| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. Oracle designates this |
| * particular file as subject to the "Classpath" exception as provided |
| * by Oracle in the LICENSE file that accompanied this code. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| */ |
| |
| package java.util; |
| |
| import android.compat.Compatibility; |
| import android.compat.annotation.ChangeId; |
| import android.compat.annotation.EnabledSince; |
| |
| import dalvik.annotation.compat.VersionCodes; |
| import dalvik.system.VMRuntime; |
| |
| import jdk.internal.util.ArraysSupport; |
| import jdk.internal.vm.annotation.IntrinsicCandidate; |
| |
| import java.io.Serializable; |
| import java.lang.reflect.Array; |
| import java.util.concurrent.ForkJoinPool; |
| import java.util.function.BinaryOperator; |
| import java.util.function.Consumer; |
| import java.util.function.DoubleBinaryOperator; |
| import java.util.function.IntBinaryOperator; |
| import java.util.function.IntFunction; |
| import java.util.function.IntToDoubleFunction; |
| import java.util.function.IntToLongFunction; |
| import java.util.function.IntUnaryOperator; |
| import java.util.function.LongBinaryOperator; |
| import java.util.function.UnaryOperator; |
| import java.util.stream.DoubleStream; |
| import java.util.stream.IntStream; |
| import java.util.stream.LongStream; |
| import java.util.stream.Stream; |
| import java.util.stream.StreamSupport; |
| |
| /** |
| * This class contains various methods for manipulating arrays (such as |
| * sorting and searching). This class also contains a static factory |
| * that allows arrays to be viewed as lists. |
| * |
| * <p>The methods in this class all throw a {@code NullPointerException}, |
| * if the specified array reference is null, except where noted. |
| * |
| * <p>The documentation for the methods contained in this class includes |
| * brief descriptions of the <i>implementations</i>. Such descriptions should |
| * be regarded as <i>implementation notes</i>, rather than parts of the |
| * <i>specification</i>. Implementors should feel free to substitute other |
| * algorithms, so long as the specification itself is adhered to. (For |
| * example, the algorithm used by {@code sort(Object[])} does not have to be |
| * a MergeSort, but it does have to be <i>stable</i>.) |
| * |
| * <p>This class is a member of the |
| * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> |
| * Java Collections Framework</a>. |
| * |
| * @author Josh Bloch |
| * @author Neal Gafter |
| * @author John Rose |
| * @since 1.2 |
| */ |
| public class Arrays { |
| |
| // Suppresses default constructor, ensuring non-instantiability. |
| private Arrays() {} |
| |
| /* |
| * Sorting methods. Note that all public "sort" methods take the |
| * same form: performing argument checks if necessary, and then |
| * expanding arguments into those required for the internal |
| * implementation methods residing in other package-private |
| * classes (except for legacyMergeSort, included in this class). |
| */ |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| */ |
| public static void sort(int[] a) { |
| DualPivotQuicksort.sort(a, 0, 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending order. The range |
| * to be sorted extends from the index {@code fromIndex}, inclusive, to |
| * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
| * the range to be sorted is empty. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| */ |
| public static void sort(int[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, 0, fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| */ |
| public static void sort(long[] a) { |
| DualPivotQuicksort.sort(a, 0, 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending order. The range |
| * to be sorted extends from the index {@code fromIndex}, inclusive, to |
| * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
| * the range to be sorted is empty. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| */ |
| public static void sort(long[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, 0, fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| */ |
| public static void sort(short[] a) { |
| DualPivotQuicksort.sort(a, 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending order. The range |
| * to be sorted extends from the index {@code fromIndex}, inclusive, to |
| * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
| * the range to be sorted is empty. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| */ |
| public static void sort(short[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| */ |
| public static void sort(char[] a) { |
| DualPivotQuicksort.sort(a, 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending order. The range |
| * to be sorted extends from the index {@code fromIndex}, inclusive, to |
| * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
| * the range to be sorted is empty. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| */ |
| public static void sort(char[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| */ |
| public static void sort(byte[] a) { |
| DualPivotQuicksort.sort(a, 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending order. The range |
| * to be sorted extends from the index {@code fromIndex}, inclusive, to |
| * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
| * the range to be sorted is empty. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| */ |
| public static void sort(byte[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * <p>The {@code <} relation does not provide a total order on all float |
| * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} |
| * value compares neither less than, greater than, nor equal to any value, |
| * even itself. This method uses the total order imposed by the method |
| * {@link Float#compareTo}: {@code -0.0f} is treated as less than value |
| * {@code 0.0f} and {@code Float.NaN} is considered greater than any |
| * other value and all {@code Float.NaN} values are considered equal. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| */ |
| public static void sort(float[] a) { |
| DualPivotQuicksort.sort(a, 0, 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending order. The range |
| * to be sorted extends from the index {@code fromIndex}, inclusive, to |
| * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
| * the range to be sorted is empty. |
| * |
| * <p>The {@code <} relation does not provide a total order on all float |
| * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} |
| * value compares neither less than, greater than, nor equal to any value, |
| * even itself. This method uses the total order imposed by the method |
| * {@link Float#compareTo}: {@code -0.0f} is treated as less than value |
| * {@code 0.0f} and {@code Float.NaN} is considered greater than any |
| * other value and all {@code Float.NaN} values are considered equal. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| */ |
| public static void sort(float[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, 0, fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * <p>The {@code <} relation does not provide a total order on all double |
| * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} |
| * value compares neither less than, greater than, nor equal to any value, |
| * even itself. This method uses the total order imposed by the method |
| * {@link Double#compareTo}: {@code -0.0d} is treated as less than value |
| * {@code 0.0d} and {@code Double.NaN} is considered greater than any |
| * other value and all {@code Double.NaN} values are considered equal. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| */ |
| public static void sort(double[] a) { |
| DualPivotQuicksort.sort(a, 0, 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending order. The range |
| * to be sorted extends from the index {@code fromIndex}, inclusive, to |
| * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex}, |
| * the range to be sorted is empty. |
| * |
| * <p>The {@code <} relation does not provide a total order on all double |
| * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} |
| * value compares neither less than, greater than, nor equal to any value, |
| * even itself. This method uses the total order imposed by the method |
| * {@link Double#compareTo}: {@code -0.0d} is treated as less than value |
| * {@code 0.0d} and {@code Double.NaN} is considered greater than any |
| * other value and all {@code Double.NaN} values are considered equal. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort |
| * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| */ |
| public static void sort(double[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, 0, fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(byte[] a) { |
| DualPivotQuicksort.sort(a, 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending numerical order. |
| * The range to be sorted extends from the index {@code fromIndex}, |
| * inclusive, to the index {@code toIndex}, exclusive. If |
| * {@code fromIndex == toIndex}, the range to be sorted is empty. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(byte[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(char[] a) { |
| DualPivotQuicksort.sort(a, 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending numerical order. |
| * The range to be sorted extends from the index {@code fromIndex}, |
| * inclusive, to the index {@code toIndex}, exclusive. If |
| * {@code fromIndex == toIndex}, the range to be sorted is empty. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(char[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(short[] a) { |
| DualPivotQuicksort.sort(a, 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending numerical order. |
| * The range to be sorted extends from the index {@code fromIndex}, |
| * inclusive, to the index {@code toIndex}, exclusive. If |
| * {@code fromIndex == toIndex}, the range to be sorted is empty. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(short[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(int[] a) { |
| DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending numerical order. |
| * The range to be sorted extends from the index {@code fromIndex}, |
| * inclusive, to the index {@code toIndex}, exclusive. If |
| * {@code fromIndex == toIndex}, the range to be sorted is empty. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(int[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(long[] a) { |
| DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending numerical order. |
| * The range to be sorted extends from the index {@code fromIndex}, |
| * inclusive, to the index {@code toIndex}, exclusive. If |
| * {@code fromIndex == toIndex}, the range to be sorted is empty. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(long[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * <p>The {@code <} relation does not provide a total order on all float |
| * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} |
| * value compares neither less than, greater than, nor equal to any value, |
| * even itself. This method uses the total order imposed by the method |
| * {@link Float#compareTo}: {@code -0.0f} is treated as less than value |
| * {@code 0.0f} and {@code Float.NaN} is considered greater than any |
| * other value and all {@code Float.NaN} values are considered equal. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(float[] a) { |
| DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending numerical order. |
| * The range to be sorted extends from the index {@code fromIndex}, |
| * inclusive, to the index {@code toIndex}, exclusive. If |
| * {@code fromIndex == toIndex}, the range to be sorted is empty. |
| * |
| * <p>The {@code <} relation does not provide a total order on all float |
| * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN} |
| * value compares neither less than, greater than, nor equal to any value, |
| * even itself. This method uses the total order imposed by the method |
| * {@link Float#compareTo}: {@code -0.0f} is treated as less than value |
| * {@code 0.0f} and {@code Float.NaN} is considered greater than any |
| * other value and all {@code Float.NaN} values are considered equal. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(float[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), fromIndex, toIndex); |
| } |
| |
| /** |
| * Sorts the specified array into ascending numerical order. |
| * |
| * <p>The {@code <} relation does not provide a total order on all double |
| * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} |
| * value compares neither less than, greater than, nor equal to any value, |
| * even itself. This method uses the total order imposed by the method |
| * {@link Double#compareTo}: {@code -0.0d} is treated as less than value |
