| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| package com.google.protobuf.nano; |
| |
| import com.google.protobuf.nano.MapFactories.MapFactory; |
| |
| import java.io.IOException; |
| import java.nio.charset.Charset; |
| import java.util.Arrays; |
| import java.util.Map; |
| import java.util.Map.Entry; |
| |
| /** |
| * The classes contained within are used internally by the Protocol Buffer |
| * library and generated message implementations. They are public only because |
| * those generated messages do not reside in the {@code protobuf} package. |
| * Others should not use this class directly. |
| * |
| * @author [email protected] (Kenton Varda) |
| */ |
| public final class InternalNano { |
| |
| public static final int TYPE_DOUBLE = 1; |
| public static final int TYPE_FLOAT = 2; |
| public static final int TYPE_INT64 = 3; |
| public static final int TYPE_UINT64 = 4; |
| public static final int TYPE_INT32 = 5; |
| public static final int TYPE_FIXED64 = 6; |
| public static final int TYPE_FIXED32 = 7; |
| public static final int TYPE_BOOL = 8; |
| public static final int TYPE_STRING = 9; |
| public static final int TYPE_GROUP = 10; |
| public static final int TYPE_MESSAGE = 11; |
| public static final int TYPE_BYTES = 12; |
| public static final int TYPE_UINT32 = 13; |
| public static final int TYPE_ENUM = 14; |
| public static final int TYPE_SFIXED32 = 15; |
| public static final int TYPE_SFIXED64 = 16; |
| public static final int TYPE_SINT32 = 17; |
| public static final int TYPE_SINT64 = 18; |
| |
| static final Charset UTF_8 = Charset.forName("UTF-8"); |
| static final Charset ISO_8859_1 = Charset.forName("ISO-8859-1"); |
| |
| private InternalNano() {} |
| |
| /** |
| * An object to provide synchronization when lazily initializing static fields |
| * of {@link MessageNano} subclasses. |
| * <p> |
| * To enable earlier versions of ProGuard to inline short methods from a |
| * generated MessageNano subclass to the call sites, that class must not have |
| * a class initializer, which will be created if there is any static variable |
| * initializers. To lazily initialize the static variables in a thread-safe |
| * manner, the initialization code will synchronize on this object. |
| */ |
| public static final Object LAZY_INIT_LOCK = new Object(); |
| |
| /** |
| * Helper called by generated code to construct default values for string |
| * fields. |
| * <p> |
| * The protocol compiler does not actually contain a UTF-8 decoder -- it |
| * just pushes UTF-8-encoded text around without touching it. The one place |
| * where this presents a problem is when generating Java string literals. |
| * Unicode characters in the string literal would normally need to be encoded |
| * using a Unicode escape sequence, which would require decoding them. |
| * To get around this, protoc instead embeds the UTF-8 bytes into the |
| * generated code and leaves it to the runtime library to decode them. |
| * <p> |
| * It gets worse, though. If protoc just generated a byte array, like: |
| * new byte[] {0x12, 0x34, 0x56, 0x78} |
| * Java actually generates *code* which allocates an array and then fills |
| * in each value. This is much less efficient than just embedding the bytes |
| * directly into the bytecode. To get around this, we need another |
| * work-around. String literals are embedded directly, so protoc actually |
| * generates a string literal corresponding to the bytes. The easiest way |
| * to do this is to use the ISO-8859-1 character set, which corresponds to |
| * the first 256 characters of the Unicode range. Protoc can then use |
| * good old CEscape to generate the string. |
| * <p> |
| * So we have a string literal which represents a set of bytes which |
| * represents another string. This function -- stringDefaultValue -- |
| * converts from the generated string to the string we actually want. The |
| * generated code calls this automatically. |
| */ |
| public static String stringDefaultValue(String bytes) { |
| return new String(bytes.getBytes(ISO_8859_1), InternalNano.UTF_8); |
| } |
| |
| /** |
| * Helper called by generated code to construct default values for bytes |
| * fields. |
| * <p> |
| * This is a lot like {@link #stringDefaultValue}, but for bytes fields. |
