impl.Assert; |
| import android.icu.impl.Utility; |
| import android.icu.lang.UCharacter; |
| import android.icu.lang.UProperty; |
| |
| /** |
| * This class is part of the Rule Based Break Iterator rule compiler. |
| * It scans the rules and builds the parse tree. |
| * There is no public API here. |
| */ |
| class RBBIRuleScanner { |
| |
| private final static int kStackSize = 100; // The size of the state stack for |
| // rules parsing. Corresponds roughly |
| // to the depth of parentheses nesting |
| // that is allowed in the rules. |
| |
| static class RBBIRuleChar { |
| int fChar; |
| boolean fEscaped; |
| } |
| |
| |
| |
| RBBIRuleBuilder fRB; // The rule builder that we are part of. |
| |
| int fScanIndex; // Index of current character being processed |
| // in the rule input string. |
| int fNextIndex; // Index of the next character, which |
| // is the first character not yet scanned. |
| boolean fQuoteMode; // Scan is in a 'quoted region' |
| int fLineNum; // Line number in input file. |
| int fCharNum; // Char position within the line. |
| int fLastChar; // Previous char, needed to count CR-LF |
| // as a single line, not two. |
| |
| RBBIRuleChar fC = new RBBIRuleChar(); // Current char for parse state machine |
| // processing. |
| |
| |
| short fStack[] = new short[kStackSize]; // State stack, holds state pushes |
| int fStackPtr; // and pops as specified in the state |
| // transition rules. |
| |
| RBBINode fNodeStack[] = new RBBINode[kStackSize]; // Node stack, holds nodes created |
| // during the parse of a rule |
| int fNodeStackPtr; |
| |
| |
| boolean fReverseRule; // True if the rule currently being scanned |
| // is a reverse direction rule (if it |
| // starts with a '!') |
| |
| boolean fLookAheadRule; // True if the rule includes a '/' |
| // somewhere within it. |
| |
| boolean fNoChainInRule; // True if the current rule starts with a '^'. |
| |
| |
| RBBISymbolTable fSymbolTable; // symbol table, holds definitions of |
| // $variable symbols. |
| |
| HashMap<String, RBBISetTableEl> fSetTable = new HashMap<>(); // UnicocodeSet hash table, holds indexes to |
| // the sets created while parsing rules. |
| // The key is the string used for creating |
| // the set. |
| |
| UnicodeSet fRuleSets[] = new UnicodeSet[10]; // Unicode Sets that are needed during |
| // the scanning of RBBI rules. The |
| // Indices for these are assigned by the |
| // perl script that builds the state tables. |
| // See rbbirpt.h. |
| |
| int fRuleNum; // Counts each rule as it is scanned. |
| |
| int fOptionStart; // Input index of start of a !!option |
| // keyword, while being scanned. |
| |
| |
| // gRuleSet_rule_char_pattern is characters that may appear as literals in patterns without escaping or quoting. |
| static private String gRuleSet_rule_char_pattern = "[^[\\p{Z}\\u0020-\\u007f]-[\\p{L}]-[\\p{N}]]"; |
| static private String gRuleSet_name_char_pattern = "[_\\p{L}\\p{N}]"; |
| static private String gRuleSet_digit_char_pattern = "[0-9]"; |
| static private String gRuleSet_name_start_char_pattern = "[_\\p{L}]"; |
| static private String gRuleSet_white_space_pattern = "[\\p{Pattern_White_Space}]"; |
| static private String kAny = "any"; |
| |
| |
| |
| |
| //---------------------------------------------------------------------------------------- |
| // |
| // Constructor. |
| // |
| //---------------------------------------------------------------------------------------- |
| RBBIRuleScanner(RBBIRuleBuilder rb) { |
| fRB = rb; |
| fLineNum = 1; |
| |
| // |
| // Set up the constant Unicode Sets. |
| // Note: These could be made static and shared among |
| // all instances of RBBIRuleScanners. |
| fRuleSets[RBBIRuleParseTable.kRuleSet_rule_char - 128] = new UnicodeSet(gRuleSet_rule_char_pattern); |
| fRuleSets[RBBIRuleParseTable.kRuleSet_white_space - 128] = new UnicodeSet(gRuleSet_white_space_pattern); |
| fRuleSets[RBBIRuleParseTable.kRuleSet_name_char - 128] = new UnicodeSet(gRuleSet_name_char_pattern); |
| fRuleSets[RBBIRuleParseTable.kRuleSet_name_start_char - 128] = new UnicodeSet(gRuleSet_name_start_char_pattern); |
| fRuleSets[RBBIRuleParseTable.kRuleSet_digit_char - 128] = new UnicodeSet(gRuleSet_digit_char_pattern); |
| |
| fSymbolTable = new RBBISymbolTable(this); |
| } |
| |
| //---------------------------------------------------------------------------------------- |
| // |
| // doParseAction Do some action during rule parsing. |
| // Called by the parse state machine. |
| // Actions build the parse tree and Unicode Sets, |
| // and maintain the parse stack for nested expressions. |
| // |
| //---------------------------------------------------------------------------------------- |
| boolean doParseActions(int action) { |
| RBBINode n = null; |
| |