| * {@code 0.0d} and {@code Double.NaN} is considered greater than any |
| * other value and all {@code Double.NaN} values are considered equal. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(double[] a) { |
| DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), 0, a.length); |
| } |
| |
| /** |
| * Sorts the specified range of the array into ascending numerical order. |
| * The range to be sorted extends from the index {@code fromIndex}, |
| * inclusive, to the index {@code toIndex}, exclusive. If |
| * {@code fromIndex == toIndex}, the range to be sorted is empty. |
| * |
| * <p>The {@code <} relation does not provide a total order on all double |
| * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN} |
| * value compares neither less than, greater than, nor equal to any value, |
| * even itself. This method uses the total order imposed by the method |
| * {@link Double#compareTo}: {@code -0.0d} is treated as less than value |
| * {@code 0.0d} and {@code Double.NaN} is considered greater than any |
| * other value and all {@code Double.NaN} values are considered equal. |
| * |
| * @implNote The sorting algorithm is a Dual-Pivot Quicksort by |
| * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm |
| * offers O(n log(n)) performance on all data sets, and is typically |
| * faster than traditional (one-pivot) Quicksort implementations. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element, inclusive, to be sorted |
| * @param toIndex the index of the last element, exclusive, to be sorted |
| * |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > a.length} |
| * |
| * @since 1.8 |
| */ |
| public static void parallelSort(double[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| DualPivotQuicksort.sort(a, ForkJoinPool.getCommonPoolParallelism(), fromIndex, toIndex); |
| } |
| |
| /** |
| * Checks that {@code fromIndex} and {@code toIndex} are in |
| * the range and throws an exception if they aren't. |
| */ |
| static void rangeCheck(int arrayLength, int fromIndex, int toIndex) { |
| if (fromIndex > toIndex) { |
| throw new IllegalArgumentException( |
| "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); |
| } |
| if (fromIndex < 0) { |
| throw new ArrayIndexOutOfBoundsException(fromIndex); |
| } |
| if (toIndex > arrayLength) { |
| throw new ArrayIndexOutOfBoundsException(toIndex); |
| } |
| } |
| |
| /** |
| * A comparator that implements the natural ordering of a group of |
| * mutually comparable elements. May be used when a supplied |
| * comparator is null. To simplify code-sharing within underlying |
| * implementations, the compare method only declares type Object |
| * for its second argument. |
| * |
| * Arrays class implementor's note: It is an empirical matter |
| * whether ComparableTimSort offers any performance benefit over |
| * TimSort used with this comparator. If not, you are better off |
| * deleting or bypassing ComparableTimSort. There is currently no |
| * empirical case for separating them for parallel sorting, so all |
| * public Object parallelSort methods use the same comparator |
| * based implementation. |
| */ |
| static final class NaturalOrder implements Comparator<Object> { |
| @SuppressWarnings("unchecked") |
| public int compare(Object first, Object second) { |
| return ((Comparable<Object>)first).compareTo(second); |
| } |
| static final NaturalOrder INSTANCE = new NaturalOrder(); |
| } |
| |
| /** |
| * The minimum array length below which a parallel sorting |
| * algorithm will not further partition the sorting task. Using |
| * smaller sizes typically results in memory contention across |
| * tasks that makes parallel speedups unlikely. |
| * |
| * @hide |
| */ |
| // Android-changed: Make MIN_ARRAY_SORT_GRAN public and @hide (used by harmony |
| // ArraysTest). |
| public static final int MIN_ARRAY_SORT_GRAN = 1 << 13; |
| |
| /** |
| * Sorts the specified array of objects into ascending order, according |
| * to the {@linkplain Comparable natural ordering} of its elements. |
| * All elements in the array must implement the {@link Comparable} |
| * interface. Furthermore, all elements in the array must be |
| * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} must |
| * not throw a {@code ClassCastException} for any elements {@code e1} |
| * and {@code e2} in the array). |
| * |
| * <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
| * not be reordered as a result of the sort. |
| * |
| * @implNote The sorting algorithm is a parallel sort-merge that breaks the |
| * array into sub-arrays that are themselves sorted and then merged. When |
| * the sub-array length reaches a minimum granularity, the sub-array is |
| * sorted using the appropriate {@link Arrays#sort(Object[]) Arrays.sort} |
| * method. If the length of the specified array is less than the minimum |
| * granularity, then it is sorted using the appropriate {@link |
| * Arrays#sort(Object[]) Arrays.sort} method. The algorithm requires a |
| * working space no greater than the size of the original array. The |
| * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to |
| * execute any parallel tasks. |
| * |
| * @param <T> the class of the objects to be sorted |
| * @param a the array to be sorted |
| * |
| * @throws ClassCastException if the array contains elements that are not |
| * <i>mutually comparable</i> (for example, strings and integers) |
| * @throws IllegalArgumentException (optional) if the natural |
| * ordering of the array elements is found to violate the |
| * {@link Comparable} contract |
| * |
| * @since 1.8 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T extends Comparable<? super T>> void parallelSort(T[] a) { |
| int n = a.length, p, g; |
| if (n <= MIN_ARRAY_SORT_GRAN || |
| (p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
| TimSort.sort(a, 0, n, NaturalOrder.INSTANCE, null, 0, 0); |
| else |
| new ArraysParallelSortHelpers.FJObject.Sorter<> |
| (null, a, |
| (T[])Array.newInstance(a.getClass().getComponentType(), n), |
| 0, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
| MIN_ARRAY_SORT_GRAN : g, NaturalOrder.INSTANCE).invoke(); |
| } |
| |
| /** |
| * Sorts the specified range of the specified array of objects into |
| * ascending order, according to the |
| * {@linkplain Comparable natural ordering} of its |
| * elements. The range to be sorted extends from index |
| * {@code fromIndex}, inclusive, to index {@code toIndex}, exclusive. |
| * (If {@code fromIndex==toIndex}, the range to be sorted is empty.) All |
| * elements in this range must implement the {@link Comparable} |
| * interface. Furthermore, all elements in this range must be <i>mutually |
| * comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a |
| * {@code ClassCastException} for any elements {@code e1} and |
| * {@code e2} in the array). |
| * |
| * <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
| * not be reordered as a result of the sort. |
| * |
| * @implNote The sorting algorithm is a parallel sort-merge that breaks the |
| * array into sub-arrays that are themselves sorted and then merged. When |
| * the sub-array length reaches a minimum granularity, the sub-array is |
| * sorted using the appropriate {@link Arrays#sort(Object[]) Arrays.sort} |
| * method. If the length of the specified array is less than the minimum |
| * granularity, then it is sorted using the appropriate {@link |
| * Arrays#sort(Object[]) Arrays.sort} method. The algorithm requires a working |
| * space no greater than the size of the specified range of the original |
| * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is |
| * used to execute any parallel tasks. |
| * |
| * @param <T> the class of the objects to be sorted |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element (inclusive) to be |
| * sorted |
| * @param toIndex the index of the last element (exclusive) to be sorted |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} or |
| * (optional) if the natural ordering of the array elements is |
| * found to violate the {@link Comparable} contract |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| * @throws ClassCastException if the array contains elements that are |
| * not <i>mutually comparable</i> (for example, strings and |
| * integers). |
| * |
| * @since 1.8 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T extends Comparable<? super T>> |
| void parallelSort(T[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| int n = toIndex - fromIndex, p, g; |
| if (n <= MIN_ARRAY_SORT_GRAN || |
| (p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
| TimSort.sort(a, fromIndex, toIndex, NaturalOrder.INSTANCE, null, 0, 0); |
| else |
| new ArraysParallelSortHelpers.FJObject.Sorter<> |
| (null, a, |
| (T[])Array.newInstance(a.getClass().getComponentType(), n), |
| fromIndex, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
| MIN_ARRAY_SORT_GRAN : g, NaturalOrder.INSTANCE).invoke(); |
| } |
| |
| /** |
| * Sorts the specified array of objects according to the order induced by |
| * the specified comparator. All elements in the array must be |
| * <i>mutually comparable</i> by the specified comparator (that is, |
| * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException} |
| * for any elements {@code e1} and {@code e2} in the array). |
| * |
| * <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
| * not be reordered as a result of the sort. |
| * |
| * @implNote The sorting algorithm is a parallel sort-merge that breaks the |
| * array into sub-arrays that are themselves sorted and then merged. When |
| * the sub-array length reaches a minimum granularity, the sub-array is |
| * sorted using the appropriate {@link Arrays#sort(Object[]) Arrays.sort} |
| * method. If the length of the specified array is less than the minimum |
| * granularity, then it is sorted using the appropriate {@link |
| * Arrays#sort(Object[]) Arrays.sort} method. The algorithm requires a |
| * working space no greater than the size of the original array. The |
| * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to |
| * execute any parallel tasks. |
| * |
| * @param <T> the class of the objects to be sorted |
| * @param a the array to be sorted |
| * @param cmp the comparator to determine the order of the array. A |
| * {@code null} value indicates that the elements' |
| * {@linkplain Comparable natural ordering} should be used. |
| * @throws ClassCastException if the array contains elements that are |
| * not <i>mutually comparable</i> using the specified comparator |
| * @throws IllegalArgumentException (optional) if the comparator is |
| * found to violate the {@link java.util.Comparator} contract |
| * |
| * @since 1.8 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> void parallelSort(T[] a, Comparator<? super T> cmp) { |
| if (cmp == null) |
| cmp = NaturalOrder.INSTANCE; |
| int n = a.length, p, g; |
| if (n <= MIN_ARRAY_SORT_GRAN || |
| (p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
| TimSort.sort(a, 0, n, cmp, null, 0, 0); |
| else |
| new ArraysParallelSortHelpers.FJObject.Sorter<> |
| (null, a, |
| (T[])Array.newInstance(a.getClass().getComponentType(), n), |
| 0, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
| MIN_ARRAY_SORT_GRAN : g, cmp).invoke(); |
| } |
| |
| /** |
| * Sorts the specified range of the specified array of objects according |
| * to the order induced by the specified comparator. The range to be |
| * sorted extends from index {@code fromIndex}, inclusive, to index |
| * {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
| * range to be sorted is empty.) All elements in the range must be |
| * <i>mutually comparable</i> by the specified comparator (that is, |
| * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException} |
| * for any elements {@code e1} and {@code e2} in the range). |
| * |
| * <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
| * not be reordered as a result of the sort. |
| * |
| * @implNote The sorting algorithm is a parallel sort-merge that breaks the |
| * array into sub-arrays that are themselves sorted and then merged. When |
| * the sub-array length reaches a minimum granularity, the sub-array is |
| * sorted using the appropriate {@link Arrays#sort(Object[]) Arrays.sort} |
| * method. If the length of the specified array is less than the minimum |
| * granularity, then it is sorted using the appropriate {@link |
| * Arrays#sort(Object[]) Arrays.sort} method. The algorithm requires a working |
| * space no greater than the size of the specified range of the original |
| * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is |
| * used to execute any parallel tasks. |
| * |
| * @param <T> the class of the objects to be sorted |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element (inclusive) to be |
| * sorted |
| * @param toIndex the index of the last element (exclusive) to be sorted |
