| // Protocol Buffers - Google's data interchange format |
| // Copyright 2013 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| package com.google.protobuf.nano; |
| |
| import java.io.IOException; |
| import java.nio.BufferOverflowException; |
| import java.nio.ByteBuffer; |
| import java.nio.ByteOrder; |
| import java.nio.ReadOnlyBufferException; |
| |
| /** |
| * Encodes and writes protocol message fields. |
| * |
| * <p>This class contains two kinds of methods: methods that write specific |
| * protocol message constructs and field types (e.g. {@link #writeTag} and |
| * {@link #writeInt32}) and methods that write low-level values (e.g. |
| * {@link #writeRawVarint32} and {@link #writeRawBytes}). If you are |
| * writing encoded protocol messages, you should use the former methods, but if |
| * you are writing some other format of your own design, use the latter. |
| * |
| * <p>This class is totally unsynchronized. |
| * |
| * @author [email protected] Kenton Varda |
| */ |
| public final class CodedOutputByteBufferNano { |
| /* max bytes per java UTF-16 char in UTF-8 */ |
| private static final int MAX_UTF8_EXPANSION = 3; |
| private final ByteBuffer buffer; |
| |
| private CodedOutputByteBufferNano(final byte[] buffer, final int offset, |
| final int length) { |
| this(ByteBuffer.wrap(buffer, offset, length)); |
| } |
| |
| private CodedOutputByteBufferNano(final ByteBuffer buffer) { |
| this.buffer = buffer; |
| this.buffer.order(ByteOrder.LITTLE_ENDIAN); |
| } |
| |
| /** |
| * Create a new {@code CodedOutputStream} that writes directly to the given |
| * byte array. If more bytes are written than fit in the array, |
| * {@link OutOfSpaceException} will be thrown. Writing directly to a flat |
| * array is faster than writing to an {@code OutputStream}. |
| */ |
| public static CodedOutputByteBufferNano newInstance(final byte[] flatArray) { |
| return newInstance(flatArray, 0, flatArray.length); |
| } |
| |
| /** |
| * Create a new {@code CodedOutputStream} that writes directly to the given |
| * byte array slice. If more bytes are written than fit in the slice, |
| * {@link OutOfSpaceException} will be thrown. Writing directly to a flat |
| * array is faster than writing to an {@code OutputStream}. |
| */ |
| public static CodedOutputByteBufferNano newInstance(final byte[] flatArray, |
| final int offset, |
| final int length) { |
| return new CodedOutputByteBufferNano(flatArray, offset, length); |
| } |
| |
| // ----------------------------------------------------------------- |
| |
| /** Write a {@code double} field, including tag, to the stream. */ |
| public void writeDouble(final int fieldNumber, final double value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED64); |
| writeDoubleNoTag(value); |
| } |
| |
| /** Write a {@code float} field, including tag, to the stream. */ |
| public void writeFloat(final int fieldNumber, final float value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED32); |
| writeFloatNoTag(value); |
| } |
| |
| /** Write a {@code uint64} field, including tag, to the stream. */ |
| public void writeUInt64(final int fieldNumber, final long value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); |
| writeUInt64NoTag(value); |
| } |
| |
| /** Write an {@code int64} field, including tag, to the stream. */ |
| public void writeInt64(final int fieldNumber, final long value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); |
| writeInt64NoTag(value); |
| } |
| |
| /** Write an {@code int32} field, including tag, to the stream. */ |
| public void writeInt32(final int fieldNumber, final int value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); |
| writeInt32NoTag(value); |
| } |
| |
| /** Write a {@code fixed64} field, including tag, to the stream. */ |
| public void writeFixed64(final int fieldNumber, final long value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED64); |
| writeFixed64NoTag(value); |
| } |
| |
| /** Write a {@code fixed32} field, including tag, to the stream. */ |
| public void writeFixed32(final int fieldNumber, final int value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED32); |
| writeFixed32NoTag(value); |
| } |
| |
| /** Write a {@code bool} field, including tag, to the stream. */ |
| public void writeBool(final int fieldNumber, final boolean value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); |
| writeBoolNoTag(value); |
| } |
| |
| /** Write a {@code string} field, including tag, to the stream. */ |
| public void writeString(final int fieldNumber, final String value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED); |
| writeStringNoTag(value); |
| } |
| |
| /** Write a {@code group} field, including tag, to the stream. */ |
| public void writeGroup(final int fieldNumber, final MessageNano value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_START_GROUP); |
| writeGroupNoTag(value); |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_END_GROUP); |
| } |
| |
| /** Write an embedded message field, including tag, to the stream. */ |