| boolean returnVal = true; |
| |
| switch (action) { |
| |
| case RBBIRuleParseTable.doExprStart: |
| pushNewNode(RBBINode.opStart); |
| fRuleNum++; |
| break; |
| |
| case RBBIRuleParseTable.doNoChain: |
| // Scanned a '^' while on the rule start state. |
| fNoChainInRule = true; |
| break; |
| |
| |
| case RBBIRuleParseTable.doExprOrOperator: { |
| fixOpStack(RBBINode.precOpCat); |
| RBBINode operandNode = fNodeStack[fNodeStackPtr--]; |
| RBBINode orNode = pushNewNode(RBBINode.opOr); |
| orNode.fLeftChild = operandNode; |
| operandNode.fParent = orNode; |
| } |
| break; |
| |
| case RBBIRuleParseTable.doExprCatOperator: |
| // concatenation operator. |
| // For the implicit concatenation of adjacent terms in an expression |
| // that are |
| // not separated by any other operator. Action is invoked between the |
| // actions for the two terms. |
| { |
| fixOpStack(RBBINode.precOpCat); |
| RBBINode operandNode = fNodeStack[fNodeStackPtr--]; |
| RBBINode catNode = pushNewNode(RBBINode.opCat); |
| catNode.fLeftChild = operandNode; |
| operandNode.fParent = catNode; |
| } |
| break; |
| |
| case RBBIRuleParseTable.doLParen: |
| // Open Paren. |
| // The openParen node is a dummy operation type with a low |
| // precedence, |
| // which has the affect of ensuring that any real binary op that |
| // follows within the parens binds more tightly to the operands than |
| // stuff outside of the parens. |
| pushNewNode(RBBINode.opLParen); |
| break; |
| |
| case RBBIRuleParseTable.doExprRParen: |
| fixOpStack(RBBINode.precLParen); |
| break; |
| |
| case RBBIRuleParseTable.doNOP: |
| break; |
| |
| case RBBIRuleParseTable.doStartAssign: |
| // We've just scanned "$variable = " |
| // The top of the node stack has the $variable ref node. |
| |
| // Save the start position of the RHS text in the StartExpression |
| // node |
| // that precedes the $variableReference node on the stack. |
| // This will eventually be used when saving the full $variable |
| // replacement |
| // text as a string. |
| n = fNodeStack[fNodeStackPtr - 1]; |
| n.fFirstPos = fNextIndex; // move past the '=' |
| |
| // Push a new start-of-expression node; needed to keep parse of the |
| // RHS expression happy. |
| pushNewNode(RBBINode.opStart); |
| break; |
| |
| case RBBIRuleParseTable.doEndAssign: { |
| // We have reached the end of an assignment statement. |
| // Current scan char is the ';' that terminates the assignment. |
| |
| // Terminate expression, leaves expression parse tree rooted in TOS |
| // node. |
| fixOpStack(RBBINode.precStart); |
| |
| RBBINode startExprNode = fNodeStack[fNodeStackPtr - 2]; |
| RBBINode varRefNode = fNodeStack[fNodeStackPtr - 1]; |
| RBBINode RHSExprNode = fNodeStack[fNodeStackPtr]; |
| |
| // Save original text of right side of assignment, excluding the |
| // terminating ';' |
| // in the root of the node for the right-hand-side expression. |
| RHSExprNode.fFirstPos = startExprNode.fFirstPos; |
| RHSExprNode.fLastPos = fScanIndex; |
| // fRB.fRules.extractBetween(RHSExprNode.fFirstPos, |
| // RHSExprNode.fLastPos, RHSExprNode.fText); |
| RHSExprNode.fText = fRB.fRules.substring(RHSExprNode.fFirstPos, |
| RHSExprNode.fLastPos); |
| |
| // Expression parse tree becomes l. child of the $variable reference |
| // node. |
| varRefNode.fLeftChild = RHSExprNode; |
| RHSExprNode.fParent = varRefNode; |
| |
| // Make a symbol table entry for the $variableRef node. |
| fSymbolTable.addEntry(varRefNode.fText, varRefNode); |
| |
| // Clean up the stack. |
| fNodeStackPtr -= 3; |
| break; |
| } |
| |
| case RBBIRuleParseTable.doEndOfRule: { |
| fixOpStack(RBBINode.precStart); // Terminate expression, leaves |
| // expression |
| |
| if (fRB.fDebugEnv != null && fRB.fDebugEnv.indexOf("rtree") >= 0) { |
| printNodeStack("end of rule"); |
| } |
| Assert.assrt(fNodeStackPtr == 1); |
| RBBINode thisRule = fNodeStack[fNodeStackPtr]; |
| |
| // If this rule includes a look-ahead '/', add a endMark node to the |
| // expression tree. |
| if (fLookAheadRule) { |
| RBBINode endNode = pushNewNode(RBBINode.endMark); |
| RBBINode catNode = pushNewNode(RBBINode.opCat); |
| fNodeStackPtr -= 2; |
| catNode.fLeftChild = thisRule; |
| catNode.fRightChild = endNode; |
| fNodeStack[fNodeStackPtr] = catNode; |
| endNode.fVal = fRuleNum; |
| endNode.fLookAheadEnd = true; |
| thisRule = catNode; |
| |
| // TODO: Disable chaining out of look-ahead (hard break) rules. |
| // The break on rule match is forced, so there is no point in building up |
| // the state table to chain into another rule for a longer match. |
| } |
| |
| // Mark this node as being the root of a rule. |
| thisRule.fRuleRoot = true; |
| |
| // Flag if chaining into this rule is wanted. |
| // |
| if (fRB.fChainRules && // If rule chaining is enabled globally via !!chain |
