| /* |
| * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. Oracle designates this |
| * particular file as subject to the "Classpath" exception as provided |
| * by Oracle in the LICENSE file that accompanied this code. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| */ |
| |
| package java.security.spec; |
| |
| import java.math.BigInteger; |
| |
| /** |
| * This class specifies an RSA private key, as defined in the |
| * <a href="https://tools.ietf.org/rfc/rfc8017.txt">PKCS#1 v2.2</a> standard, |
| * using the Chinese Remainder Theorem (CRT) information values for efficiency. |
| * |
| * @author Jan Luehe |
| * @since 1.2 |
| * |
| * |
| * @see java.security.Key |
| * @see java.security.KeyFactory |
| * @see KeySpec |
| * @see PKCS8EncodedKeySpec |
| * @see RSAPrivateKeySpec |
| * @see RSAPublicKeySpec |
| */ |
| |
| public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec { |
| |
| private final BigInteger publicExponent; |
| private final BigInteger primeP; |
| private final BigInteger primeQ; |
| private final BigInteger primeExponentP; |
| private final BigInteger primeExponentQ; |
| private final BigInteger crtCoefficient; |
| |
| /** |
| * Creates a new {@code RSAPrivateCrtKeySpec}. |
| * |
| * @param modulus the modulus n |
| * @param publicExponent the public exponent e |
| * @param privateExponent the private exponent d |
| * @param primeP the prime factor p of n |
| * @param primeQ the prime factor q of n |
| * @param primeExponentP this is d mod (p-1) |
| * @param primeExponentQ this is d mod (q-1) |
| * @param crtCoefficient the Chinese Remainder Theorem |
| * coefficient q-1 mod p |
| */ |
| public RSAPrivateCrtKeySpec(BigInteger modulus, |
| BigInteger publicExponent, |
| BigInteger privateExponent, |
| BigInteger primeP, |
| BigInteger primeQ, |
| BigInteger primeExponentP, |
| BigInteger primeExponentQ, |
| BigInteger crtCoefficient) { |
| this(modulus, publicExponent, privateExponent, primeP, primeQ, |
| primeExponentP, primeExponentQ, crtCoefficient, null); |
| } |
| |
| /** |
| * Creates a new {@code RSAPrivateCrtKeySpec} with additional |
| * key parameters. |
| * |
| * @param modulus the modulus n |
| * @param publicExponent the public exponent e |
| * @param privateExponent the private exponent d |
| * @param primeP the prime factor p of n |
| * @param primeQ the prime factor q of n |
| * @param primeExponentP this is d mod (p-1) |
| * @param primeExponentQ this is d mod (q-1) |
| * @param crtCoefficient the Chinese Remainder Theorem |
| * coefficient q-1 mod p |
| * @param keyParams the parameters associated with key |
| * @since 11 |
| */ |
| public RSAPrivateCrtKeySpec(BigInteger modulus, |
| BigInteger publicExponent, |
| BigInteger privateExponent, |
| BigInteger primeP, |
| BigInteger primeQ, |
| BigInteger primeExponentP, |
| BigInteger primeExponentQ, |
| BigInteger crtCoefficient, |
| AlgorithmParameterSpec keyParams) { |
| super(modulus, privateExponent, keyParams); |
| this.publicExponent = publicExponent; |
| this.primeP = primeP; |
| this.primeQ = primeQ; |
| this.primeExponentP = primeExponentP; |
| this.primeExponentQ = primeExponentQ; |
| this.crtCoefficient = crtCoefficient; |
| } |
| |
| /** |
| * Returns the public exponent. |
| * |
| * @return the public exponent |
| */ |
| public BigInteger getPublicExponent() { |
| return this.publicExponent; |
| } |
| |
| /** |
| * Returns the primeP. |
| * |
| * @return the primeP |
| */ |
| public BigInteger getPrimeP() { |
| return this.primeP; |
| } |
| |
| /** |
| * Returns the primeQ. |
| * |
| * @return the primeQ |
| */ |
| public BigInteger getPrimeQ() { |
| return this.primeQ; |
| } |
| |
| /** |
| * Returns the primeExponentP. |
| * |
| * @return the primeExponentP |
| */ |
| public BigInteger getPrimeExponentP() { |
| return this.primeExponentP; |
| } |
| |
| /** |
| * Returns the primeExponentQ. |
| * |
| * @return the primeExponentQ |
| */ |
| public BigInteger getPrimeExponentQ() { |
| return this.primeExponentQ; |
| } |
| |
| /** |
| * Returns the crtCoefficient. |
| * |
| * @return the crtCoefficient |
| */ |
| public BigInteger getCrtCoefficient() { |
| return this.crtCoefficient; |
| } |
| } |