| * @param cmp the comparator to determine the order of the array. A |
| * {@code null} value indicates that the elements' |
| * {@linkplain Comparable natural ordering} should be used. |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} or |
| * (optional) if the natural ordering of the array elements is |
| * found to violate the {@link Comparable} contract |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| * @throws ClassCastException if the array contains elements that are |
| * not <i>mutually comparable</i> (for example, strings and |
| * integers). |
| * |
| * @since 1.8 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> void parallelSort(T[] a, int fromIndex, int toIndex, |
| Comparator<? super T> cmp) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| if (cmp == null) |
| cmp = NaturalOrder.INSTANCE; |
| int n = toIndex - fromIndex, p, g; |
| if (n <= MIN_ARRAY_SORT_GRAN || |
| (p = ForkJoinPool.getCommonPoolParallelism()) == 1) |
| TimSort.sort(a, fromIndex, toIndex, cmp, null, 0, 0); |
| else |
| new ArraysParallelSortHelpers.FJObject.Sorter<> |
| (null, a, |
| (T[])Array.newInstance(a.getClass().getComponentType(), n), |
| fromIndex, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ? |
| MIN_ARRAY_SORT_GRAN : g, cmp).invoke(); |
| } |
| |
| /* |
| * Sorting of complex type arrays. |
| */ |
| |
| // BEGIN Android-removed: LegacyMergeSort class (unused on Android). |
| /* |
| /** |
| * Old merge sort implementation can be selected (for |
| * compatibility with broken comparators) using a system property. |
| * Cannot be a static boolean in the enclosing class due to |
| * circular dependencies. To be removed in a future release. |
| * |
| static final class LegacyMergeSort { |
| @SuppressWarnings("removal") |
| private static final boolean userRequested = |
| java.security.AccessController.doPrivileged( |
| new sun.security.action.GetBooleanAction( |
| "java.util.Arrays.useLegacyMergeSort")).booleanValue(); |
| } |
| */ |
| // END Android-removed: LegacyMergeSort class (unused on Android). |
| |
| /** |
| * Sorts the specified array of objects into ascending order, according |
| * to the {@linkplain Comparable natural ordering} of its elements. |
| * All elements in the array must implement the {@link Comparable} |
| * interface. Furthermore, all elements in the array must be |
| * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} must |
| * not throw a {@code ClassCastException} for any elements {@code e1} |
| * and {@code e2} in the array). |
| * |
| * <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
| * not be reordered as a result of the sort. |
| * |
| * <p>Implementation note: This implementation is a stable, adaptive, |
| * iterative mergesort that requires far fewer than n lg(n) comparisons |
| * when the input array is partially sorted, while offering the |
| * performance of a traditional mergesort when the input array is |
| * randomly ordered. If the input array is nearly sorted, the |
| * implementation requires approximately n comparisons. Temporary |
| * storage requirements vary from a small constant for nearly sorted |
| * input arrays to n/2 object references for randomly ordered input |
| * arrays. |
| * |
| * <p>The implementation takes equal advantage of ascending and |
| * descending order in its input array, and can take advantage of |
| * ascending and descending order in different parts of the same |
| * input array. It is well-suited to merging two or more sorted arrays: |
| * simply concatenate the arrays and sort the resulting array. |
| * |
| * <p>The implementation was adapted from Tim Peters's list sort for Python |
| * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt"> |
| * TimSort</a>). It uses techniques from Peter McIlroy's "Optimistic |
| * Sorting and Information Theoretic Complexity", in Proceedings of the |
| * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, |
| * January 1993. |
| * |
| * @param a the array to be sorted |
| * @throws ClassCastException if the array contains elements that are not |
| * <i>mutually comparable</i> (for example, strings and integers) |
| * @throws IllegalArgumentException (optional) if the natural |
| * ordering of the array elements is found to violate the |
| * {@link Comparable} contract |
| */ |
| public static void sort(Object[] a) { |
| // BEGIN Android-removed: LegacyMergeSort support. |
| /* |
| if (LegacyMergeSort.userRequested) |
| legacyMergeSort(a); |
| else |
| */ |
| // END Android-removed: LegacyMergeSort support. |
| ComparableTimSort.sort(a, 0, a.length, null, 0, 0); |
| } |
| |
| // BEGIN Android-removed: legacyMergeSort() (unused on Android). |
| /* |
| /** To be removed in a future release. |
| private static void legacyMergeSort(Object[] a) { |
| Object[] aux = a.clone(); |
| mergeSort(aux, a, 0, a.length, 0); |
| } |
| */ |
| // END Android-removed: legacyMergeSort() (unused on Android). |
| |
| /** |
| * Sorts the specified range of the specified array of objects into |
| * ascending order, according to the |
| * {@linkplain Comparable natural ordering} of its |
| * elements. The range to be sorted extends from index |
| * {@code fromIndex}, inclusive, to index {@code toIndex}, exclusive. |
| * (If {@code fromIndex==toIndex}, the range to be sorted is empty.) All |
| * elements in this range must implement the {@link Comparable} |
| * interface. Furthermore, all elements in this range must be <i>mutually |
| * comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a |
| * {@code ClassCastException} for any elements {@code e1} and |
| * {@code e2} in the array). |
| * |
| * <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
| * not be reordered as a result of the sort. |
| * |
| * <p>Implementation note: This implementation is a stable, adaptive, |
| * iterative mergesort that requires far fewer than n lg(n) comparisons |
| * when the input array is partially sorted, while offering the |
| * performance of a traditional mergesort when the input array is |
| * randomly ordered. If the input array is nearly sorted, the |
| * implementation requires approximately n comparisons. Temporary |
| * storage requirements vary from a small constant for nearly sorted |
| * input arrays to n/2 object references for randomly ordered input |
| * arrays. |
| * |
| * <p>The implementation takes equal advantage of ascending and |
| * descending order in its input array, and can take advantage of |
| * ascending and descending order in different parts of the same |
| * input array. It is well-suited to merging two or more sorted arrays: |
| * simply concatenate the arrays and sort the resulting array. |
| * |
| * <p>The implementation was adapted from Tim Peters's list sort for Python |
| * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt"> |
| * TimSort</a>). It uses techniques from Peter McIlroy's "Optimistic |
| * Sorting and Information Theoretic Complexity", in Proceedings of the |
| * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, |
| * January 1993. |
| * |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element (inclusive) to be |
| * sorted |
| * @param toIndex the index of the last element (exclusive) to be sorted |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} or |
| * (optional) if the natural ordering of the array elements is |
| * found to violate the {@link Comparable} contract |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| * @throws ClassCastException if the array contains elements that are |
| * not <i>mutually comparable</i> (for example, strings and |
| * integers). |
| */ |
| public static void sort(Object[] a, int fromIndex, int toIndex) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| // BEGIN Android-removed: LegacyMergeSort support. |
| /* |
| if (LegacyMergeSort.userRequested) |
| legacyMergeSort(a, fromIndex, toIndex); |
| else |
| */ |
| // END Android-removed: LegacyMergeSort support. |
| ComparableTimSort.sort(a, fromIndex, toIndex, null, 0, 0); |
| } |
| |
| // BEGIN Android-removed: legacyMergeSort() (unused on Android). |
| /* |
| /** To be removed in a future release. * |
| private static void legacyMergeSort(Object[] a, |
| int fromIndex, int toIndex) { |
| Object[] aux = copyOfRange(a, fromIndex, toIndex); |
| mergeSort(aux, a, fromIndex, toIndex, -fromIndex); |
| } |
| */ |
| // END Android-removed: legacyMergeSort() (unused on Android). |
| |
| |
| /** |
| * Tuning parameter: list size at or below which insertion sort will be |
| * used in preference to mergesort. |
| * To be removed in a future release. |
| */ |
| private static final int INSERTIONSORT_THRESHOLD = 7; |
| |
| /** |
| * Src is the source array that starts at index 0 |
| * Dest is the (possibly larger) array destination with a possible offset |
| * low is the index in dest to start sorting |
| * high is the end index in dest to end sorting |
| * off is the offset to generate corresponding low, high in src |
| * To be removed in a future release. |
| */ |
| @SuppressWarnings({"unchecked", "rawtypes"}) |
| private static void mergeSort(Object[] src, |
| Object[] dest, |
| int low, |
| int high, |
| int off) { |
| int length = high - low; |
| |
| // Insertion sort on smallest arrays |
| if (length < INSERTIONSORT_THRESHOLD) { |
| for (int i=low; i<high; i++) |
| for (int j=i; j>low && |
| ((Comparable) dest[j-1]).compareTo(dest[j])>0; j--) |
| swap(dest, j, j-1); |
| return; |
| } |
| |
| // Recursively sort halves of dest into src |
| int destLow = low; |
| int destHigh = high; |
| low += off; |
| high += off; |
| int mid = (low + high) >>> 1; |
| mergeSort(dest, src, low, mid, -off); |
| mergeSort(dest, src, mid, high, -off); |
| |
| // If list is already sorted, just copy from src to dest. This is an |
| // optimization that results in faster sorts for nearly ordered lists. |
| if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) { |
| System.arraycopy(src, low, dest, destLow, length); |
| return; |
| } |
| |
| // Merge sorted halves (now in src) into dest |
| for(int i = destLow, p = low, q = mid; i < destHigh; i++) { |
| if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0) |
| dest[i] = src[p++]; |
| else |
| dest[i] = src[q++]; |
| } |
| } |
| |
| /** |
| * Swaps x[a] with x[b]. |
| */ |
| private static void swap(Object[] x, int a, int b) { |
| Object t = x[a]; |
| x[a] = x[b]; |
| x[b] = t; |
| } |
| |
| /** |
| * Sorts the specified array of objects according to the order induced by |
| * the specified comparator. All elements in the array must be |
| * <i>mutually comparable</i> by the specified comparator (that is, |
| * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException} |
| * for any elements {@code e1} and {@code e2} in the array). |
| * |
| * <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
| * not be reordered as a result of the sort. |
| * |
| * <p>Implementation note: This implementation is a stable, adaptive, |
| * iterative mergesort that requires far fewer than n lg(n) comparisons |
| * when the input array is partially sorted, while offering the |
| * performance of a traditional mergesort when the input array is |
| * randomly ordered. If the input array is nearly sorted, the |
| * implementation requires approximately n comparisons. Temporary |
| * storage requirements vary from a small constant for nearly sorted |
| * input arrays to n/2 object references for randomly ordered input |
| * arrays. |
| * |
| * <p>The implementation takes equal advantage of ascending and |
| * descending order in its input array, and can take advantage of |
| * ascending and descending order in different parts of the same |
| * input array. It is well-suited to merging two or more sorted arrays: |
| * simply concatenate the arrays and sort the resulting array. |
| * |
| * <p>The implementation was adapted from Tim Peters's list sort for Python |
| * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt"> |
| * TimSort</a>). It uses techniques from Peter McIlroy's "Optimistic |
| * Sorting and Information Theoretic Complexity", in Proceedings of the |
| * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, |
| * January 1993. |
| * |
| * @param <T> the class of the objects to be sorted |
| * @param a the array to be sorted |
| * @param c the comparator to determine the order of the array. A |
| * {@code null} value indicates that the elements' |
| * {@linkplain Comparable natural ordering} should be used. |
| * @throws ClassCastException if the array contains elements that are |
| * not <i>mutually comparable</i> using the specified comparator |
| * @throws IllegalArgumentException (optional) if the comparator is |
| * found to violate the {@link Comparator} contract |
| */ |
| public static <T> void sort(T[] a, Comparator<? super T> c) { |
| if (c == null) { |
| sort(a); |
| } else { |
| // BEGIN Android-removed: LegacyMergeSort support. |
| /* |