| !fNoChainInRule) { // and no '^' chain-in inhibit was on this rule |
| thisRule.fChainIn = true; |
| } |
| |
| |
| // All rule expressions are ORed together. |
| // The ';' that terminates an expression really just functions as a |
| // '|' with |
| // a low operator precedence. |
| // |
| // Each of the four sets of rules are collected separately. |
| // (forward, reverse, safe_forward, safe_reverse) |
| // OR this rule into the appropriate group of them. |
| // |
| |
| int destRules = (fReverseRule ? RBBIRuleBuilder.fSafeRevTree : fRB.fDefaultTree); |
| |
| if (fRB.fTreeRoots[destRules] != null) { |
| // This is not the first rule encountered. |
| // OR previous stuff (from *destRules) |
| // with the current rule expression (on the Node Stack) |
| // with the resulting OR expression going to *destRules |
| // |
| thisRule = fNodeStack[fNodeStackPtr]; |
| RBBINode prevRules = fRB.fTreeRoots[destRules]; |
| RBBINode orNode = pushNewNode(RBBINode.opOr); |
| orNode.fLeftChild = prevRules; |
| prevRules.fParent = orNode; |
| orNode.fRightChild = thisRule; |
| thisRule.fParent = orNode; |
| fRB.fTreeRoots[destRules] = orNode; |
| } else { |
| // This is the first rule encountered (for this direction). |
| // Just move its parse tree from the stack to *destRules. |
| fRB.fTreeRoots[destRules] = fNodeStack[fNodeStackPtr]; |
| } |
| fReverseRule = false; // in preparation for the next rule. |
| fLookAheadRule = false; |
| fNoChainInRule = false; |
| fNodeStackPtr = 0; |
| } |
| break; |
| |
| case RBBIRuleParseTable.doRuleError: |
| error(RBBIRuleBuilder.U_BRK_RULE_SYNTAX); |
| returnVal = false; |
| break; |
| |
| case RBBIRuleParseTable.doVariableNameExpectedErr: |
| error(RBBIRuleBuilder.U_BRK_RULE_SYNTAX); |
| break; |
| |
| // |
| // Unary operands + ? * |
| // These all appear after the operand to which they apply. |
| // When we hit one, the operand (may be a whole sub expression) |
| // will be on the top of the stack. |
| // Unary Operator becomes TOS, with the old TOS as its one child. |
| case RBBIRuleParseTable.doUnaryOpPlus: { |
| RBBINode operandNode = fNodeStack[fNodeStackPtr--]; |
| RBBINode plusNode = pushNewNode(RBBINode.opPlus); |
| plusNode.fLeftChild = operandNode; |
| operandNode.fParent = plusNode; |
| } |
| break; |
| |
| case RBBIRuleParseTable.doUnaryOpQuestion: { |
| RBBINode operandNode = fNodeStack[fNodeStackPtr--]; |
| RBBINode qNode = pushNewNode(RBBINode.opQuestion); |
| qNode.fLeftChild = operandNode; |
| operandNode.fParent = qNode; |
| } |
| break; |
| |
| case RBBIRuleParseTable.doUnaryOpStar: { |
| RBBINode operandNode = fNodeStack[fNodeStackPtr--]; |
| RBBINode starNode = pushNewNode(RBBINode.opStar); |
| starNode.fLeftChild = operandNode; |
| operandNode.fParent = starNode; |
| } |
| break; |
| |
| case RBBIRuleParseTable.doRuleChar: |
| // A "Rule Character" is any single character that is a literal part |
| // of the regular expression. Like a, b and c in the expression "(abc*) |
| // | [:L:]" |
| // These are pretty uncommon in break rules; the terms are more commonly |
| // sets. To keep things uniform, treat these characters like as |
| // sets that just happen to contain only one character. |
| { |
| n = pushNewNode(RBBINode.setRef); |
| String s = String.valueOf((char)fC.fChar); |
| findSetFor(s, n, null); |
| n.fFirstPos = fScanIndex; |
| n.fLastPos = fNextIndex; |
| n.fText = fRB.fRules.substring(n.fFirstPos, n.fLastPos); |
| break; |
| } |
| |
| case RBBIRuleParseTable.doDotAny: |
| // scanned a ".", meaning match any single character. |
| { |
| n = pushNewNode(RBBINode.setRef); |
| findSetFor(kAny, n, null); |
| n.fFirstPos = fScanIndex; |
| n.fLastPos = fNextIndex; |
| n.fText = fRB.fRules.substring(n.fFirstPos, n.fLastPos); |
| break; |
| } |
| |
| case RBBIRuleParseTable.doSlash: |
| // Scanned a '/', which identifies a look-ahead break position in a |
| // rule. |
| n = pushNewNode(RBBINode.lookAhead); |
| n.fVal = fRuleNum; |
| n.fFirstPos = fScanIndex; |
| n.fLastPos = fNextIndex; |
| n.fText = fRB.fRules.substring(n.fFirstPos, n.fLastPos); |
| fLookAheadRule = true; |
| break; |
| |
| case RBBIRuleParseTable.doStartTagValue: |
| // Scanned a '{', the opening delimiter for a tag value within a |
| // rule. |
| n = pushNewNode(RBBINode.tag); |
| n.fVal = 0; |
| n.fFirstPos = fScanIndex; |
| n.fLastPos = fNextIndex; |
| break; |
| |
| case RBBIRuleParseTable.doTagDigit: |
| // Just scanned a decimal digit that's part of a tag value |
| { |
| n = fNodeStack[fNodeStackPtr]; |
| int v = UCharacter.digit((char) fC.fChar, 10); |
| long update = (long)(n.fVal) * 10 + v; |
| if (update > Integer.MAX_VALUE) { |
| error(RBBIRuleBuilder.U_BRK_RULE_SYNTAX); |
| } |
| n.fVal = (int)(update); |
| break; |
| } |
| |
| case RBBIRuleParseTable.doTagValue: |