| public void writeMessage(final int fieldNumber, final MessageNano value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED); |
| writeMessageNoTag(value); |
| } |
| |
| /** Write a {@code bytes} field, including tag, to the stream. */ |
| public void writeBytes(final int fieldNumber, final byte[] value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED); |
| writeBytesNoTag(value); |
| } |
| |
| /** Write a {@code uint32} field, including tag, to the stream. */ |
| public void writeUInt32(final int fieldNumber, final int value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); |
| writeUInt32NoTag(value); |
| } |
| |
| /** |
| * Write an enum field, including tag, to the stream. Caller is responsible |
| * for converting the enum value to its numeric value. |
| */ |
| public void writeEnum(final int fieldNumber, final int value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); |
| writeEnumNoTag(value); |
| } |
| |
| /** Write an {@code sfixed32} field, including tag, to the stream. */ |
| public void writeSFixed32(final int fieldNumber, final int value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED32); |
| writeSFixed32NoTag(value); |
| } |
| |
| /** Write an {@code sfixed64} field, including tag, to the stream. */ |
| public void writeSFixed64(final int fieldNumber, final long value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED64); |
| writeSFixed64NoTag(value); |
| } |
| |
| /** Write an {@code sint32} field, including tag, to the stream. */ |
| public void writeSInt32(final int fieldNumber, final int value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); |
| writeSInt32NoTag(value); |
| } |
| |
| /** Write an {@code sint64} field, including tag, to the stream. */ |
| public void writeSInt64(final int fieldNumber, final long value) |
| throws IOException { |
| writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); |
| writeSInt64NoTag(value); |
| } |
| |
| /** |
| * Write a MessageSet extension field to the stream. For historical reasons, |
| * the wire format differs from normal fields. |
| */ |
| // public void writeMessageSetExtension(final int fieldNumber, |
| // final MessageMicro value) |
| // throws IOException { |
| // writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_START_GROUP); |
| // writeUInt32(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber); |
| // writeMessage(WireFormatMicro.MESSAGE_SET_MESSAGE, value); |
| // writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_END_GROUP); |
| // } |
| |
| /** |
| * Write an unparsed MessageSet extension field to the stream. For |
| * historical reasons, the wire format differs from normal fields. |
| */ |
| // public void writeRawMessageSetExtension(final int fieldNumber, |
| // final ByteStringMicro value) |
| // throws IOException { |
| // writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_START_GROUP); |
| // writeUInt32(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber); |
| // writeBytes(WireFormatMicro.MESSAGE_SET_MESSAGE, value); |
| // writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_END_GROUP); |
| // } |
| |
| // ----------------------------------------------------------------- |
| |
| /** Write a {@code double} field to the stream. */ |
| public void writeDoubleNoTag(final double value) throws IOException { |
| writeRawLittleEndian64(Double.doubleToLongBits(value)); |
| } |
| |
| /** Write a {@code float} field to the stream. */ |
| public void writeFloatNoTag(final float value) throws IOException { |
| writeRawLittleEndian32(Float.floatToIntBits(value)); |
| } |
| |
| /** Write a {@code uint64} field to the stream. */ |
| public void writeUInt64NoTag(final long value) throws IOException { |
| writeRawVarint64(value); |
| } |
| |
| /** Write an {@code int64} field to the stream. */ |
| public void writeInt64NoTag(final long value) throws IOException { |
| writeRawVarint64(value); |
| } |
| |
| /** Write an {@code int32} field to the stream. */ |
| public void writeInt32NoTag(final int value) throws IOException { |
| if (value >= 0) { |
| writeRawVarint32(value); |
| } else { |
| // Must sign-extend. |
| writeRawVarint64(value); |
| } |
| } |
| |
| /** Write a {@code fixed64} field to the stream. */ |
| public void writeFixed64NoTag(final long value) throws IOException { |
| writeRawLittleEndian64(value); |
| } |
| |
| /** Write a {@code fixed32} field to the stream. */ |
| public void writeFixed32NoTag(final int value) throws IOException { |
| writeRawLittleEndian32(value); |
| } |
| |
| /** Write a {@code bool} field to the stream. */ |
| public void writeBoolNoTag(final boolean value) throws IOException { |
| writeRawByte(value ? 1 : 0); |
| } |
| |
| /** Write a {@code string} field to the stream. */ |
| public void writeStringNoTag(final String value) throws IOException { |
| // UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()), |
| // and at most 3 times of it. Optimize for the case where we know this length results in a |
| // constant varint length - saves measuring length of the string. |