| if (LegacyMergeSort.userRequested) |
| legacyMergeSort(a, c); |
| else |
| */ |
| // END Android-removed: LegacyMergeSort support. |
| TimSort.sort(a, 0, a.length, c, null, 0, 0); |
| } |
| } |
| |
| // BEGIN Android-removed: legacyMergeSort() (unused on Android). |
| /** To be removed in a future release. * |
| private static <T> void legacyMergeSort(T[] a, Comparator<? super T> c) { |
| T[] aux = a.clone(); |
| if (c==null) |
| mergeSort(aux, a, 0, a.length, 0); |
| else |
| mergeSort(aux, a, 0, a.length, 0, c); |
| } |
| */ |
| // END Android-removed: legacyMergeSort() (unused on Android). |
| |
| /** |
| * Sorts the specified range of the specified array of objects according |
| * to the order induced by the specified comparator. The range to be |
| * sorted extends from index {@code fromIndex}, inclusive, to index |
| * {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
| * range to be sorted is empty.) All elements in the range must be |
| * <i>mutually comparable</i> by the specified comparator (that is, |
| * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException} |
| * for any elements {@code e1} and {@code e2} in the range). |
| * |
| * <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
| * not be reordered as a result of the sort. |
| * |
| * <p>Implementation note: This implementation is a stable, adaptive, |
| * iterative mergesort that requires far fewer than n lg(n) comparisons |
| * when the input array is partially sorted, while offering the |
| * performance of a traditional mergesort when the input array is |
| * randomly ordered. If the input array is nearly sorted, the |
| * implementation requires approximately n comparisons. Temporary |
| * storage requirements vary from a small constant for nearly sorted |
| * input arrays to n/2 object references for randomly ordered input |
| * arrays. |
| * |
| * <p>The implementation takes equal advantage of ascending and |
| * descending order in its input array, and can take advantage of |
| * ascending and descending order in different parts of the same |
| * input array. It is well-suited to merging two or more sorted arrays: |
| * simply concatenate the arrays and sort the resulting array. |
| * |
| * <p>The implementation was adapted from Tim Peters's list sort for Python |
| * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt"> |
| * TimSort</a>). It uses techniques from Peter McIlroy's "Optimistic |
| * Sorting and Information Theoretic Complexity", in Proceedings of the |
| * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474, |
| * January 1993. |
| * |
| * @param <T> the class of the objects to be sorted |
| * @param a the array to be sorted |
| * @param fromIndex the index of the first element (inclusive) to be |
| * sorted |
| * @param toIndex the index of the last element (exclusive) to be sorted |
| * @param c the comparator to determine the order of the array. A |
| * {@code null} value indicates that the elements' |
| * {@linkplain Comparable natural ordering} should be used. |
| * @throws ClassCastException if the array contains elements that are not |
| * <i>mutually comparable</i> using the specified comparator. |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} or |
| * (optional) if the comparator is found to violate the |
| * {@link Comparator} contract |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| */ |
| public static <T> void sort(T[] a, int fromIndex, int toIndex, |
| Comparator<? super T> c) { |
| if (c == null) { |
| sort(a, fromIndex, toIndex); |
| } else { |
| rangeCheck(a.length, fromIndex, toIndex); |
| // BEGIN Android-removed: LegacyMergeSort support. |
| /* |
| if (LegacyMergeSort.userRequested) |
| legacyMergeSort(a, fromIndex, toIndex, c); |
| else |
| */ |
| // END Android-removed: LegacyMergeSort support. |
| TimSort.sort(a, fromIndex, toIndex, c, null, 0, 0); |
| } |
| } |
| |
| // BEGIN Android-removed: legacyMergeSort() and mergeSort() (unused on Android). |
| /* |
| /** To be removed in a future release. * |
| private static <T> void legacyMergeSort(T[] a, int fromIndex, int toIndex, |
| Comparator<? super T> c) { |
| T[] aux = copyOfRange(a, fromIndex, toIndex); |
| if (c==null) |
| mergeSort(aux, a, fromIndex, toIndex, -fromIndex); |
| else |
| mergeSort(aux, a, fromIndex, toIndex, -fromIndex, c); |
| } |
| |
| /** |
| * Src is the source array that starts at index 0 |
| * Dest is the (possibly larger) array destination with a possible offset |
| * low is the index in dest to start sorting |
| * high is the end index in dest to end sorting |
| * off is the offset into src corresponding to low in dest |
| * To be removed in a future release. |
| * |
| @SuppressWarnings({"rawtypes", "unchecked"}) |
| private static void mergeSort(Object[] src, |
| Object[] dest, |
| int low, int high, int off, |
| Comparator c) { |
| int length = high - low; |
| |
| // Insertion sort on smallest arrays |
| if (length < INSERTIONSORT_THRESHOLD) { |
| for (int i=low; i<high; i++) |
| for (int j=i; j>low && c.compare(dest[j-1], dest[j])>0; j--) |
| swap(dest, j, j-1); |
| return; |
| } |
| |
| // Recursively sort halves of dest into src |
| int destLow = low; |
| int destHigh = high; |
| low += off; |
| high += off; |
| int mid = (low + high) >>> 1; |
| mergeSort(dest, src, low, mid, -off, c); |
| mergeSort(dest, src, mid, high, -off, c); |
| |
| // If list is already sorted, just copy from src to dest. This is an |
| // optimization that results in faster sorts for nearly ordered lists. |
| if (c.compare(src[mid-1], src[mid]) <= 0) { |
| System.arraycopy(src, low, dest, destLow, length); |
| return; |
| } |
| |
| // Merge sorted halves (now in src) into dest |
| for(int i = destLow, p = low, q = mid; i < destHigh; i++) { |
| if (q >= high || p < mid && c.compare(src[p], src[q]) <= 0) |
| dest[i] = src[p++]; |
| else |
| dest[i] = src[q++]; |
| } |
| } |
| */ |
| // END Android-removed: legacyMergeSort() and mergeSort() (unused on Android). |
| |
| // Parallel prefix |
| |
| /** |
| * Cumulates, in parallel, each element of the given array in place, |
| * using the supplied function. For example if the array initially |
| * holds {@code [2, 1, 0, 3]} and the operation performs addition, |
| * then upon return the array holds {@code [2, 3, 3, 6]}. |
| * Parallel prefix computation is usually more efficient than |
| * sequential loops for large arrays. |
| * |
| * @param <T> the class of the objects in the array |
| * @param array the array, which is modified in-place by this method |
| * @param op a side-effect-free, associative function to perform the |
| * cumulation |
| * @throws NullPointerException if the specified array or function is null |
| * @since 1.8 |
| */ |
| public static <T> void parallelPrefix(T[] array, BinaryOperator<T> op) { |
| Objects.requireNonNull(op); |
| if (array.length > 0) |
| new ArrayPrefixHelpers.CumulateTask<> |
| (null, op, array, 0, array.length).invoke(); |
| } |
| |
| /** |
| * Performs {@link #parallelPrefix(Object[], BinaryOperator)} |
| * for the given subrange of the array. |
| * |
| * @param <T> the class of the objects in the array |
| * @param array the array |
| * @param fromIndex the index of the first element, inclusive |
| * @param toIndex the index of the last element, exclusive |
| * @param op a side-effect-free, associative function to perform the |
| * cumulation |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > array.length} |
| * @throws NullPointerException if the specified array or function is null |
| * @since 1.8 |
| */ |
| public static <T> void parallelPrefix(T[] array, int fromIndex, |
| int toIndex, BinaryOperator<T> op) { |
| Objects.requireNonNull(op); |
| rangeCheck(array.length, fromIndex, toIndex); |
| if (fromIndex < toIndex) |
| new ArrayPrefixHelpers.CumulateTask<> |
| (null, op, array, fromIndex, toIndex).invoke(); |
| } |
| |
| /** |
| * Cumulates, in parallel, each element of the given array in place, |
| * using the supplied function. For example if the array initially |
| * holds {@code [2, 1, 0, 3]} and the operation performs addition, |
| * then upon return the array holds {@code [2, 3, 3, 6]}. |
| * Parallel prefix computation is usually more efficient than |
| * sequential loops for large arrays. |
| * |
| * @param array the array, which is modified in-place by this method |
| * @param op a side-effect-free, associative function to perform the |
| * cumulation |
| * @throws NullPointerException if the specified array or function is null |
| * @since 1.8 |
| */ |
| public static void parallelPrefix(long[] array, LongBinaryOperator op) { |
| Objects.requireNonNull(op); |
| if (array.length > 0) |
| new ArrayPrefixHelpers.LongCumulateTask |
| (null, op, array, 0, array.length).invoke(); |
| } |
| |
| /** |
| * Performs {@link #parallelPrefix(long[], LongBinaryOperator)} |
| * for the given subrange of the array. |
| * |
| * @param array the array |
| * @param fromIndex the index of the first element, inclusive |
| * @param toIndex the index of the last element, exclusive |
| * @param op a side-effect-free, associative function to perform the |
| * cumulation |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > array.length} |
| * @throws NullPointerException if the specified array or function is null |
| * @since 1.8 |
| */ |
| public static void parallelPrefix(long[] array, int fromIndex, |
| int toIndex, LongBinaryOperator op) { |
| Objects.requireNonNull(op); |
| rangeCheck(array.length, fromIndex, toIndex); |
| if (fromIndex < toIndex) |
| new ArrayPrefixHelpers.LongCumulateTask |
| (null, op, array, fromIndex, toIndex).invoke(); |
| } |
| |
| /** |
| * Cumulates, in parallel, each element of the given array in place, |
| * using the supplied function. For example if the array initially |
| * holds {@code [2.0, 1.0, 0.0, 3.0]} and the operation performs addition, |
| * then upon return the array holds {@code [2.0, 3.0, 3.0, 6.0]}. |
| * Parallel prefix computation is usually more efficient than |
| * sequential loops for large arrays. |
| * |
| * <p> Because floating-point operations may not be strictly associative, |
| * the returned result may not be identical to the value that would be |
| * obtained if the operation was performed sequentially. |
| * |
| * @param array the array, which is modified in-place by this method |
| * @param op a side-effect-free function to perform the cumulation |
| * @throws NullPointerException if the specified array or function is null |
| * @since 1.8 |
| */ |
| public static void parallelPrefix(double[] array, DoubleBinaryOperator op) { |
| Objects.requireNonNull(op); |
| if (array.length > 0) |
| new ArrayPrefixHelpers.DoubleCumulateTask |
| (null, op, array, 0, array.length).invoke(); |
| } |
| |
| /** |
| * Performs {@link #parallelPrefix(double[], DoubleBinaryOperator)} |
| * for the given subrange of the array. |
| * |
| * @param array the array |
| * @param fromIndex the index of the first element, inclusive |
| * @param toIndex the index of the last element, exclusive |
| * @param op a side-effect-free, associative function to perform the |
| * cumulation |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > array.length} |
| * @throws NullPointerException if the specified array or function is null |
| * @since 1.8 |
| */ |
| public static void parallelPrefix(double[] array, int fromIndex, |
| int toIndex, DoubleBinaryOperator op) { |
| Objects.requireNonNull(op); |
| rangeCheck(array.length, fromIndex, toIndex); |
| if (fromIndex < toIndex) |
| new ArrayPrefixHelpers.DoubleCumulateTask |
| (null, op, array, fromIndex, toIndex).invoke(); |
| } |
| |
| /** |
| * Cumulates, in parallel, each element of the given array in place, |
| * using the supplied function. For example if the array initially |
| * holds {@code [2, 1, 0, 3]} and the operation performs addition, |
| * then upon return the array holds {@code [2, 3, 3, 6]}. |
| * Parallel prefix computation is usually more efficient than |
| * sequential loops for large arrays. |
| * |
| * @param array the array, which is modified in-place by this method |
| * @param op a side-effect-free, associative function to perform the |
| * cumulation |
| * @throws NullPointerException if the specified array or function is null |
| * @since 1.8 |
| */ |
| public static void parallelPrefix(int[] array, IntBinaryOperator op) { |
| Objects.requireNonNull(op); |
| if (array.length > 0) |
| new ArrayPrefixHelpers.IntCumulateTask |
| (null, op, array, 0, array.length).invoke(); |
| } |
| |
| /** |
| * Performs {@link #parallelPrefix(int[], IntBinaryOperator)} |
| * for the given subrange of the array. |
| * |
| * @param array the array |
| * @param fromIndex the index of the first element, inclusive |
| * @param toIndex the index of the last element, exclusive |
| * @param op a side-effect-free, associative function to perform the |