| n = fNodeStack[fNodeStackPtr]; |
| n.fLastPos = fNextIndex; |
| n.fText = fRB.fRules.substring(n.fFirstPos, n.fLastPos); |
| break; |
| |
| case RBBIRuleParseTable.doTagExpectedError: |
| error(RBBIRuleBuilder.U_BRK_MALFORMED_RULE_TAG); |
| returnVal = false; |
| break; |
| |
| case RBBIRuleParseTable.doOptionStart: |
| // Scanning a !!option. At the start of string. |
| fOptionStart = fScanIndex; |
| break; |
| |
| case RBBIRuleParseTable.doOptionEnd: { |
| String opt = fRB.fRules.substring(fOptionStart, fScanIndex); |
| if (opt.equals("chain")) { |
| fRB.fChainRules = true; |
| } else if (opt.equals("forward")) { |
| fRB.fDefaultTree = RBBIRuleBuilder.fForwardTree; |
| } else if (opt.equals("reverse")) { |
| fRB.fDefaultTree = RBBIRuleBuilder.fReverseTree; |
| } else if (opt.equals("safe_forward")) { |
| fRB.fDefaultTree = RBBIRuleBuilder.fSafeFwdTree; |
| } else if (opt.equals("safe_reverse")) { |
| fRB.fDefaultTree = RBBIRuleBuilder.fSafeRevTree; |
| } else if (opt.equals("lookAheadHardBreak")) { |
| fRB.fLookAheadHardBreak = true; |
| } else if (opt.equals("quoted_literals_only")) { |
| fRuleSets[RBBIRuleParseTable.kRuleSet_rule_char - 128].clear(); |
| } else if (opt.equals("unquoted_literals")) { |
| fRuleSets[RBBIRuleParseTable.kRuleSet_rule_char - 128].applyPattern(gRuleSet_rule_char_pattern); |
| } else { |
| error(RBBIRuleBuilder.U_BRK_UNRECOGNIZED_OPTION); |
| } |
| break; |
| } |
| |
| case RBBIRuleParseTable.doReverseDir: |
| fReverseRule = true; |
| break; |
| |
| case RBBIRuleParseTable.doStartVariableName: |
| n = pushNewNode(RBBINode.varRef); |
| n.fFirstPos = fScanIndex; |
| break; |
| |
| case RBBIRuleParseTable.doEndVariableName: |
| n = fNodeStack[fNodeStackPtr]; |
| if (n == null || n.fType != RBBINode.varRef) { |
| error(RBBIRuleBuilder.U_BRK_INTERNAL_ERROR); |
| break; |
| } |
| n.fLastPos = fScanIndex; |
| n.fText = fRB.fRules.substring(n.fFirstPos + 1, n.fLastPos); |
| // Look the newly scanned name up in the symbol table |
| // If there's an entry, set the l. child of the var ref to the |
| // replacement expression. |
| // (We also pass through here when scanning assignments, but no harm |
| // is done, other |
| // than a slight wasted effort that seems hard to avoid. Lookup will |
| // be null) |
| n.fLeftChild = fSymbolTable.lookupNode(n.fText); |
| break; |
| |
| case RBBIRuleParseTable.doCheckVarDef: |
| n = fNodeStack[fNodeStackPtr]; |
| if (n.fLeftChild == null) { |
| error(RBBIRuleBuilder.U_BRK_UNDEFINED_VARIABLE); |
| returnVal = false; |
| } |
| break; |
| |
| case RBBIRuleParseTable.doExprFinished: |
| break; |
| |
| case RBBIRuleParseTable.doRuleErrorAssignExpr: |
| error(RBBIRuleBuilder.U_BRK_ASSIGN_ERROR); |
| returnVal = false; |
| break; |
| |
| case RBBIRuleParseTable.doExit: |
| returnVal = false; |
| break; |
| |
| case RBBIRuleParseTable.doScanUnicodeSet: |
| scanSet(); |
| break; |
| |
| default: |
| error(RBBIRuleBuilder.U_BRK_INTERNAL_ERROR); |
| returnVal = false; |
| break; |
| } |
| return returnVal; |
| } |
| |
| //---------------------------------------------------------------------------------------- |
| // |
| // Error Throw and IllegalArgumentException in response to a rule parse |
| // error. |
| // |
| //---------------------------------------------------------------------------------------- |
| void error(int e) { |
| String s = "Error " + e + " at line " + fLineNum + " column " |
| + fCharNum; |
| IllegalArgumentException ex = new IllegalArgumentException(s); |
| throw ex; |
| |
| } |
| |
| //---------------------------------------------------------------------------------------- |
| // |
| // fixOpStack The parse stack holds partially assembled chunks of the parse |
| // tree. |
| // An entry on the stack may be as small as a single setRef node, |
| // or as large as the parse tree |
| // for an entire expression (this will be the one item left on the stack |
| // when the parsing of an RBBI rule completes. |
| // |
| // This function is called when a binary operator is encountered. |
| // It looks back up the stack for operators that are not yet associated |
| // with a right operand, and if the precedence of the stacked operator >= |
| // the precedence of the current operator, binds the operand left, |
| // to the previously encountered operator. |
| // |
| //---------------------------------------------------------------------------------------- |
| void fixOpStack(int p) { |
| RBBINode n; |
| // printNodeStack("entering fixOpStack()"); |
| for (;;) { |
| n = fNodeStack[fNodeStackPtr - 1]; // an operator node |
| if (n.fPrecedence == 0) { |
| System.out.print("RBBIRuleScanner.fixOpStack, bad operator node"); |
| error(RBBIRuleBuilder.U_BRK_INTERNAL_ERROR); |
| return; |
| } |
| |