| try { |
| final int minLengthVarIntSize = computeRawVarint32Size(value.length()); |
| final int maxLengthVarIntSize = computeRawVarint32Size(value.length() * MAX_UTF8_EXPANSION); |
| if (minLengthVarIntSize == maxLengthVarIntSize) { |
| int oldPosition = buffer.position(); |
| // Buffer.position, when passed a position that is past its limit, throws |
| // IllegalArgumentException, and this class is documented to throw |
| // OutOfSpaceException instead. |
| if (buffer.remaining() < minLengthVarIntSize) { |
| throw new OutOfSpaceException(oldPosition + minLengthVarIntSize, buffer.limit()); |
| } |
| buffer.position(oldPosition + minLengthVarIntSize); |
| encode(value, buffer); |
| int newPosition = buffer.position(); |
| buffer.position(oldPosition); |
| writeRawVarint32(newPosition - oldPosition - minLengthVarIntSize); |
| buffer.position(newPosition); |
| } else { |
| writeRawVarint32(encodedLength(value)); |
| encode(value, buffer); |
| } |
| } catch (BufferOverflowException e) { |
| final OutOfSpaceException outOfSpaceException = new OutOfSpaceException(buffer.position(), |
| buffer.limit()); |
| outOfSpaceException.initCause(e); |
| throw outOfSpaceException; |
| } |
| } |
| |
| // These UTF-8 handling methods are copied from Guava's Utf8 class. |
| /** |
| * Returns the number of bytes in the UTF-8-encoded form of {@code sequence}. For a string, |
| * this method is equivalent to {@code string.getBytes(UTF_8).length}, but is more efficient in |
| * both time and space. |
| * |
| * @throws IllegalArgumentException if {@code sequence} contains ill-formed UTF-16 (unpaired |
| * surrogates) |
| */ |
| private static int encodedLength(CharSequence sequence) { |
| // Warning to maintainers: this implementation is highly optimized. |
| int utf16Length = sequence.length(); |
| int utf8Length = utf16Length; |
| int i = 0; |
| |
| // This loop optimizes for pure ASCII. |
| while (i < utf16Length && sequence.charAt(i) < 0x80) { |
| i++; |
| } |
| |
| // This loop optimizes for chars less than 0x800. |
| for (; i < utf16Length; i++) { |
| char c = sequence.charAt(i); |
| if (c < 0x800) { |
| utf8Length += ((0x7f - c) >>> 31); // branch free! |
| } else { |
| utf8Length += encodedLengthGeneral(sequence, i); |
| break; |
| } |
| } |
| |
| if (utf8Length < utf16Length) { |
| // Necessary and sufficient condition for overflow because of maximum 3x expansion |
| throw new IllegalArgumentException("UTF-8 length does not fit in int: " |
| + (utf8Length + (1L << 32))); |
| } |
| return utf8Length; |
| } |
| |
| private static int encodedLengthGeneral(CharSequence sequence, int start) { |
| int utf16Length = sequence.length(); |
| int utf8Length = 0; |
| for (int i = start; i < utf16Length; i++) { |
| char c = sequence.charAt(i); |
| if (c < 0x800) { |
| utf8Length += (0x7f - c) >>> 31; // branch free! |
| } else { |
| utf8Length += 2; |
| // jdk7+: if (Character.isSurrogate(c)) { |
| if (Character.MIN_SURROGATE <= c && c <= Character.MAX_SURROGATE) { |
| // Check that we have a well-formed surrogate pair. |
| int cp = Character.codePointAt(sequence, i); |
| if (cp < Character.MIN_SUPPLEMENTARY_CODE_POINT) { |
| throw new IllegalArgumentException("Unpaired surrogate at index " + i); |
| } |
| i++; |
| } |
| } |
| } |
| return utf8Length; |
| } |
| |
| /** |
| * Encodes {@code sequence} into UTF-8, in {@code byteBuffer}. For a string, this method is |
| * equivalent to {@code buffer.put(string.getBytes(UTF_8))}, but is more efficient in both time |
| * and space. Bytes are written starting at the current position. This method requires paired |
| * surrogates, and therefore does not support chunking. |
| * |
| * <p>To ensure sufficient space in the output buffer, either call {@link #encodedLength} to |
| * compute the exact amount needed, or leave room for {@code 3 * sequence.length()}, which is the |
| * largest possible number of bytes that any input can be encoded to. |
| * |
| * @throws IllegalArgumentException if {@code sequence} contains ill-formed UTF-16 (unpaired |
| * surrogates) |
| * @throws BufferOverflowException if {@code sequence} encoded in UTF-8 does not fit in |
| * {@code byteBuffer}'s remaining space. |
| * @throws ReadOnlyBufferException if {@code byteBuffer} is a read-only buffer. |
| */ |
| private static void encode(CharSequence sequence, ByteBuffer byteBuffer) { |
| if (byteBuffer.isReadOnly()) { |
| throw new ReadOnlyBufferException(); |
| } else if (byteBuffer.hasArray()) { |
| try { |
| int encoded = encode(sequence, |
| byteBuffer.array(), |
| byteBuffer.arrayOffset() + byteBuffer.position(), |
| byteBuffer.remaining()); |
| byteBuffer.position(encoded - byteBuffer.arrayOffset()); |
| } catch (ArrayIndexOutOfBoundsException e) { |
| BufferOverflowException boe = new BufferOverflowException(); |
| boe.initCause(e); |
| throw boe; |
| } |
| } else { |
| encodeDirect(sequence, byteBuffer); |
| } |
| } |
| |
| private static void encodeDirect(CharSequence sequence, ByteBuffer byteBuffer) { |
| int utf16Length = sequence.length(); |