| * cumulation |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0} or {@code toIndex > array.length} |
| * @throws NullPointerException if the specified array or function is null |
| * @since 1.8 |
| */ |
| public static void parallelPrefix(int[] array, int fromIndex, |
| int toIndex, IntBinaryOperator op) { |
| Objects.requireNonNull(op); |
| rangeCheck(array.length, fromIndex, toIndex); |
| if (fromIndex < toIndex) |
| new ArrayPrefixHelpers.IntCumulateTask |
| (null, op, array, fromIndex, toIndex).invoke(); |
| } |
| |
| // Searching |
| |
| /** |
| * Searches the specified array of longs for the specified value using the |
| * binary search algorithm. The array must be sorted (as |
| * by the {@link #sort(long[])} method) prior to making this call. If it |
| * is not sorted, the results are undefined. If the array contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. |
| * |
| * @param a the array to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element greater than the key, or {@code a.length} if all |
| * elements in the array are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| */ |
| public static int binarySearch(long[] a, long key) { |
| return binarySearch0(a, 0, a.length, key); |
| } |
| |
| /** |
| * Searches a range of |
| * the specified array of longs for the specified value using the |
| * binary search algorithm. |
| * The range must be sorted (as |
| * by the {@link #sort(long[], int, int)} method) |
| * prior to making this call. If it |
| * is not sorted, the results are undefined. If the range contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. |
| * |
| * @param a the array to be searched |
| * @param fromIndex the index of the first element (inclusive) to be |
| * searched |
| * @param toIndex the index of the last element (exclusive) to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array |
| * within the specified range; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element in the range greater than the key, |
| * or {@code toIndex} if all |
| * elements in the range are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws IllegalArgumentException |
| * if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0 or toIndex > a.length} |
| * @since 1.6 |
| */ |
| public static int binarySearch(long[] a, int fromIndex, int toIndex, |
| long key) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| return binarySearch0(a, fromIndex, toIndex, key); |
| } |
| |
| // Like public version, but without range checks. |
| private static int binarySearch0(long[] a, int fromIndex, int toIndex, |
| long key) { |
| int low = fromIndex; |
| int high = toIndex - 1; |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| long midVal = a[mid]; |
| |
| if (midVal < key) |
| low = mid + 1; |
| else if (midVal > key) |
| high = mid - 1; |
| else |
| return mid; // key found |
| } |
| return -(low + 1); // key not found. |
| } |
| |
| /** |
| * Searches the specified array of ints for the specified value using the |
| * binary search algorithm. The array must be sorted (as |
| * by the {@link #sort(int[])} method) prior to making this call. If it |
| * is not sorted, the results are undefined. If the array contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. |
| * |
| * @param a the array to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element greater than the key, or {@code a.length} if all |
| * elements in the array are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| */ |
| public static int binarySearch(int[] a, int key) { |
| return binarySearch0(a, 0, a.length, key); |
| } |
| |
| /** |
| * Searches a range of |
| * the specified array of ints for the specified value using the |
| * binary search algorithm. |
| * The range must be sorted (as |
| * by the {@link #sort(int[], int, int)} method) |
| * prior to making this call. If it |
| * is not sorted, the results are undefined. If the range contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. |
| * |
| * @param a the array to be searched |
| * @param fromIndex the index of the first element (inclusive) to be |
| * searched |
| * @param toIndex the index of the last element (exclusive) to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array |
| * within the specified range; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element in the range greater than the key, |
| * or {@code toIndex} if all |
| * elements in the range are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws IllegalArgumentException |
| * if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0 or toIndex > a.length} |
| * @since 1.6 |
| */ |
| public static int binarySearch(int[] a, int fromIndex, int toIndex, |
| int key) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| return binarySearch0(a, fromIndex, toIndex, key); |
| } |
| |
| // Like public version, but without range checks. |
| private static int binarySearch0(int[] a, int fromIndex, int toIndex, |
| int key) { |
| int low = fromIndex; |
| int high = toIndex - 1; |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| int midVal = a[mid]; |
| |
| if (midVal < key) |
| low = mid + 1; |
| else if (midVal > key) |
| high = mid - 1; |
| else |
| return mid; // key found |
| } |
| return -(low + 1); // key not found. |
| } |
| |
| /** |
| * Searches the specified array of shorts for the specified value using |
| * the binary search algorithm. The array must be sorted |
| * (as by the {@link #sort(short[])} method) prior to making this call. If |
| * it is not sorted, the results are undefined. If the array contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. |
| * |
| * @param a the array to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element greater than the key, or {@code a.length} if all |
| * elements in the array are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| */ |
| public static int binarySearch(short[] a, short key) { |
| return binarySearch0(a, 0, a.length, key); |
| } |
| |
| /** |
| * Searches a range of |
| * the specified array of shorts for the specified value using |
| * the binary search algorithm. |
| * The range must be sorted |
| * (as by the {@link #sort(short[], int, int)} method) |
| * prior to making this call. If |
| * it is not sorted, the results are undefined. If the range contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. |
| * |
| * @param a the array to be searched |
| * @param fromIndex the index of the first element (inclusive) to be |
| * searched |
| * @param toIndex the index of the last element (exclusive) to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array |
| * within the specified range; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element in the range greater than the key, |
| * or {@code toIndex} if all |
| * elements in the range are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws IllegalArgumentException |
| * if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0 or toIndex > a.length} |
| * @since 1.6 |
| */ |
| public static int binarySearch(short[] a, int fromIndex, int toIndex, |
| short key) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| return binarySearch0(a, fromIndex, toIndex, key); |
| } |
| |
| // Like public version, but without range checks. |
| private static int binarySearch0(short[] a, int fromIndex, int toIndex, |
| short key) { |
| int low = fromIndex; |
| int high = toIndex - 1; |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| short midVal = a[mid]; |
| |
| if (midVal < key) |
| low = mid + 1; |
| else if (midVal > key) |
| high = mid - 1; |
| else |
| return mid; // key found |
| } |
| return -(low + 1); // key not found. |
| } |
| |
| /** |
| * Searches the specified array of chars for the specified value using the |
| * binary search algorithm. The array must be sorted (as |
| * by the {@link #sort(char[])} method) prior to making this call. If it |
| * is not sorted, the results are undefined. If the array contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. |
| * |
| * @param a the array to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element greater than the key, or {@code a.length} if all |
| * elements in the array are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| */ |
| public static int binarySearch(char[] a, char key) { |
| return binarySearch0(a, 0, a.length, key); |
| } |
| |
| /** |
| * Searches a range of |
| * the specified array of chars for the specified value using the |
| * binary search algorithm. |
| * The range must be sorted (as |
| * by the {@link #sort(char[], int, int)} method) |
| * prior to making this call. If it |
| * is not sorted, the results are undefined. If the range contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. |
| * |
| * @param a the array to be searched |
| * @param fromIndex the index of the first element (inclusive) to be |
| * searched |
| * @param toIndex the index of the last element (exclusive) to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array |
| * within the specified range; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element in the range greater than the key, |
| * or {@code toIndex} if all |
| * elements in the range are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws IllegalArgumentException |
| * if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0 or toIndex > a.length} |
| * @since 1.6 |
| */ |
| public static int binarySearch(char[] a, int fromIndex, int toIndex, |
| char key) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| return binarySearch0(a, fromIndex, toIndex, key); |
| } |
| |
| // Like public version, but without range checks. |
| private static int binarySearch0(char[] a, int fromIndex, int toIndex, |
| char key) { |
| int low = fromIndex; |
| int high = toIndex - 1; |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| char midVal = a[mid]; |
| |
| if (midVal < key) |
| low = mid + 1; |
| else if (midVal > key) |
| high = mid - 1; |
| else |
| return mid; // key found |
| } |
| return -(low + 1); // key not found. |
| } |
| |
| /** |
| * Searches the specified array of bytes for the specified value using the |
| * binary search algorithm. The array must be sorted (as |
| * by the {@link #sort(byte[])} method) prior to making this call. If it |
| * is not sorted, the results are undefined. If the array contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. |
| * |
| * @param a the array to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element greater than the key, or {@code a.length} if all |
| * elements in the array are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| */ |
| public static int binarySearch(byte[] a, byte key) { |
| return binarySearch0(a, 0, a.length, key); |
| } |
| |
| /** |
| * Searches a range of |
| * the specified array of bytes for the specified value using the |
| * binary search algorithm. |
| * The range must be sorted (as |
| * by the {@link #sort(byte[], int, int)} method) |
| * prior to making this call. If it |
| * is not sorted, the results are undefined. If the range contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. |
| * |
| * @param a the array to be searched |
| * @param fromIndex the index of the first element (inclusive) to be |
| * searched |
| * @param toIndex the index of the last element (exclusive) to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array |
| * within the specified range; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element in the range greater than the key, |
| * or {@code toIndex} if all |
| * elements in the range are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws IllegalArgumentException |
| * if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0 or toIndex > a.length} |
| * @since 1.6 |
| */ |
| public static int binarySearch(byte[] a, int fromIndex, int toIndex, |
| byte key) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| return binarySearch0(a, fromIndex, toIndex, key); |
| } |
| |
| // Like public version, but without range checks. |
| private static int binarySearch0(byte[] a, int fromIndex, int toIndex, |
| byte key) { |
| int low = fromIndex; |
| int high = toIndex - 1; |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| byte midVal = a[mid]; |
| |
| if (midVal < key) |
| low = mid + 1; |
| else if (midVal > key) |
| high = mid - 1; |
| else |
| return mid; // key found |
| } |
| return -(low + 1); // key not found. |
| } |
| |
| /** |
| * Searches the specified array of doubles for the specified value using |
| * the binary search algorithm. The array must be sorted |
| * (as by the {@link #sort(double[])} method) prior to making this call. |
| * If it is not sorted, the results are undefined. If the array contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. This method considers all NaN values to be |
| * equivalent and equal. |
| * |
| * @param a the array to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element greater than the key, or {@code a.length} if all |