| if (n.fPrecedence < p || n.fPrecedence <= RBBINode.precLParen) { |
| // The most recent operand goes with the current operator, |
| // not with the previously stacked one. |
| break; |
| } |
| // Stack operator is a binary op ( '|' or concatenation) |
| // TOS operand becomes right child of this operator. |
| // Resulting subexpression becomes the TOS operand. |
| n.fRightChild = fNodeStack[fNodeStackPtr]; |
| fNodeStack[fNodeStackPtr].fParent = n; |
| fNodeStackPtr--; |
| // printNodeStack("looping in fixOpStack() "); |
| } |
| |
| if (p <= RBBINode.precLParen) { |
| // Scan is at a right paren or end of expression. |
| // The scanned item must match the stack, or else there was an |
| // error. |
| // Discard the left paren (or start expr) node from the stack, |
| // leaving the completed (sub)expression as TOS. |
| if (n.fPrecedence != p) { |
| // Right paren encountered matched start of expression node, or |
| // end of expression matched with a left paren node. |
| error(RBBIRuleBuilder.U_BRK_MISMATCHED_PAREN); |
| } |
| fNodeStack[fNodeStackPtr - 1] = fNodeStack[fNodeStackPtr]; |
| fNodeStackPtr--; |
| // Delete the now-discarded LParen or Start node. |
| // delete n; |
| } |
| // printNodeStack("leaving fixOpStack()"); |
| } |
| |
| //---------------------------------------------------------------------------- |
| // |
| // RBBISetTableEl is an entry in the hash table of UnicodeSets that have |
| // been encountered. The val Node will be of nodetype uset |
| // and contain pointers to the actual UnicodeSets. |
| // The Key is the source string for initializing the set. |
| // |
| // The hash table is used to avoid creating duplicate |
| // unnamed (not $var references) UnicodeSets. |
| // |
| //---------------------------------------------------------------------------- |
| static class RBBISetTableEl { |
| String key; |
| |
| RBBINode val; |
| } |
| |
| |
| //---------------------------------------------------------------------------------------- |
| // |
| // findSetFor given a String, |
| // - find the corresponding Unicode Set (uset node) |
| // (create one if necessary) |
| // - Set fLeftChild of the caller's node (should be a setRef node) |
| // to the uset node |
| // Maintain a hash table of uset nodes, so the same one is always used |
| // for the same string. |
| // If a "to adopt" set is provided and we haven't seen this key before, |
| // add the provided set to the hash table. |
| // If the string is one (32 bit) char in length, the set contains |
| // just one element which is the char in question. |
| // If the string is "any", return a set containing all chars. |
| // |
| //---------------------------------------------------------------------------------------- |
| void findSetFor(String s, RBBINode node, UnicodeSet setToAdopt) { |
| |
| RBBISetTableEl el; |
| |
| // First check whether we've already cached a set for this string. |
| // If so, just use the cached set in the new node. |
| // delete any set provided by the caller, since we own it. |
| el = fSetTable.get(s); |
| if (el != null) { |
| node.fLeftChild = el.val; |
| Assert.assrt(node.fLeftChild.fType == RBBINode.uset); |
| return; |
| } |
| |
| // Haven't seen this set before. |
| // If the caller didn't provide us with a prebuilt set, |
| // create a new UnicodeSet now. |
| if (setToAdopt == null) { |
| if (s.equals(kAny)) { |
| setToAdopt = new UnicodeSet(0x000000, 0x10ffff); |
| } else { |
| int c; |
| c = UTF16.charAt(s, 0); |
| setToAdopt = new UnicodeSet(c, c); |
| } |
| } |
| |
| // |
| // Make a new uset node to refer to this UnicodeSet |
| // This new uset node becomes the child of the caller's setReference |
| // node. |
| // |
| RBBINode usetNode = new RBBINode(RBBINode.uset); |
| usetNode.fInputSet = setToAdopt; |
| usetNode.fParent = node; |
| node.fLeftChild = usetNode; |
| usetNode.fText = s; |
| |
| // |
| // Add the new uset node to the list of all uset nodes. |
| // |
| fRB.fUSetNodes.add(usetNode); |
| |
| // |
| // Add the new set to the set hash table. |
| // |
| el = new RBBISetTableEl(); |
| el.key = s; |
| el.val = usetNode; |
| fSetTable.put(el.key, el); |
| |
| return; |
| } |
| |
| // |
| // Assorted Unicode character constants. |
| // Numeric because there is no portable way to enter them as literals. |
| // (Think EBCDIC). |
| // |
| static final int chNEL = 0x85; // NEL newline variant |
| |
| static final int chLS = 0x2028; // Unicode Line Separator |
| |
| //---------------------------------------------------------------------------------------- |
| // |
| // stripRules Return a rules string without unnecessary |
| // characters. |
| // |
| //---------------------------------------------------------------------------------------- |
| static String stripRules(String rules) { |