| for (int i = 0; i < utf16Length; i++) { |
| final char c = sequence.charAt(i); |
| if (c < 0x80) { // ASCII |
| byteBuffer.put((byte) c); |
| } else if (c < 0x800) { // 11 bits, two UTF-8 bytes |
| byteBuffer.put((byte) ((0xF << 6) | (c >>> 6))); |
| byteBuffer.put((byte) (0x80 | (0x3F & c))); |
| } else if (c < Character.MIN_SURROGATE || Character.MAX_SURROGATE < c) { |
| // Maximium single-char code point is 0xFFFF, 16 bits, three UTF-8 bytes |
| byteBuffer.put((byte) ((0xF << 5) | (c >>> 12))); |
| byteBuffer.put((byte) (0x80 | (0x3F & (c >>> 6)))); |
| byteBuffer.put((byte) (0x80 | (0x3F & c))); |
| } else { |
| final char low; |
| if (i + 1 == sequence.length() |
| || !Character.isSurrogatePair(c, (low = sequence.charAt(++i)))) { |
| throw new IllegalArgumentException("Unpaired surrogate at index " + (i - 1)); |
| } |
| int codePoint = Character.toCodePoint(c, low); |
| byteBuffer.put((byte) ((0xF << 4) | (codePoint >>> 18))); |
| byteBuffer.put((byte) (0x80 | (0x3F & (codePoint >>> 12)))); |
| byteBuffer.put((byte) (0x80 | (0x3F & (codePoint >>> 6)))); |
| byteBuffer.put((byte) (0x80 | (0x3F & codePoint))); |
| } |
| } |
| } |
| |
| private static int encode(CharSequence sequence, byte[] bytes, int offset, int length) { |
| int utf16Length = sequence.length(); |
| int j = offset; |
| int i = 0; |
| int limit = offset + length; |
| // Designed to take advantage of |
| // https://wikis.oracle.com/display/HotSpotInternals/RangeCheckElimination |
| for (char c; i < utf16Length && i + j < limit && (c = sequence.charAt(i)) < 0x80; i++) { |
| bytes[j + i] = (byte) c; |
| } |
| if (i == utf16Length) { |
| return j + utf16Length; |
| } |
| j += i; |
| for (char c; i < utf16Length; i++) { |
| c = sequence.charAt(i); |
| if (c < 0x80 && j < limit) { |
| bytes[j++] = (byte) c; |
| } else if (c < 0x800 && j <= limit - 2) { // 11 bits, two UTF-8 bytes |
| bytes[j++] = (byte) ((0xF << 6) | (c >>> 6)); |
| bytes[j++] = (byte) (0x80 | (0x3F & c)); |
| } else if ((c < Character.MIN_SURROGATE || Character.MAX_SURROGATE < c) && j <= limit - 3) { |
| // Maximum single-char code point is 0xFFFF, 16 bits, three UTF-8 bytes |
| bytes[j++] = (byte) ((0xF << 5) | (c >>> 12)); |
| bytes[j++] = (byte) (0x80 | (0x3F & (c >>> 6))); |
| bytes[j++] = (byte) (0x80 | (0x3F & c)); |
| } else if (j <= limit - 4) { |
| // Minimum code point represented by a surrogate pair is 0x10000, 17 bits, four UTF-8 bytes |
| final char low; |
| if (i + 1 == sequence.length() |
| || !Character.isSurrogatePair(c, (low = sequence.charAt(++i)))) { |
| throw new IllegalArgumentException("Unpaired surrogate at index " + (i - 1)); |
| } |
| int codePoint = Character.toCodePoint(c, low); |
| bytes[j++] = (byte) ((0xF << 4) | (codePoint >>> 18)); |
| bytes[j++] = (byte) (0x80 | (0x3F & (codePoint >>> 12))); |
| bytes[j++] = (byte) (0x80 | (0x3F & (codePoint >>> 6))); |
| bytes[j++] = (byte) (0x80 | (0x3F & codePoint)); |
| } else { |
| throw new ArrayIndexOutOfBoundsException("Failed writing " + c + " at index " + j); |
| } |
| } |
| return j; |
| } |
| |
| // End guava UTF-8 methods |
| |
| |
| /** Write a {@code group} field to the stream. */ |
| public void writeGroupNoTag(final MessageNano value) throws IOException { |
| value.writeTo(this); |
| } |
| |
| /** Write an embedded message field to the stream. */ |
| public void writeMessageNoTag(final MessageNano value) throws IOException { |
| writeRawVarint32(value.getCachedSize()); |
| value.writeTo(this); |
| } |
| |
| /** Write a {@code bytes} field to the stream. */ |
| public void writeBytesNoTag(final byte[] value) throws IOException { |
| writeRawVarint32(value.length); |
| writeRawBytes(value); |
| } |
| |
| /** Write a {@code uint32} field to the stream. */ |
| public void writeUInt32NoTag(final int value) throws IOException { |
| writeRawVarint32(value); |
| } |
| |
| /** |
| * Write an enum field to the stream. Caller is responsible |
| * for converting the enum value to its numeric value. |
| */ |
| public void writeEnumNoTag(final int value) throws IOException { |
| writeRawVarint32(value); |
| } |
| |
| /** Write an {@code sfixed32} field to the stream. */ |
| public void writeSFixed32NoTag(final int value) throws IOException { |
| writeRawLittleEndian32(value); |
| } |
| |
| /** Write an {@code sfixed64} field to the stream. */ |
| public void writeSFixed64NoTag(final long value) throws IOException { |
| writeRawLittleEndian64(value); |
| } |
| |
| /** Write an {@code sint32} field to the stream. */ |
| public void writeSInt32NoTag(final int value) throws IOException { |
| writeRawVarint32(encodeZigZag32(value)); |
| } |
| |
| /** Write an {@code sint64} field to the stream. */ |
| public void writeSInt64NoTag(final long value) throws IOException { |
| writeRawVarint64(encodeZigZag64(value)); |
| } |
| |
| // ================================================================= |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code double} field, including tag. |
| */ |
| public static int computeDoubleSize(final int fieldNumber, |
| final double value) { |