| * In this case we only need the second of the two hacks -- allowing us to |
| * embed raw bytes as a string literal with ISO-8859-1 encoding. |
| */ |
| public static byte[] bytesDefaultValue(String bytes) { |
| return bytes.getBytes(ISO_8859_1); |
| } |
| |
| /** |
| * Helper function to convert a string into UTF-8 while turning the |
| * UnsupportedEncodingException to a RuntimeException. |
| */ |
| public static byte[] copyFromUtf8(final String text) { |
| return text.getBytes(InternalNano.UTF_8); |
| } |
| |
| /** |
| * Checks repeated int field equality; null-value and 0-length fields are |
| * considered equal. |
| */ |
| public static boolean equals(int[] field1, int[] field2) { |
| if (field1 == null || field1.length == 0) { |
| return field2 == null || field2.length == 0; |
| } else { |
| return Arrays.equals(field1, field2); |
| } |
| } |
| |
| /** |
| * Checks repeated long field equality; null-value and 0-length fields are |
| * considered equal. |
| */ |
| public static boolean equals(long[] field1, long[] field2) { |
| if (field1 == null || field1.length == 0) { |
| return field2 == null || field2.length == 0; |
| } else { |
| return Arrays.equals(field1, field2); |
| } |
| } |
| |
| /** |
| * Checks repeated float field equality; null-value and 0-length fields are |
| * considered equal. |
| */ |
| public static boolean equals(float[] field1, float[] field2) { |
| if (field1 == null || field1.length == 0) { |
| return field2 == null || field2.length == 0; |
| } else { |
| return Arrays.equals(field1, field2); |
| } |
| } |
| |
| /** |
| * Checks repeated double field equality; null-value and 0-length fields are |
| * considered equal. |
| */ |
| public static boolean equals(double[] field1, double[] field2) { |
| if (field1 == null || field1.length == 0) { |
| return field2 == null || field2.length == 0; |
| } else { |
| return Arrays.equals(field1, field2); |
| } |
| } |
| |
| /** |
| * Checks repeated boolean field equality; null-value and 0-length fields are |
| * considered equal. |
| */ |
| public static boolean equals(boolean[] field1, boolean[] field2) { |
| if (field1 == null || field1.length == 0) { |
| return field2 == null || field2.length == 0; |
| } else { |
| return Arrays.equals(field1, field2); |
| } |
| } |
| |
| /** |
| * Checks repeated bytes field equality. Only non-null elements are tested. |
| * Returns true if the two fields have the same sequence of non-null |
| * elements. Null-value fields and fields of any length with only null |
| * elements are considered equal. |
| */ |
| public static boolean equals(byte[][] field1, byte[][] field2) { |
| int index1 = 0; |
| int length1 = field1 == null ? 0 : field1.length; |
| int index2 = 0; |
| int length2 = field2 == null ? 0 : field2.length; |
| while (true) { |
| while (index1 < length1 && field1[index1] == null) { |
| index1++; |
| } |
| while (index2 < length2 && field2[index2] == null) { |
| index2++; |
| } |
| boolean atEndOf1 = index1 >= length1; |
| boolean atEndOf2 = index2 >= length2; |
| if (atEndOf1 && atEndOf2) { |
| // no more non-null elements to test in both arrays |
| return true; |
| } else if (atEndOf1 != atEndOf2) { |
| // one of the arrays have extra non-null elements |
| return false; |
| } else if (!Arrays.equals(field1[index1], field2[index2])) { |
| // element mismatch |
| return false; |
| } |
| index1++; |
| index2++; |
| } |
| } |
| |
| /** |
| * Checks repeated string/message field equality. Only non-null elements are |
| * tested. Returns true if the two fields have the same sequence of non-null |
| * elements. Null-value fields and fields of any length with only null |
| * elements are considered equal. |
| */ |
| public static boolean equals(Object[] field1, Object[] field2) { |
| int index1 = 0; |
| int length1 = field1 == null ? 0 : field1.length; |
| int index2 = 0; |
| int length2 = field2 == null ? 0 : field2.length; |
| while (true) { |
| while (index1 < length1 && field1[index1] == null) { |
| index1++; |
| } |
| while (index2 < length2 && field2[index2] == null) { |
| index2++; |
| } |
| boolean atEndOf1 = index1 >= length1; |
| boolean atEndOf2 = index2 >= length2; |
| if (atEndOf1 && atEndOf2) { |
| // no more non-null elements to test in both arrays |
| return true; |
| } else if (atEndOf1 != atEndOf2) { |