| StringBuilder strippedRules = new StringBuilder(); |
| int rulesLength = rules.length(); |
| |
| for (int idx = 0; idx < rulesLength; idx = rules.offsetByCodePoints(idx, 1)) { |
| int cp = rules.codePointAt(idx); |
| boolean whiteSpace = UCharacter.hasBinaryProperty(cp, UProperty.PATTERN_WHITE_SPACE); |
| if (whiteSpace) { |
| continue; |
| } |
| strippedRules.appendCodePoint(cp); |
| } |
| return strippedRules.toString(); |
| } |
| |
| //---------------------------------------------------------------------------------------- |
| // |
| // nextCharLL Low Level Next Char from rule input source. |
| // Get a char from the input character iterator, |
| // keep track of input position for error reporting. |
| // |
| //---------------------------------------------------------------------------------------- |
| int nextCharLL() { |
| int ch; |
| |
| if (fNextIndex >= fRB.fRules.length()) { |
| return -1; |
| } |
| ch = UTF16.charAt(fRB.fRules, fNextIndex); |
| if (Character.isBmpCodePoint(ch) && Character.isSurrogate((char)ch)) { |
| error(RBBIRuleBuilder.U_ILLEGAL_CHAR_FOUND); |
| } |
| fNextIndex = UTF16.moveCodePointOffset(fRB.fRules, fNextIndex, 1); |
| |
| if (ch == '\r' || |
| ch == chNEL || |
| ch == chLS || |
| ch == '\n' && fLastChar != '\r') { |
| // Character is starting a new line. Bump up the line number, and |
| // reset the column to 0. |
| fLineNum++; |
| fCharNum = 0; |
| if (fQuoteMode) { |
| error(RBBIRuleBuilder.U_BRK_NEW_LINE_IN_QUOTED_STRING); |
| fQuoteMode = false; |
| } |
| } else { |
| // Character is not starting a new line. Except in the case of a |
| // LF following a CR, increment the column position. |
| if (ch != '\n') { |
| fCharNum++; |
| } |
| } |
| fLastChar = ch; |
| return ch; |
| } |
| |
| //--------------------------------------------------------------------------------- |
| // |
| // nextChar for rules scanning. At this level, we handle stripping |
| // out comments and processing backslash character escapes. |
| // The rest of the rules grammar is handled at the next level up. |
| // |
| //--------------------------------------------------------------------------------- |
| void nextChar(RBBIRuleChar c) { |
| |
| // Unicode Character constants needed for the processing done by nextChar(), |
| // in hex because literals wont work on EBCDIC machines. |
| |
| fScanIndex = fNextIndex; |
| c.fChar = nextCharLL(); |
| c.fEscaped = false; |
| |
| // |
| // check for '' sequence. |
| // These are recognized in all contexts, whether in quoted text or not. |
| // |
| if (c.fChar == '\'') { |
| if (fNextIndex < fRB.fRules.length() && UTF16.charAt(fRB.fRules, fNextIndex) == '\'') { |
| c.fChar = nextCharLL(); // get nextChar officially so character counts |
| c.fEscaped = true; // stay correct. |
| } else { |
| // Single quote, by itself. |
| // Toggle quoting mode. |
| // Return either '(' or ')', because quotes cause a grouping of the quoted text. |
| fQuoteMode = !fQuoteMode; |
| if (fQuoteMode == true) { |
| c.fChar = '('; |
| } else { |
| c.fChar = ')'; |
| } |
| c.fEscaped = false; // The paren that we return is not escaped. |
| return; |
| } |
| } |
| if (c.fChar == -1) { |
| return; |
| } |
| |
| if (fQuoteMode) { |
| c.fEscaped = true; |
| } else { |
| // We are not in a 'quoted region' of the source. |
| // |
| if (c.fChar == '#') { |
| // Start of a comment. Consume the rest of it. |
| // The new-line char that terminates the comment is always returned. |
| // It will be treated as white-space, and serves to break up anything |
| // that might otherwise incorrectly clump together with a comment in |
| // the middle (a variable name, for example.) |
| int commentStart = fScanIndex; |
| for (;;) { |
| c.fChar = nextCharLL(); |
| if (c.fChar == -1 || // EOF |
| c.fChar == '\r' || |
| c.fChar == '\n' || |
| c.fChar == chNEL || |
| c.fChar == chLS) |
| { |
| break; |
| } |
| } |
| for (int i=commentStart; i<fNextIndex-1; ++i) { |
| fRB.fStrippedRules.setCharAt(i, ' '); |
| } |
| } |
| if (c.fChar == -1) { |
| return; |
| } |
| |
| // |
| // check for backslash escaped characters. |
| // |
| if (c.fChar == '\\') { |
| c.fEscaped = true; |
| int cpAndLength = Utility.unescapeAndLengthAt(fRB.fRules, fNextIndex); |
| if (cpAndLength < 0) { |
| error(RBBIRuleBuilder.U_BRK_HEX_DIGITS_EXPECTED); |
| } |
| c.fChar = Utility.cpFromCodePointAndLength(cpAndLength); |
| int length = Utility.lengthFromCodePointAndLength(cpAndLength); |
| |
| fCharNum += length; |
| fNextIndex += length; |
| } |
| } |
| // putc(c.fChar, stdout); |
| } |
| |
| //--------------------------------------------------------------------------------- |
| // |
| // Parse RBBI rules. The state machine for rules parsing is here. |
| // The state tables are hand-written in the file rbbirpt.txt, |