| return computeTagSize(fieldNumber) + computeDoubleSizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code float} field, including tag. |
| */ |
| public static int computeFloatSize(final int fieldNumber, final float value) { |
| return computeTagSize(fieldNumber) + computeFloatSizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code uint64} field, including tag. |
| */ |
| public static int computeUInt64Size(final int fieldNumber, final long value) { |
| return computeTagSize(fieldNumber) + computeUInt64SizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * {@code int64} field, including tag. |
| */ |
| public static int computeInt64Size(final int fieldNumber, final long value) { |
| return computeTagSize(fieldNumber) + computeInt64SizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * {@code int32} field, including tag. |
| */ |
| public static int computeInt32Size(final int fieldNumber, final int value) { |
| return computeTagSize(fieldNumber) + computeInt32SizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code fixed64} field, including tag. |
| */ |
| public static int computeFixed64Size(final int fieldNumber, |
| final long value) { |
| return computeTagSize(fieldNumber) + computeFixed64SizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code fixed32} field, including tag. |
| */ |
| public static int computeFixed32Size(final int fieldNumber, |
| final int value) { |
| return computeTagSize(fieldNumber) + computeFixed32SizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code bool} field, including tag. |
| */ |
| public static int computeBoolSize(final int fieldNumber, |
| final boolean value) { |
| return computeTagSize(fieldNumber) + computeBoolSizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code string} field, including tag. |
| */ |
| public static int computeStringSize(final int fieldNumber, |
| final String value) { |
| return computeTagSize(fieldNumber) + computeStringSizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code group} field, including tag. |
| */ |
| public static int computeGroupSize(final int fieldNumber, |
| final MessageNano value) { |
| return computeTagSize(fieldNumber) * 2 + computeGroupSizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * embedded message field, including tag. |
| */ |
| public static int computeMessageSize(final int fieldNumber, |
| final MessageNano value) { |
| return computeTagSize(fieldNumber) + computeMessageSizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code bytes} field, including tag. |
| */ |
| public static int computeBytesSize(final int fieldNumber, |
| final byte[] value) { |
| return computeTagSize(fieldNumber) + computeBytesSizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code uint32} field, including tag. |
| */ |
| public static int computeUInt32Size(final int fieldNumber, final int value) { |
| return computeTagSize(fieldNumber) + computeUInt32SizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * enum field, including tag. Caller is responsible for converting the |
| * enum value to its numeric value. |
| */ |
| public static int computeEnumSize(final int fieldNumber, final int value) { |
| return computeTagSize(fieldNumber) + computeEnumSizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * {@code sfixed32} field, including tag. |
| */ |
| public static int computeSFixed32Size(final int fieldNumber, |
| final int value) { |
| return computeTagSize(fieldNumber) + computeSFixed32SizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * {@code sfixed64} field, including tag. |
| */ |
| public static int computeSFixed64Size(final int fieldNumber, |
| final long value) { |
| return computeTagSize(fieldNumber) + computeSFixed64SizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * {@code sint32} field, including tag. |
| */ |
| public static int computeSInt32Size(final int fieldNumber, final int value) { |
| return computeTagSize(fieldNumber) + computeSInt32SizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * {@code sint64} field, including tag. |
| */ |
| public static int computeSInt64Size(final int fieldNumber, final long value) { |
| return computeTagSize(fieldNumber) + computeSInt64SizeNoTag(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * MessageSet extension to the stream. For historical reasons, |
| * the wire format differs from normal fields. |
| */ |
| // public static int computeMessageSetExtensionSize( |
| // final int fieldNumber, final MessageMicro value) { |
| // return computeTagSize(WireFormatMicro.MESSAGE_SET_ITEM) * 2 + |
| // computeUInt32Size(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber) + |
| // computeMessageSize(WireFormatMicro.MESSAGE_SET_MESSAGE, value); |
| // } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * unparsed MessageSet extension field to the stream. For |
| * historical reasons, the wire format differs from normal fields. |
| */ |
| // public static int computeRawMessageSetExtensionSize( |
| // final int fieldNumber, final ByteStringMicro value) { |