| // one of the arrays have extra non-null elements |
| return false; |
| } else if (!field1[index1].equals(field2[index2])) { |
| // element mismatch |
| return false; |
| } |
| index1++; |
| index2++; |
| } |
| } |
| |
| /** |
| * Computes the hash code of a repeated int field. Null-value and 0-length |
| * fields have the same hash code. |
| */ |
| public static int hashCode(int[] field) { |
| return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); |
| } |
| |
| /** |
| * Computes the hash code of a repeated long field. Null-value and 0-length |
| * fields have the same hash code. |
| */ |
| public static int hashCode(long[] field) { |
| return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); |
| } |
| |
| /** |
| * Computes the hash code of a repeated float field. Null-value and 0-length |
| * fields have the same hash code. |
| */ |
| public static int hashCode(float[] field) { |
| return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); |
| } |
| |
| /** |
| * Computes the hash code of a repeated double field. Null-value and 0-length |
| * fields have the same hash code. |
| */ |
| public static int hashCode(double[] field) { |
| return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); |
| } |
| |
| /** |
| * Computes the hash code of a repeated boolean field. Null-value and 0-length |
| * fields have the same hash code. |
| */ |
| public static int hashCode(boolean[] field) { |
| return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); |
| } |
| |
| /** |
| * Computes the hash code of a repeated bytes field. Only the sequence of all |
| * non-null elements are used in the computation. Null-value fields and fields |
| * of any length with only null elements have the same hash code. |
| */ |
| public static int hashCode(byte[][] field) { |
| int result = 0; |
| for (int i = 0, size = field == null ? 0 : field.length; i < size; i++) { |
| byte[] element = field[i]; |
| if (element != null) { |
| result = 31 * result + Arrays.hashCode(element); |
| } |
| } |
| return result; |
| } |
| |
| /** |
| * Computes the hash code of a repeated string/message field. Only the |
| * sequence of all non-null elements are used in the computation. Null-value |
| * fields and fields of any length with only null elements have the same hash |
| * code. |
| */ |
| public static int hashCode(Object[] field) { |
| int result = 0; |
| for (int i = 0, size = field == null ? 0 : field.length; i < size; i++) { |
| Object element = field[i]; |
| if (element != null) { |
| result = 31 * result + element.hashCode(); |
| } |
| } |
| return result; |
| } |
| private static Object primitiveDefaultValue(int type) { |
| switch (type) { |
| case TYPE_BOOL: |
| return Boolean.FALSE; |
| case TYPE_BYTES: |
| return WireFormatNano.EMPTY_BYTES; |
| case TYPE_STRING: |
| return ""; |
| case TYPE_FLOAT: |
| return Float.valueOf(0); |
| case TYPE_DOUBLE: |
| return Double.valueOf(0); |
| case TYPE_ENUM: |
| case TYPE_FIXED32: |
| case TYPE_INT32: |
| case TYPE_UINT32: |
| case TYPE_SINT32: |
| case TYPE_SFIXED32: |
| return Integer.valueOf(0); |
| case TYPE_INT64: |
| case TYPE_UINT64: |
| case TYPE_SINT64: |
| case TYPE_FIXED64: |
| case TYPE_SFIXED64: |
| return Long.valueOf(0L); |
| case TYPE_MESSAGE: |
| case TYPE_GROUP: |
| default: |
| throw new IllegalArgumentException( |
| "Type: " + type + " is not a primitive type."); |
| } |
| } |
| |
| /** |
| * Merges the map entry into the map field. Note this is only supposed to |
| * be called by generated messages. |
| * |
| * @param map the map field; may be null, in which case a map will be |
| * instantiated using the {@link MapFactories.MapFactory} |
| * @param input the input byte buffer |
| * @param keyType key type, as defined in InternalNano.TYPE_* |
| * @param valueType value type, as defined in InternalNano.TYPE_* |
| * @param value an new instance of the value, if the value is a TYPE_MESSAGE; |
| * otherwise this parameter can be null and will be ignored. |
| * @param keyTag wire tag for the key |
| * @param valueTag wire tag for the value |
| * @return the map field |
| * @throws IOException |
| */ |
| @SuppressWarnings("unchecked") |
| public static final <K, V> Map<K, V> mergeMapEntry( |
| CodedInputByteBufferNano input, |
| Map<K, V> map, |
| MapFactory mapFactory, |
| int keyType, |