| // and converted to the form used here by a perl |
| // script rbbicst.pl |
| // |
| //--------------------------------------------------------------------------------- |
| void parse() { |
| int state; |
| RBBIRuleParseTable.RBBIRuleTableElement tableEl; |
| |
| state = 1; |
| nextChar(fC); |
| // |
| // Main loop for the rule parsing state machine. |
| // Runs once per state transition. |
| // Each time through optionally performs, depending on the state table, |
| // - an advance to the the next input char |
| // - an action to be performed. |
| // - pushing or popping a state to/from the local state return stack. |
| // |
| for (;;) { |
| // Quit if state == 0. This is the normal way to exit the state machine. |
| // |
| if (state == 0) { |
| break; |
| } |
| |
| // Find the state table element that matches the input char from the rule, or the |
| // class of the input character. Start with the first table row for this |
| // state, then linearly scan forward until we find a row that matches the |
| // character. The last row for each state always matches all characters, so |
| // the search will stop there, if not before. |
| // |
| tableEl = RBBIRuleParseTable.gRuleParseStateTable[state]; |
| if (fRB.fDebugEnv != null && fRB.fDebugEnv.indexOf("scan") >= 0) { |
| System.out.println("char, line, col = (\'" + (char) fC.fChar |
| + "\', " + fLineNum + ", " + fCharNum + " state = " |
| + tableEl.fStateName); |
| } |
| |
| for (int tableRow = state;; tableRow++) { // loop over the state table rows associated with this state. |
| tableEl = RBBIRuleParseTable.gRuleParseStateTable[tableRow]; |
| if (fRB.fDebugEnv != null && fRB.fDebugEnv.indexOf("scan") >= 0) { |
| System.out.print("."); |
| } |
| if (tableEl.fCharClass < 127 && fC.fEscaped == false |
| && tableEl.fCharClass == fC.fChar) { |
| // Table row specified an individual character, not a set, and |
| // the input character is not escaped, and |
| // the input character matched it. |
| break; |
| } |
| if (tableEl.fCharClass == 255) { |
| // Table row specified default, match anything character class. |
| break; |
| } |
| if (tableEl.fCharClass == 254 && fC.fEscaped) { |
| // Table row specified "escaped" and the char was escaped. |
| break; |
| } |
| if (tableEl.fCharClass == 253 && fC.fEscaped |
| && (fC.fChar == 0x50 || fC.fChar == 0x70)) { |
| // Table row specified "escaped P" and the char is either 'p' or 'P'. |
| break; |
| } |
| if (tableEl.fCharClass == 252 && fC.fChar == -1) { |
| // Table row specified eof and we hit eof on the input. |
| break; |
| } |
| |
| if (tableEl.fCharClass >= 128 && tableEl.fCharClass < 240 && // Table specs a char class && |
| fC.fEscaped == false && // char is not escaped && |
| fC.fChar != -1) { // char is not EOF |
| UnicodeSet uniset = fRuleSets[tableEl.fCharClass - 128]; |
| if (uniset.contains(fC.fChar)) { |
| // Table row specified a character class, or set of characters, |
| // and the current char matches it. |
| break; |
| } |
| } |
| } |
| |
| if (fRB.fDebugEnv != null && fRB.fDebugEnv.indexOf("scan") >= 0) { |
| System.out.println(""); |
| } |
| // |
| // We've found the row of the state table that matches the current input |
| // character from the rules string. |
| // Perform any action specified by this row in the state table. |
| if (doParseActions(tableEl.fAction) == false) { |
| // Break out of the state machine loop if the |
| // the action signaled some kind of error, or |
| // the action was to exit, occurs on normal end-of-rules-input. |
| break; |
| } |
| |
| if (tableEl.fPushState != 0) { |
| fStackPtr++; |
| if (fStackPtr >= kStackSize) { |
| System.out.println("RBBIRuleScanner.parse() - state stack overflow."); |
| error(RBBIRuleBuilder.U_BRK_INTERNAL_ERROR); |
| } |
| fStack[fStackPtr] = tableEl.fPushState; |
| } |
| |
| if (tableEl.fNextChar) { |
| nextChar(fC); |
| } |
| |
| // Get the next state from the table entry, or from the |
| // state stack if the next state was specified as "pop". |
| if (tableEl.fNextState != 255) { |
| state = tableEl.fNextState; |
| } else { |
| state = fStack[fStackPtr]; |
| fStackPtr--; |
| if (fStackPtr < 0) { |
| System.out.println("RBBIRuleScanner.parse() - state stack underflow."); |
| error(RBBIRuleBuilder.U_BRK_INTERNAL_ERROR); |
| } |
| } |
| |
| } |
| |
| // If there are no forward rules throw an error. |
| // |
| if (fRB.fTreeRoots[RBBIRuleBuilder.fForwardTree] == null) { |
| error(RBBIRuleBuilder.U_BRK_RULE_SYNTAX); |
| } |
| |
| // |
| // Parsing of the input RBBI rules is complete. |
| // We now have a parse tree for the rule expressions |
| // and a list of all UnicodeSets that are referenced. |
| // |
| if (fRB.fDebugEnv != null && fRB.fDebugEnv.indexOf("symbols") >= 0) { |
| fSymbolTable.rbbiSymtablePrint(); |
| } |