| // return computeTagSize(WireFormatMicro.MESSAGE_SET_ITEM) * 2 + |
| // computeUInt32Size(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber) + |
| // computeBytesSize(WireFormatMicro.MESSAGE_SET_MESSAGE, value); |
| // } |
| |
| // ----------------------------------------------------------------- |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code double} field, including tag. |
| */ |
| public static int computeDoubleSizeNoTag(final double value) { |
| return LITTLE_ENDIAN_64_SIZE; |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code float} field, including tag. |
| */ |
| public static int computeFloatSizeNoTag(final float value) { |
| return LITTLE_ENDIAN_32_SIZE; |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code uint64} field, including tag. |
| */ |
| public static int computeUInt64SizeNoTag(final long value) { |
| return computeRawVarint64Size(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * {@code int64} field, including tag. |
| */ |
| public static int computeInt64SizeNoTag(final long value) { |
| return computeRawVarint64Size(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * {@code int32} field, including tag. |
| */ |
| public static int computeInt32SizeNoTag(final int value) { |
| if (value >= 0) { |
| return computeRawVarint32Size(value); |
| } else { |
| // Must sign-extend. |
| return 10; |
| } |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code fixed64} field. |
| */ |
| public static int computeFixed64SizeNoTag(final long value) { |
| return LITTLE_ENDIAN_64_SIZE; |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code fixed32} field. |
| */ |
| public static int computeFixed32SizeNoTag(final int value) { |
| return LITTLE_ENDIAN_32_SIZE; |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code bool} field. |
| */ |
| public static int computeBoolSizeNoTag(final boolean value) { |
| return 1; |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code string} field. |
| */ |
| public static int computeStringSizeNoTag(final String value) { |
| final int length = encodedLength(value); |
| return computeRawVarint32Size(length) + length; |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code group} field. |
| */ |
| public static int computeGroupSizeNoTag(final MessageNano value) { |
| return value.getSerializedSize(); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an embedded |
| * message field. |
| */ |
| public static int computeMessageSizeNoTag(final MessageNano value) { |
| final int size = value.getSerializedSize(); |
| return computeRawVarint32Size(size) + size; |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code bytes} field. |
| */ |
| public static int computeBytesSizeNoTag(final byte[] value) { |
| return computeRawVarint32Size(value.length) + value.length; |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a |
| * {@code uint32} field. |
| */ |
| public static int computeUInt32SizeNoTag(final int value) { |
| return computeRawVarint32Size(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an enum field. |
| * Caller is responsible for converting the enum value to its numeric value. |
| */ |
| public static int computeEnumSizeNoTag(final int value) { |
| return computeRawVarint32Size(value); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * {@code sfixed32} field. |
| */ |
| public static int computeSFixed32SizeNoTag(final int value) { |
| return LITTLE_ENDIAN_32_SIZE; |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * {@code sfixed64} field. |
| */ |
| public static int computeSFixed64SizeNoTag(final long value) { |
| return LITTLE_ENDIAN_64_SIZE; |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * {@code sint32} field. |
| */ |
| public static int computeSInt32SizeNoTag(final int value) { |
| return computeRawVarint32Size(encodeZigZag32(value)); |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode an |
| * {@code sint64} field. |
| */ |
| public static int computeSInt64SizeNoTag(final long value) { |
| return computeRawVarint64Size(encodeZigZag64(value)); |
| } |
| |
| // ================================================================= |
| |
| /** |
| * If writing to a flat array, return the space left in the array. |
| * Otherwise, throws {@code UnsupportedOperationException}. |
| */ |
| public int spaceLeft() { |
| return buffer.remaining(); |
| } |
| |
| /** |
| * Verifies that {@link #spaceLeft()} returns zero. It's common to create |
| * a byte array that is exactly big enough to hold a message, then write to |
| * it with a {@code CodedOutputStream}. Calling {@code checkNoSpaceLeft()} |
| * after writing verifies that the message was actually as big as expected, |
| * which can help catch bugs. |
| */ |
| public void checkNoSpaceLeft() { |
| if (spaceLeft() != 0) { |
| throw new IllegalStateException( |
| "Did not write as much data as expected."); |
| } |
| } |
| |
| /** |
| * Returns the position within the internal buffer. |
| */ |
| public int position() { |
| return buffer.position(); |
| } |
| |
| /** |