| int valueType, |
| V value, |
| int keyTag, |
| int valueTag) throws IOException { |
| map = mapFactory.forMap(map); |
| final int length = input.readRawVarint32(); |
| final int oldLimit = input.pushLimit(length); |
| K key = null; |
| while (true) { |
| int tag = input.readTag(); |
| if (tag == 0) { |
| break; |
| } |
| if (tag == keyTag) { |
| key = (K) input.readPrimitiveField(keyType); |
| } else if (tag == valueTag) { |
| if (valueType == TYPE_MESSAGE) { |
| input.readMessage((MessageNano) value); |
| } else { |
| value = (V) input.readPrimitiveField(valueType); |
| } |
| } else { |
| if (!input.skipField(tag)) { |
| break; |
| } |
| } |
| } |
| input.checkLastTagWas(0); |
| input.popLimit(oldLimit); |
| |
| if (key == null) { |
| // key can only be primitive types. |
| key = (K) primitiveDefaultValue(keyType); |
| } |
| |
| if (value == null) { |
| // message type value will be initialized by code-gen. |
| value = (V) primitiveDefaultValue(valueType); |
| } |
| |
| map.put(key, value); |
| return map; |
| } |
| |
| public static <K, V> void serializeMapField( |
| CodedOutputByteBufferNano output, |
| Map<K, V> map, int number, int keyType, int valueType) |
| throws IOException { |
| for (Entry<K, V> entry: map.entrySet()) { |
| K key = entry.getKey(); |
| V value = entry.getValue(); |
| if (key == null || value == null) { |
| throw new IllegalStateException( |
| "keys and values in maps cannot be null"); |
| } |
| int entrySize = |
| CodedOutputByteBufferNano.computeFieldSize(1, keyType, key) + |
| CodedOutputByteBufferNano.computeFieldSize(2, valueType, value); |
| output.writeTag(number, WireFormatNano.WIRETYPE_LENGTH_DELIMITED); |
| output.writeRawVarint32(entrySize); |
| output.writeField(1, keyType, key); |
| output.writeField(2, valueType, value); |
| } |
| } |
| |
| public static <K, V> int computeMapFieldSize( |
| Map<K, V> map, int number, int keyType, int valueType) { |
| int size = 0; |
| int tagSize = CodedOutputByteBufferNano.computeTagSize(number); |
| for (Entry<K, V> entry: map.entrySet()) { |
| K key = entry.getKey(); |
| V value = entry.getValue(); |
| if (key == null || value == null) { |
| throw new IllegalStateException( |
| "keys and values in maps cannot be null"); |
| } |
| int entrySize = |
| CodedOutputByteBufferNano.computeFieldSize(1, keyType, key) + |
| CodedOutputByteBufferNano.computeFieldSize(2, valueType, value); |
| size += tagSize + entrySize |
| + CodedOutputByteBufferNano.computeRawVarint32Size(entrySize); |
| } |
| return size; |
| } |
| |
| /** |
| * Checks whether two {@link Map} are equal. We don't use the default equals |
| * method of {@link Map} because it compares by identity not by content for |
| * byte arrays. |
| */ |
| public static <K, V> boolean equals(Map<K, V> a, Map<K, V> b) { |
| if (a == b) { |
| return true; |
| } |
| if (a == null) { |
| return b.size() == 0; |
| } |
| if (b == null) { |
| return a.size() == 0; |
| } |
| if (a.size() != b.size()) { |
| return false; |
| } |
| for (Entry<K, V> entry : a.entrySet()) { |
| if (!b.containsKey(entry.getKey())) { |
| return false; |
| } |
| if (!equalsMapValue(entry.getValue(), b.get(entry.getKey()))) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| private static boolean equalsMapValue(Object a, Object b) { |
| if (a == null || b == null) { |
| throw new IllegalStateException( |
| "keys and values in maps cannot be null"); |
| } |
| if (a instanceof byte[] && b instanceof byte[]) { |
| return Arrays.equals((byte[]) a, (byte[]) b); |
| } |
| return a.equals(b); |
| } |
| |
| public static <K, V> int hashCode(Map<K, V> map) { |
| if (map == null) { |
| return 0; |
| } |
| int result = 0; |
| for (Entry<K, V> entry : map.entrySet()) { |
| result += hashCodeForMap(entry.getKey()) |
| ^ hashCodeForMap(entry.getValue()); |
| } |
| return result; |
| } |
| |
| private static int hashCodeForMap(Object o) { |
| if (o instanceof byte[]) { |
| return Arrays.hashCode((byte[]) o); |
| } |
| return o.hashCode(); |
| } |
| |
| // This avoids having to make FieldArray public. |
| public static void cloneUnknownFieldData(ExtendableMessageNano original, |
| ExtendableMessageNano cloned) { |
| if (original.unknownFieldData != null) { |
| cloned.unknownFieldData = (FieldArray) original.unknownFieldData.clone(); |
| } |
| } |
| } |