| if (fRB.fDebugEnv != null && fRB.fDebugEnv.indexOf("ptree") >= 0) { |
| System.out.println("Completed Forward Rules Parse Tree..."); |
| fRB.fTreeRoots[RBBIRuleBuilder.fForwardTree].printTree(true); |
| System.out.println("\nCompleted Reverse Rules Parse Tree..."); |
| fRB.fTreeRoots[RBBIRuleBuilder.fReverseTree].printTree(true); |
| System.out.println("\nCompleted Safe Point Forward Rules Parse Tree..."); |
| if (fRB.fTreeRoots[RBBIRuleBuilder.fSafeFwdTree] == null) { |
| System.out.println(" -- null -- "); |
| } else { |
| fRB.fTreeRoots[RBBIRuleBuilder.fSafeFwdTree].printTree(true); |
| } |
| System.out.println("\nCompleted Safe Point Reverse Rules Parse Tree..."); |
| if (fRB.fTreeRoots[RBBIRuleBuilder.fSafeRevTree] == null) { |
| System.out.println(" -- null -- "); |
| } else { |
| fRB.fTreeRoots[RBBIRuleBuilder.fSafeRevTree].printTree(true); |
| } |
| } |
| } |
| |
| //--------------------------------------------------------------------------------- |
| // |
| // printNodeStack for debugging... |
| // |
| //--------------------------------------------------------------------------------- |
| ///CLOVER:OFF |
| void printNodeStack(String title) { |
| int i; |
| System.out.println(title + ". Dumping node stack...\n"); |
| for (i = fNodeStackPtr; i > 0; i--) { |
| fNodeStack[i].printTree(true); |
| } |
| } |
| ///CLOVER:ON |
| |
| //--------------------------------------------------------------------------------- |
| // |
| // pushNewNode create a new RBBINode of the specified type and push it |
| // onto the stack of nodes. |
| // |
| //--------------------------------------------------------------------------------- |
| RBBINode pushNewNode(int nodeType) { |
| fNodeStackPtr++; |
| if (fNodeStackPtr >= kStackSize) { |
| System.out.println("RBBIRuleScanner.pushNewNode - stack overflow."); |
| error(RBBIRuleBuilder.U_BRK_INTERNAL_ERROR); |
| } |
| fNodeStack[fNodeStackPtr] = new RBBINode(nodeType); |
| return fNodeStack[fNodeStackPtr]; |
| } |
| |
| //--------------------------------------------------------------------------------- |
| // |
| // scanSet Construct a UnicodeSet from the text at the current scan |
| // position. Advance the scan position to the first character |
| // after the set. |
| // |
| // A new RBBI setref node referring to the set is pushed onto the node |
| // stack. |
| // |
| // The scan position is normally under the control of the state machine |
| // that controls rule parsing. UnicodeSets, however, are parsed by |
| // the UnicodeSet constructor, not by the RBBI rule parser. |
| // |
| //--------------------------------------------------------------------------------- |
| void scanSet() { |
| UnicodeSet uset = null; |
| int startPos; |
| ParsePosition pos = new ParsePosition(fScanIndex); |
| int i; |
| |
| startPos = fScanIndex; |
| try { |
| uset = new UnicodeSet(fRB.fRules, pos, fSymbolTable, UnicodeSet.IGNORE_SPACE); |
| } catch (Exception e) { // TODO: catch fewer exception types. |
| // Repackage UnicodeSet errors as RBBI rule builder errors, with location info. |
| error(RBBIRuleBuilder.U_BRK_MALFORMED_SET); |
| } |
| |
| // Verify that the set contains at least one code point. |
| // |
| // Use tempSet to handle the case that the UnicodeSet contains |
| // only string element, such as [{ab}] and treat it as empty set. |
| UnicodeSet tempSet = new UnicodeSet(uset); |
| tempSet.removeAllStrings(); |
| if (tempSet.isEmpty()) { |
| // This set is empty. |
| // Make it an error, because it almost certainly is not what the user wanted. |
| // Also, avoids having to think about corner cases in the tree manipulation code |
| // that occurs later on. |
| // TODO: this shouldn't be an error; it does happen. |
| error(RBBIRuleBuilder.U_BRK_RULE_EMPTY_SET); |
| } |
| |
| // Advance the RBBI parse position over the UnicodeSet pattern. |
| // Don't just set fScanIndex because the line/char positions maintained |
| // for error reporting would be thrown off. |
| i = pos.getIndex(); |
| for (;;) { |
| if (fNextIndex >= i) { |
| break; |
| } |
| nextCharLL(); |
| } |
| |
| RBBINode n; |
| |
| n = pushNewNode(RBBINode.setRef); |
| n.fFirstPos = startPos; |
| n.fLastPos = fNextIndex; |
| n.fText = fRB.fRules.substring(n.fFirstPos, n.fLastPos); |
| // findSetFor() serves several purposes here: |
| // - Adopts storage for the UnicodeSet, will be responsible for deleting. |
| // - Maintains collection of all sets in use, needed later for establishing |
| // character categories for run time engine. |
| // - Eliminates multiple instances of the same set. |
| // - Creates a new uset node if necessary (if this isn't a duplicate.) |
| findSetFor(n.fText, n, uset); |
| } |
| |
| /** |
| * @return the number of rules that have been seen. |
| */ |
| int numRules() { |
| return fRuleNum; |
| } |
| } |