| * Resets the position within the internal buffer to zero. |
| * |
| * @see #position |
| * @see #spaceLeft |
| */ |
| public void reset() { |
| buffer.clear(); |
| } |
| |
| /** |
| * If you create a CodedOutputStream around a simple flat array, you must |
| * not attempt to write more bytes than the array has space. Otherwise, |
| * this exception will be thrown. |
| */ |
| public static class OutOfSpaceException extends IOException { |
| private static final long serialVersionUID = -6947486886997889499L; |
| |
| OutOfSpaceException(int position, int limit) { |
| super("CodedOutputStream was writing to a flat byte array and ran " + |
| "out of space (pos " + position + " limit " + limit + ")."); |
| } |
| } |
| |
| /** Write a single byte. */ |
| public void writeRawByte(final byte value) throws IOException { |
| if (!buffer.hasRemaining()) { |
| // We're writing to a single buffer. |
| throw new OutOfSpaceException(buffer.position(), buffer.limit()); |
| } |
| |
| buffer.put(value); |
| } |
| |
| /** Write a single byte, represented by an integer value. */ |
| public void writeRawByte(final int value) throws IOException { |
| writeRawByte((byte) value); |
| } |
| |
| /** Write an array of bytes. */ |
| public void writeRawBytes(final byte[] value) throws IOException { |
| writeRawBytes(value, 0, value.length); |
| } |
| |
| /** Write part of an array of bytes. */ |
| public void writeRawBytes(final byte[] value, int offset, int length) |
| throws IOException { |
| if (buffer.remaining() >= length) { |
| buffer.put(value, offset, length); |
| } else { |
| // We're writing to a single buffer. |
| throw new OutOfSpaceException(buffer.position(), buffer.limit()); |
| } |
| } |
| |
| /** Encode and write a tag. */ |
| public void writeTag(final int fieldNumber, final int wireType) |
| throws IOException { |
| writeRawVarint32(WireFormatNano.makeTag(fieldNumber, wireType)); |
| } |
| |
| /** Compute the number of bytes that would be needed to encode a tag. */ |
| public static int computeTagSize(final int fieldNumber) { |
| return computeRawVarint32Size(WireFormatNano.makeTag(fieldNumber, 0)); |
| } |
| |
| /** |
| * Encode and write a varint. {@code value} is treated as |
| * unsigned, so it won't be sign-extended if negative. |
| */ |
| public void writeRawVarint32(int value) throws IOException { |
| while (true) { |
| if ((value & ~0x7F) == 0) { |
| writeRawByte(value); |
| return; |
| } else { |
| writeRawByte((value & 0x7F) | 0x80); |
| value >>>= 7; |
| } |
| } |
| } |
| |
| /** |
| * Compute the number of bytes that would be needed to encode a varint. |
| * {@code value} is treated as unsigned, so it won't be sign-extended if |
| * negative. |
| */ |
| public static int computeRawVarint32Size(final int value) { |
| if ((value & (0xffffffff << 7)) == 0) return 1; |
| if ((value & (0xffffffff << 14)) == 0) return 2; |
| if ((value & (0xffffffff << 21)) == 0) return 3; |
| if ((value & (0xffffffff << 28)) == 0) return 4; |
| return 5; |
| } |
| |
| /** Encode and write a varint. */ |
| public void writeRawVarint64(long value) throws IOException { |
| while (true) { |
| if ((value & ~0x7FL) == 0) { |
| writeRawByte((int)value); |
| return; |
| } else { |
| writeRawByte(((int)value & 0x7F) | 0x80); |
| value >>>= 7; |
| } |
| } |
| } |
| |
| /** Compute the number of bytes that would be needed to encode a varint. */ |
| public static int computeRawVarint64Size(final long value) { |
| if ((value & (0xffffffffffffffffL << 7)) == 0) return 1; |
| if ((value & (0xffffffffffffffffL << 14)) == 0) return 2; |
| if ((value & (0xffffffffffffffffL << 21)) == 0) return 3; |
| if ((value & (0xffffffffffffffffL << 28)) == 0) return 4; |
| if ((value & (0xffffffffffffffffL << 35)) == 0) return 5; |
| if ((value & (0xffffffffffffffffL << 42)) == 0) return 6; |
| if ((value & (0xffffffffffffffffL << 49)) == 0) return 7; |
| if ((value & (0xffffffffffffffffL << 56)) == 0) return 8; |
| if ((value & (0xffffffffffffffffL << 63)) == 0) return 9; |
| return 10; |
| } |
| |
| /** Write a little-endian 32-bit integer. */ |
| public void writeRawLittleEndian32(final int value) throws IOException { |
| if (buffer.remaining() < 4) { |
| throw new OutOfSpaceException(buffer.position(), buffer.limit()); |
| } |
| buffer.putInt(value); |
| } |
| |
| public static final int LITTLE_ENDIAN_32_SIZE = 4; |
| |
| /** Write a little-endian 64-bit integer. */ |
| public void writeRawLittleEndian64(final long value) throws IOException { |
| if (buffer.remaining() < 8) { |
| throw new OutOfSpaceException(buffer.position(), buffer.limit()); |
| } |
| buffer.putLong(value); |
| } |
| |
| public static final int LITTLE_ENDIAN_64_SIZE = 8; |
| |
| /** |
| * Encode a ZigZag-encoded 32-bit value. ZigZag encodes signed integers |
| * into values that can be efficiently encoded with varint. (Otherwise, |
| * negative values must be sign-extended to 64 bits to be varint encoded, |
| * thus always taking 10 bytes on the wire.) |
| * |
| * @param n A signed 32-bit integer. |
| * @return An unsigned 32-bit integer, stored in a signed int because |