| * elements in the array are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| */ |
| public static int binarySearch(double[] a, double key) { |
| return binarySearch0(a, 0, a.length, key); |
| } |
| |
| /** |
| * Searches a range of |
| * the specified array of doubles for the specified value using |
| * the binary search algorithm. |
| * The range must be sorted |
| * (as by the {@link #sort(double[], int, int)} method) |
| * prior to making this call. |
| * If it is not sorted, the results are undefined. If the range contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. This method considers all NaN values to be |
| * equivalent and equal. |
| * |
| * @param a the array to be searched |
| * @param fromIndex the index of the first element (inclusive) to be |
| * searched |
| * @param toIndex the index of the last element (exclusive) to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array |
| * within the specified range; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element in the range greater than the key, |
| * or {@code toIndex} if all |
| * elements in the range are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws IllegalArgumentException |
| * if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0 or toIndex > a.length} |
| * @since 1.6 |
| */ |
| public static int binarySearch(double[] a, int fromIndex, int toIndex, |
| double key) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| return binarySearch0(a, fromIndex, toIndex, key); |
| } |
| |
| // Like public version, but without range checks. |
| private static int binarySearch0(double[] a, int fromIndex, int toIndex, |
| double key) { |
| int low = fromIndex; |
| int high = toIndex - 1; |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| double midVal = a[mid]; |
| |
| if (midVal < key) |
| low = mid + 1; // Neither val is NaN, thisVal is smaller |
| else if (midVal > key) |
| high = mid - 1; // Neither val is NaN, thisVal is larger |
| else { |
| long midBits = Double.doubleToLongBits(midVal); |
| long keyBits = Double.doubleToLongBits(key); |
| if (midBits == keyBits) // Values are equal |
| return mid; // Key found |
| else if (midBits < keyBits) // (-0.0, 0.0) or (!NaN, NaN) |
| low = mid + 1; |
| else // (0.0, -0.0) or (NaN, !NaN) |
| high = mid - 1; |
| } |
| } |
| return -(low + 1); // key not found. |
| } |
| |
| /** |
| * Searches the specified array of floats for the specified value using |
| * the binary search algorithm. The array must be sorted |
| * (as by the {@link #sort(float[])} method) prior to making this call. If |
| * it is not sorted, the results are undefined. If the array contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. This method considers all NaN values to be |
| * equivalent and equal. |
| * |
| * @param a the array to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element greater than the key, or {@code a.length} if all |
| * elements in the array are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| */ |
| public static int binarySearch(float[] a, float key) { |
| return binarySearch0(a, 0, a.length, key); |
| } |
| |
| /** |
| * Searches a range of |
| * the specified array of floats for the specified value using |
| * the binary search algorithm. |
| * The range must be sorted |
| * (as by the {@link #sort(float[], int, int)} method) |
| * prior to making this call. If |
| * it is not sorted, the results are undefined. If the range contains |
| * multiple elements with the specified value, there is no guarantee which |
| * one will be found. This method considers all NaN values to be |
| * equivalent and equal. |
| * |
| * @param a the array to be searched |
| * @param fromIndex the index of the first element (inclusive) to be |
| * searched |
| * @param toIndex the index of the last element (exclusive) to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array |
| * within the specified range; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element in the range greater than the key, |
| * or {@code toIndex} if all |
| * elements in the range are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws IllegalArgumentException |
| * if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0 or toIndex > a.length} |
| * @since 1.6 |
| */ |
| public static int binarySearch(float[] a, int fromIndex, int toIndex, |
| float key) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| return binarySearch0(a, fromIndex, toIndex, key); |
| } |
| |
| // Like public version, but without range checks. |
| private static int binarySearch0(float[] a, int fromIndex, int toIndex, |
| float key) { |
| int low = fromIndex; |
| int high = toIndex - 1; |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| float midVal = a[mid]; |
| |
| if (midVal < key) |
| low = mid + 1; // Neither val is NaN, thisVal is smaller |
| else if (midVal > key) |
| high = mid - 1; // Neither val is NaN, thisVal is larger |
| else { |
| int midBits = Float.floatToIntBits(midVal); |
| int keyBits = Float.floatToIntBits(key); |
| if (midBits == keyBits) // Values are equal |
| return mid; // Key found |
| else if (midBits < keyBits) // (-0.0, 0.0) or (!NaN, NaN) |
| low = mid + 1; |
| else // (0.0, -0.0) or (NaN, !NaN) |
| high = mid - 1; |
| } |
| } |
| return -(low + 1); // key not found. |
| } |
| |
| /** |
| * Searches the specified array for the specified object using the binary |
| * search algorithm. The array must be sorted into ascending order |
| * according to the |
| * {@linkplain Comparable natural ordering} |
| * of its elements (as by the |
| * {@link #sort(Object[])} method) prior to making this call. |
| * If it is not sorted, the results are undefined. |
| * (If the array contains elements that are not mutually comparable (for |
| * example, strings and integers), it <i>cannot</i> be sorted according |
| * to the natural ordering of its elements, hence results are undefined.) |
| * If the array contains multiple |
| * elements equal to the specified object, there is no guarantee which |
| * one will be found. |
| * |
| * @param a the array to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element greater than the key, or {@code a.length} if all |
| * elements in the array are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws ClassCastException if the search key is not comparable to the |
| * elements of the array. |
| */ |
| public static int binarySearch(Object[] a, Object key) { |
| return binarySearch0(a, 0, a.length, key); |
| } |
| |
| /** |
| * Searches a range of |
| * the specified array for the specified object using the binary |
| * search algorithm. |
| * The range must be sorted into ascending order |
| * according to the |
| * {@linkplain Comparable natural ordering} |
| * of its elements (as by the |
| * {@link #sort(Object[], int, int)} method) prior to making this |
| * call. If it is not sorted, the results are undefined. |
| * (If the range contains elements that are not mutually comparable (for |
| * example, strings and integers), it <i>cannot</i> be sorted according |
| * to the natural ordering of its elements, hence results are undefined.) |
| * If the range contains multiple |
| * elements equal to the specified object, there is no guarantee which |
| * one will be found. |
| * |
| * @param a the array to be searched |
| * @param fromIndex the index of the first element (inclusive) to be |
| * searched |
| * @param toIndex the index of the last element (exclusive) to be searched |
| * @param key the value to be searched for |
| * @return index of the search key, if it is contained in the array |
| * within the specified range; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element in the range greater than the key, |
| * or {@code toIndex} if all |
| * elements in the range are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws ClassCastException if the search key is not comparable to the |
| * elements of the array within the specified range. |
| * @throws IllegalArgumentException |
| * if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0 or toIndex > a.length} |
| * @since 1.6 |
| */ |
| public static int binarySearch(Object[] a, int fromIndex, int toIndex, |
| Object key) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| return binarySearch0(a, fromIndex, toIndex, key); |
| } |
| |
| // Like public version, but without range checks. |
| private static int binarySearch0(Object[] a, int fromIndex, int toIndex, |
| Object key) { |
| int low = fromIndex; |
| int high = toIndex - 1; |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| @SuppressWarnings("rawtypes") |
| Comparable midVal = (Comparable)a[mid]; |
| @SuppressWarnings("unchecked") |
| int cmp = midVal.compareTo(key); |
| |
| if (cmp < 0) |
| low = mid + 1; |
| else if (cmp > 0) |
| high = mid - 1; |
| else |
| return mid; // key found |
| } |
| return -(low + 1); // key not found. |
| } |
| |
| /** |
| * Searches the specified array for the specified object using the binary |
| * search algorithm. The array must be sorted into ascending order |
| * according to the specified comparator (as by the |
| * {@link #sort(Object[], Comparator) sort(T[], Comparator)} |
| * method) prior to making this call. If it is |
| * not sorted, the results are undefined. |
| * If the array contains multiple |
| * elements equal to the specified object, there is no guarantee which one |
| * will be found. |
| * |
| * @param <T> the class of the objects in the array |
| * @param a the array to be searched |
| * @param key the value to be searched for |
| * @param c the comparator by which the array is ordered. A |
| * {@code null} value indicates that the elements' |
| * {@linkplain Comparable natural ordering} should be used. |
| * @return index of the search key, if it is contained in the array; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element greater than the key, or {@code a.length} if all |
| * elements in the array are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws ClassCastException if the array contains elements that are not |
| * <i>mutually comparable</i> using the specified comparator, |
| * or the search key is not comparable to the |
| * elements of the array using this comparator. |
| */ |
| public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c) { |
| return binarySearch0(a, 0, a.length, key, c); |
| } |
| |
| /** |
| * Searches a range of |
| * the specified array for the specified object using the binary |
| * search algorithm. |
| * The range must be sorted into ascending order |
| * according to the specified comparator (as by the |
| * {@link #sort(Object[], int, int, Comparator) |
| * sort(T[], int, int, Comparator)} |
| * method) prior to making this call. |
| * If it is not sorted, the results are undefined. |
| * If the range contains multiple elements equal to the specified object, |
| * there is no guarantee which one will be found. |
| * |
| * @param <T> the class of the objects in the array |
| * @param a the array to be searched |
| * @param fromIndex the index of the first element (inclusive) to be |
| * searched |
| * @param toIndex the index of the last element (exclusive) to be searched |
| * @param key the value to be searched for |
| * @param c the comparator by which the array is ordered. A |
| * {@code null} value indicates that the elements' |
| * {@linkplain Comparable natural ordering} should be used. |
| * @return index of the search key, if it is contained in the array |
| * within the specified range; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the array: the index of the first |
| * element in the range greater than the key, |
| * or {@code toIndex} if all |
| * elements in the range are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws ClassCastException if the range contains elements that are not |
| * <i>mutually comparable</i> using the specified comparator, |
| * or the search key is not comparable to the |
| * elements in the range using this comparator. |
| * @throws IllegalArgumentException |
| * if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code fromIndex < 0 or toIndex > a.length} |
| * @since 1.6 |
| */ |
| public static <T> int binarySearch(T[] a, int fromIndex, int toIndex, |
| T key, Comparator<? super T> c) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| return binarySearch0(a, fromIndex, toIndex, key, c); |
| } |
| |
| // Like public version, but without range checks. |
| private static <T> int binarySearch0(T[] a, int fromIndex, int toIndex, |
| T key, Comparator<? super T> c) { |
| if (c == null) { |
| return binarySearch0(a, fromIndex, toIndex, key); |
| } |
| int low = fromIndex; |
| int high = toIndex - 1; |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| T midVal = a[mid]; |
| int cmp = c.compare(midVal, key); |
| if (cmp < 0) |
| low = mid + 1; |
| else if (cmp > 0) |
| high = mid - 1; |