| * Java has no explicit unsigned support. |
| */ |
| public static int encodeZigZag32(final int n) { |
| // Note: the right-shift must be arithmetic |
| return (n << 1) ^ (n >> 31); |
| } |
| |
| /** |
| * Encode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers |
| * into values that can be efficiently encoded with varint. (Otherwise, |
| * negative values must be sign-extended to 64 bits to be varint encoded, |
| * thus always taking 10 bytes on the wire.) |
| * |
| * @param n A signed 64-bit integer. |
| * @return An unsigned 64-bit integer, stored in a signed int because |
| * Java has no explicit unsigned support. |
| */ |
| public static long encodeZigZag64(final long n) { |
| // Note: the right-shift must be arithmetic |
| return (n << 1) ^ (n >> 63); |
| } |
| |
| static int computeFieldSize(int number, int type, Object object) { |
| switch (type) { |
| case InternalNano.TYPE_BOOL: |
| return computeBoolSize(number, (Boolean) object); |
| case InternalNano.TYPE_BYTES: |
| return computeBytesSize(number, (byte[]) object); |
| case InternalNano.TYPE_STRING: |
| return computeStringSize(number, (String) object); |
| case InternalNano.TYPE_FLOAT: |
| return computeFloatSize(number, (Float) object); |
| case InternalNano.TYPE_DOUBLE: |
| return computeDoubleSize(number, (Double) object); |
| case InternalNano.TYPE_ENUM: |
| return computeEnumSize(number, (Integer) object); |
| case InternalNano.TYPE_FIXED32: |
| return computeFixed32Size(number, (Integer) object); |
| case InternalNano.TYPE_INT32: |
| return computeInt32Size(number, (Integer) object); |
| case InternalNano.TYPE_UINT32: |
| return computeUInt32Size(number, (Integer) object); |
| case InternalNano.TYPE_SINT32: |
| return computeSInt32Size(number, (Integer) object); |
| case InternalNano.TYPE_SFIXED32: |
| return computeSFixed32Size(number, (Integer) object); |
| case InternalNano.TYPE_INT64: |
| return computeInt64Size(number, (Long) object); |
| case InternalNano.TYPE_UINT64: |
| return computeUInt64Size(number, (Long) object); |
| case InternalNano.TYPE_SINT64: |
| return computeSInt64Size(number, (Long) object); |
| case InternalNano.TYPE_FIXED64: |
| return computeFixed64Size(number, (Long) object); |
| case InternalNano.TYPE_SFIXED64: |
| return computeSFixed64Size(number, (Long) object); |
| case InternalNano.TYPE_MESSAGE: |
| return computeMessageSize(number, (MessageNano) object); |
| case InternalNano.TYPE_GROUP: |
| return computeGroupSize(number, (MessageNano) object); |
| default: |
| throw new IllegalArgumentException("Unknown type: " + type); |
| } |
| } |
| |
| void writeField(int number, int type, Object value) |
| throws IOException { |
| switch (type) { |
| case InternalNano.TYPE_DOUBLE: |
| Double doubleValue = (Double) value; |
| writeDouble(number, doubleValue); |
| break; |
| case InternalNano.TYPE_FLOAT: |
| Float floatValue = (Float) value; |
| writeFloat(number, floatValue); |
| break; |
| case InternalNano.TYPE_INT64: |
| Long int64Value = (Long) value; |
| writeInt64(number, int64Value); |
| break; |
| case InternalNano.TYPE_UINT64: |
| Long uint64Value = (Long) value; |
| writeUInt64(number, uint64Value); |
| break; |
| case InternalNano.TYPE_INT32: |
| Integer int32Value = (Integer) value; |
| writeInt32(number, int32Value); |
| break; |
| case InternalNano.TYPE_FIXED64: |
| Long fixed64Value = (Long) value; |
| writeFixed64(number, fixed64Value); |
| break; |
| case InternalNano.TYPE_FIXED32: |
| Integer fixed32Value = (Integer) value; |
| writeFixed32(number, fixed32Value); |
| break; |
| case InternalNano.TYPE_BOOL: |
| Boolean boolValue = (Boolean) value; |
| writeBool(number, boolValue); |
| break; |
| case InternalNano.TYPE_STRING: |
| String stringValue = (String) value; |
| writeString(number, stringValue); |
| break; |
| case InternalNano.TYPE_BYTES: |
| byte[] bytesValue = (byte[]) value; |
| writeBytes(number, bytesValue); |
| break; |
| case InternalNano.TYPE_UINT32: |
| Integer uint32Value = (Integer) value; |
| writeUInt32(number, uint32Value); |
| break; |
| case InternalNano.TYPE_ENUM: |
| Integer enumValue = (Integer) value; |
| writeEnum(number, enumValue); |
| break; |
| case InternalNano.TYPE_SFIXED32: |
| Integer sfixed32Value = (Integer) value; |
| writeSFixed32(number, sfixed32Value); |
| break; |
| case InternalNano.TYPE_SFIXED64: |
| Long sfixed64Value = (Long) value; |
| writeSFixed64(number, sfixed64Value); |
| break; |
| case InternalNano.TYPE_SINT32: |
| Integer sint32Value = (Integer) value; |
| writeSInt32(number, sint32Value); |
| break; |
| case InternalNano.TYPE_SINT64: |
| Long sint64Value = (Long) value; |
| writeSInt64(number, sint64Value); |
| break; |
| case InternalNano.TYPE_MESSAGE: |
| MessageNano messageValue = (MessageNano) value; |
| writeMessage(number, messageValue); |
| break; |
| case InternalNano.TYPE_GROUP: |
| MessageNano groupValue = (MessageNano) value; |
| writeGroup(number, groupValue); |
| break; |
| default: |
| throw new IOException("Unknown type: " + type); |
| } |
| } |
| |
| } |