| else |
| return mid; // key found |
| } |
| return -(low + 1); // key not found. |
| } |
| |
| // Equality Testing |
| |
| /** |
| * Returns {@code true} if the two specified arrays of longs are |
| * <i>equal</i> to one another. Two arrays are considered equal if both |
| * arrays contain the same number of elements, and all corresponding pairs |
| * of elements in the two arrays are equal. In other words, two arrays |
| * are equal if they contain the same elements in the same order. Also, |
| * two array references are considered equal if both are {@code null}. |
| * |
| * @param a one array to be tested for equality |
| * @param a2 the other array to be tested for equality |
| * @return {@code true} if the two arrays are equal |
| */ |
| public static boolean equals(long[] a, long[] a2) { |
| if (a==a2) |
| return true; |
| if (a==null || a2==null) |
| return false; |
| |
| int length = a.length; |
| if (a2.length != length) |
| return false; |
| |
| return ArraysSupport.mismatch(a, a2, length) < 0; |
| } |
| |
| /** |
| * Returns true if the two specified arrays of longs, over the specified |
| * ranges, are <i>equal</i> to one another. |
| * |
| * <p>Two arrays are considered equal if the number of elements covered by |
| * each range is the same, and all corresponding pairs of elements over the |
| * specified ranges in the two arrays are equal. In other words, two arrays |
| * are equal if they contain, over the specified ranges, the same elements |
| * in the same order. |
| * |
| * @param a the first array to be tested for equality |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for equality |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return {@code true} if the two arrays, over the specified ranges, are |
| * equal |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static boolean equals(long[] a, int aFromIndex, int aToIndex, |
| long[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| if (aLength != bLength) |
| return false; |
| |
| return ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| aLength) < 0; |
| } |
| |
| /** |
| * Returns {@code true} if the two specified arrays of ints are |
| * <i>equal</i> to one another. Two arrays are considered equal if both |
| * arrays contain the same number of elements, and all corresponding pairs |
| * of elements in the two arrays are equal. In other words, two arrays |
| * are equal if they contain the same elements in the same order. Also, |
| * two array references are considered equal if both are {@code null}. |
| * |
| * @param a one array to be tested for equality |
| * @param a2 the other array to be tested for equality |
| * @return {@code true} if the two arrays are equal |
| */ |
| public static boolean equals(int[] a, int[] a2) { |
| if (a==a2) |
| return true; |
| if (a==null || a2==null) |
| return false; |
| |
| int length = a.length; |
| if (a2.length != length) |
| return false; |
| |
| return ArraysSupport.mismatch(a, a2, length) < 0; |
| } |
| |
| /** |
| * Returns true if the two specified arrays of ints, over the specified |
| * ranges, are <i>equal</i> to one another. |
| * |
| * <p>Two arrays are considered equal if the number of elements covered by |
| * each range is the same, and all corresponding pairs of elements over the |
| * specified ranges in the two arrays are equal. In other words, two arrays |
| * are equal if they contain, over the specified ranges, the same elements |
| * in the same order. |
| * |
| * @param a the first array to be tested for equality |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for equality |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return {@code true} if the two arrays, over the specified ranges, are |
| * equal |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static boolean equals(int[] a, int aFromIndex, int aToIndex, |
| int[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| if (aLength != bLength) |
| return false; |
| |
| return ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| aLength) < 0; |
| } |
| |
| /** |
| * Returns {@code true} if the two specified arrays of shorts are |
| * <i>equal</i> to one another. Two arrays are considered equal if both |
| * arrays contain the same number of elements, and all corresponding pairs |
| * of elements in the two arrays are equal. In other words, two arrays |
| * are equal if they contain the same elements in the same order. Also, |
| * two array references are considered equal if both are {@code null}. |
| * |
| * @param a one array to be tested for equality |
| * @param a2 the other array to be tested for equality |
| * @return {@code true} if the two arrays are equal |
| */ |
| public static boolean equals(short[] a, short a2[]) { |
| if (a==a2) |
| return true; |
| if (a==null || a2==null) |
| return false; |
| |
| int length = a.length; |
| if (a2.length != length) |
| return false; |
| |
| return ArraysSupport.mismatch(a, a2, length) < 0; |
| } |
| |
| /** |
| * Returns true if the two specified arrays of shorts, over the specified |
| * ranges, are <i>equal</i> to one another. |
| * |
| * <p>Two arrays are considered equal if the number of elements covered by |
| * each range is the same, and all corresponding pairs of elements over the |
| * specified ranges in the two arrays are equal. In other words, two arrays |
| * are equal if they contain, over the specified ranges, the same elements |
| * in the same order. |
| * |
| * @param a the first array to be tested for equality |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for equality |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return {@code true} if the two arrays, over the specified ranges, are |
| * equal |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static boolean equals(short[] a, int aFromIndex, int aToIndex, |
| short[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| if (aLength != bLength) |
| return false; |
| |
| return ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| aLength) < 0; |
| } |
| |
| /** |
| * Returns {@code true} if the two specified arrays of chars are |
| * <i>equal</i> to one another. Two arrays are considered equal if both |
| * arrays contain the same number of elements, and all corresponding pairs |
| * of elements in the two arrays are equal. In other words, two arrays |
| * are equal if they contain the same elements in the same order. Also, |
| * two array references are considered equal if both are {@code null}. |
| * |
| * @param a one array to be tested for equality |
| * @param a2 the other array to be tested for equality |
| * @return {@code true} if the two arrays are equal |
| */ |
| @IntrinsicCandidate |
| public static boolean equals(char[] a, char[] a2) { |
| if (a==a2) |
| return true; |
| if (a==null || a2==null) |
| return false; |
| |
| int length = a.length; |
| if (a2.length != length) |
| return false; |
| |
| return ArraysSupport.mismatch(a, a2, length) < 0; |
| } |
| |
| /** |
| * Returns true if the two specified arrays of chars, over the specified |
| * ranges, are <i>equal</i> to one another. |
| * |
| * <p>Two arrays are considered equal if the number of elements covered by |
| * each range is the same, and all corresponding pairs of elements over the |
| * specified ranges in the two arrays are equal. In other words, two arrays |
| * are equal if they contain, over the specified ranges, the same elements |
| * in the same order. |
| * |
| * @param a the first array to be tested for equality |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for equality |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return {@code true} if the two arrays, over the specified ranges, are |
| * equal |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static boolean equals(char[] a, int aFromIndex, int aToIndex, |
| char[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| if (aLength != bLength) |
| return false; |
| |
| return ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| aLength) < 0; |
| } |
| |
| /** |
| * Returns {@code true} if the two specified arrays of bytes are |
| * <i>equal</i> to one another. Two arrays are considered equal if both |
| * arrays contain the same number of elements, and all corresponding pairs |
| * of elements in the two arrays are equal. In other words, two arrays |
| * are equal if they contain the same elements in the same order. Also, |
| * two array references are considered equal if both are {@code null}. |
| * |
| * @param a one array to be tested for equality |
| * @param a2 the other array to be tested for equality |
| * @return {@code true} if the two arrays are equal |
| */ |
| @IntrinsicCandidate |
| public static boolean equals(byte[] a, byte[] a2) { |
| if (a==a2) |
| return true; |
| if (a==null || a2==null) |
| return false; |
| |
| int length = a.length; |
| if (a2.length != length) |
| return false; |
| |
| return ArraysSupport.mismatch(a, a2, length) < 0; |
| } |
| |
| /** |
| * Returns true if the two specified arrays of bytes, over the specified |
| * ranges, are <i>equal</i> to one another. |
| * |
| * <p>Two arrays are considered equal if the number of elements covered by |
| * each range is the same, and all corresponding pairs of elements over the |
| * specified ranges in the two arrays are equal. In other words, two arrays |
| * are equal if they contain, over the specified ranges, the same elements |
| * in the same order. |
| * |
| * @param a the first array to be tested for equality |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for equality |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return {@code true} if the two arrays, over the specified ranges, are |
| * equal |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static boolean equals(byte[] a, int aFromIndex, int aToIndex, |
| byte[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| if (aLength != bLength) |
| return false; |
| |
| return ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| aLength) < 0; |
| } |
| |
| /** |
| * Returns {@code true} if the two specified arrays of booleans are |
| * <i>equal</i> to one another. Two arrays are considered equal if both |
| * arrays contain the same number of elements, and all corresponding pairs |
| * of elements in the two arrays are equal. In other words, two arrays |
| * are equal if they contain the same elements in the same order. Also, |
| * two array references are considered equal if both are {@code null}. |
| * |
| * @param a one array to be tested for equality |
| * @param a2 the other array to be tested for equality |
| * @return {@code true} if the two arrays are equal |
| */ |
| public static boolean equals(boolean[] a, boolean[] a2) { |
| if (a==a2) |
| return true; |
| if (a==null || a2==null) |
| return false; |
| |
| int length = a.length; |
| if (a2.length != length) |
| return false; |
| |
| return ArraysSupport.mismatch(a, a2, length) < 0; |
| } |
| |
| /** |
| * Returns true if the two specified arrays of booleans, over the specified |
| * ranges, are <i>equal</i> to one another. |
| * |
| * <p>Two arrays are considered equal if the number of elements covered by |
| * each range is the same, and all corresponding pairs of elements over the |
| * specified ranges in the two arrays are equal. In other words, two arrays |
| * are equal if they contain, over the specified ranges, the same elements |
| * in the same order. |
| * |
| * @param a the first array to be tested for equality |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for equality |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return {@code true} if the two arrays, over the specified ranges, are |
| * equal |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static boolean equals(boolean[] a, int aFromIndex, int aToIndex, |
| boolean[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| if (aLength != bLength) |
| return false; |
| |
| return ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| aLength) < 0; |
| } |
| |
| /** |
| * Returns {@code true} if the two specified arrays of doubles are |
| * <i>equal</i> to one another. Two arrays are considered equal if both |
| * arrays contain the same number of elements, and all corresponding pairs |
| * of elements in the two arrays are equal. In other words, two arrays |
| * are equal if they contain the same elements in the same order. Also, |
| * two array references are considered equal if both are {@code null}. |
| * |
| * Two doubles {@code d1} and {@code d2} are considered equal if: |
| * <pre> {@code new Double(d1).equals(new Double(d2))}</pre> |
| * (Unlike the {@code ==} operator, this method considers |
| * {@code NaN} equal to itself, and 0.0d unequal to -0.0d.) |
| * |
| * @param a one array to be tested for equality |
| * @param a2 the other array to be tested for equality |
| * @return {@code true} if the two arrays are equal |
| * @see Double#equals(Object) |
| */ |
| public static boolean equals(double[] a, double[] a2) { |
| if (a==a2) |
| return true; |
| if (a==null || a2==null) |
| return false; |
| |
| int length = a.length; |
| if (a2.length != length) |
| return false; |
| |
| return ArraysSupport.mismatch(a, a2, length) < 0; |
| } |
| |
| /** |
| * Returns true if the two specified arrays of doubles, over the specified |
| * ranges, are <i>equal</i> to one another. |
| * |
| * <p>Two arrays are considered equal if the number of elements covered by |
| * each range is the same, and all corresponding pairs of elements over the |
| * specified ranges in the two arrays are equal. In other words, two arrays |
| * are equal if they contain, over the specified ranges, the same elements |
| * in the same order. |
| * |
| * <p>Two doubles {@code d1} and {@code d2} are considered equal if: |
| * <pre> {@code new Double(d1).equals(new Double(d2))}</pre> |
| * (Unlike the {@code ==} operator, this method considers |
| * {@code NaN} equal to itself, and 0.0d unequal to -0.0d.) |
| * |
| * @param a the first array to be tested for equality |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for equality |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return {@code true} if the two arrays, over the specified ranges, are |
| * equal |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @see Double#equals(Object) |
| * @since 9 |
| */ |
| public static boolean equals(double[] a, int aFromIndex, int aToIndex, |
| double[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| if (aLength != bLength) |
| return false; |
| |
| return ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, aLength) < 0; |
| } |
| |
| /** |
| * Returns {@code true} if the two specified arrays of floats are |
| * <i>equal</i> to one another. Two arrays are considered equal if both |
| * arrays contain the same number of elements, and all corresponding pairs |
| * of elements in the two arrays are equal. In other words, two arrays |
| * are equal if they contain the same elements in the same order. Also, |
| * two array references are considered equal if both are {@code null}. |
| * |
| * Two floats {@code f1} and {@code f2} are considered equal if: |
| * <pre> {@code new Float(f1).equals(new Float(f2))}</pre> |
| * (Unlike the {@code ==} operator, this method considers |
| * {@code NaN} equal to itself, and 0.0f unequal to -0.0f.) |
| * |
| * @param a one array to be tested for equality |
| * @param a2 the other array to be tested for equality |
| * @return {@code true} if the two arrays are equal |
| * @see Float#equals(Object) |
| */ |
| public static boolean equals(float[] a, float[] a2) { |
| if (a==a2) |
| return true; |
| if (a==null || a2==null) |
| return false; |
| |
| int length = a.length; |
| if (a2.length != length) |
| return false; |
| |
| return ArraysSupport.mismatch(a, a2, length) < 0; |
| } |
| |
| /** |
| * Returns true if the two specified arrays of floats, over the specified |
| * ranges, are <i>equal</i> to one another. |
| * |
| * <p>Two arrays are considered equal if the number of elements covered by |
| * each range is the same, and all corresponding pairs of elements over the |
| * specified ranges in the two arrays are equal. In other words, two arrays |
| * are equal if they contain, over the specified ranges, the same elements |
| * in the same order. |
| * |
| * <p>Two floats {@code f1} and {@code f2} are considered equal if: |
| * <pre> {@code new Float(f1).equals(new Float(f2))}</pre> |
| * (Unlike the {@code ==} operator, this method considers |
| * {@code NaN} equal to itself, and 0.0f unequal to -0.0f.) |
| * |
| * @param a the first array to be tested for equality |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for equality |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return {@code true} if the two arrays, over the specified ranges, are |
| * equal |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @see Float#equals(Object) |
| * @since 9 |
| */ |
| public static boolean equals(float[] a, int aFromIndex, int aToIndex, |
| float[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| if (aLength != bLength) |
| return false; |
| |
| return ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, aLength) < 0; |
| } |
| |
| /** |
| * Returns {@code true} if the two specified arrays of Objects are |
| * <i>equal</i> to one another. The two arrays are considered equal if |
| * both arrays contain the same number of elements, and all corresponding |
| * pairs of elements in the two arrays are equal. Two objects {@code e1} |
| * and {@code e2} are considered <i>equal</i> if |
| * {@code Objects.equals(e1, e2)}. |
| * In other words, the two arrays are equal if |
| * they contain the same elements in the same order. Also, two array |
| * references are considered equal if both are {@code null}. |
| * |
| * @param a one array to be tested for equality |
| * @param a2 the other array to be tested for equality |
| * @return {@code true} if the two arrays are equal |
| */ |
| public static boolean equals(Object[] a, Object[] a2) { |
| if (a==a2) |
| return true; |
| if (a==null || a2==null) |
| return false; |
| |
| int length = a.length; |
| if (a2.length != length) |
| return false; |
| |
| for (int i=0; i<length; i++) { |
| if (!Objects.equals(a[i], a2[i])) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Returns true if the two specified arrays of Objects, over the specified |
| * ranges, are <i>equal</i> to one another. |
| * |
| * <p>Two arrays are considered equal if the number of elements covered by |
| * each range is the same, and all corresponding pairs of elements over the |
| * specified ranges in the two arrays are equal. In other words, two arrays |
| * are equal if they contain, over the specified ranges, the same elements |
| * in the same order. |
| * |
| * <p>Two objects {@code e1} and {@code e2} are considered <i>equal</i> if |
| * {@code Objects.equals(e1, e2)}. |
| * |
| * @param a the first array to be tested for equality |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for equality |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return {@code true} if the two arrays, over the specified ranges, are |
| * equal |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static boolean equals(Object[] a, int aFromIndex, int aToIndex, |
| Object[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| if (aLength != bLength) |
| return false; |
| |
| for (int i = 0; i < aLength; i++) { |
| if (!Objects.equals(a[aFromIndex++], b[bFromIndex++])) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Returns {@code true} if the two specified arrays of Objects are |
| * <i>equal</i> to one another. |
| * |
| * <p>Two arrays are considered equal if both arrays contain the same number |
| * of elements, and all corresponding pairs of elements in the two arrays |
| * are equal. In other words, the two arrays are equal if they contain the |
| * same elements in the same order. Also, two array references are |
| * considered equal if both are {@code null}. |
| * |
| * <p>Two objects {@code e1} and {@code e2} are considered <i>equal</i> if, |
| * given the specified comparator, {@code cmp.compare(e1, e2) == 0}. |
| * |
| * @param a one array to be tested for equality |
| * @param a2 the other array to be tested for equality |
| * @param cmp the comparator to compare array elements |
| * @param <T> the type of array elements |
| * @return {@code true} if the two arrays are equal |
| * @throws NullPointerException if the comparator is {@code null} |
| * @since 9 |
| */ |
| public static <T> boolean equals(T[] a, T[] a2, Comparator<? super T> cmp) { |
| Objects.requireNonNull(cmp); |
| if (a==a2) |
| return true; |
| if (a==null || a2==null) |
| return false; |
| |
| int length = a.length; |
| if (a2.length != length) |
| return false; |
| |
| for (int i=0; i<length; i++) { |
| if (cmp.compare(a[i], a2[i]) != 0) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Returns true if the two specified arrays of Objects, over the specified |
| * ranges, are <i>equal</i> to one another. |
| * |
| * <p>Two arrays are considered equal if the number of elements covered by |
| * each range is the same, and all corresponding pairs of elements over the |
| * specified ranges in the two arrays are equal. In other words, two arrays |
| * are equal if they contain, over the specified ranges, the same elements |
| * in the same order. |
| * |
| * <p>Two objects {@code e1} and {@code e2} are considered <i>equal</i> if, |
| * given the specified comparator, {@code cmp.compare(e1, e2) == 0}. |
| * |
| * @param a the first array to be tested for equality |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for equality |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @param cmp the comparator to compare array elements |
| * @param <T> the type of array elements |
| * @return {@code true} if the two arrays, over the specified ranges, are |
| * equal |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array or the comparator is {@code null} |
| * @since 9 |
| */ |
| public static <T> boolean equals(T[] a, int aFromIndex, int aToIndex, |
| T[] b, int bFromIndex, int bToIndex, |
| Comparator<? super T> cmp) { |
| Objects.requireNonNull(cmp); |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| if (aLength != bLength) |
| return false; |
| |
| for (int i = 0; i < aLength; i++) { |
| if (cmp.compare(a[aFromIndex++], b[bFromIndex++]) != 0) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Filling |
| |
| /** |
| * Assigns the specified long value to each element of the specified array |
| * of longs. |
| * |
| * @param a the array to be filled |
| * @param val the value to be stored in all elements of the array |
| */ |
| public static void fill(long[] a, long val) { |
| for (int i = 0, len = a.length; i < len; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified long value to each element of the specified |
| * range of the specified array of longs. The range to be filled |
| * extends from index {@code fromIndex}, inclusive, to index |
| * {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
| * range to be filled is empty.) |
| * |
| * @param a the array to be filled |
| * @param fromIndex the index of the first element (inclusive) to be |
| * filled with the specified value |
| * @param toIndex the index of the last element (exclusive) to be |
| * filled with the specified value |
| * @param val the value to be stored in all elements of the array |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| */ |
| public static void fill(long[] a, int fromIndex, int toIndex, long val) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| for (int i = fromIndex; i < toIndex; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified int value to each element of the specified array |
| * of ints. |
| * |
| * @param a the array to be filled |
| * @param val the value to be stored in all elements of the array |
| */ |
| public static void fill(int[] a, int val) { |
| for (int i = 0, len = a.length; i < len; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified int value to each element of the specified |
| * range of the specified array of ints. The range to be filled |
| * extends from index {@code fromIndex}, inclusive, to index |
| * {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
| * range to be filled is empty.) |
| * |
| * @param a the array to be filled |
| * @param fromIndex the index of the first element (inclusive) to be |
| * filled with the specified value |
| * @param toIndex the index of the last element (exclusive) to be |
| * filled with the specified value |
| * @param val the value to be stored in all elements of the array |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| */ |
| public static void fill(int[] a, int fromIndex, int toIndex, int val) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| for (int i = fromIndex; i < toIndex; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified short value to each element of the specified array |
| * of shorts. |
| * |
| * @param a the array to be filled |
| * @param val the value to be stored in all elements of the array |
| */ |
| public static void fill(short[] a, short val) { |
| for (int i = 0, len = a.length; i < len; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified short value to each element of the specified |
| * range of the specified array of shorts. The range to be filled |
| * extends from index {@code fromIndex}, inclusive, to index |
| * {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
| * range to be filled is empty.) |
| * |
| * @param a the array to be filled |
| * @param fromIndex the index of the first element (inclusive) to be |
| * filled with the specified value |
| * @param toIndex the index of the last element (exclusive) to be |
| * filled with the specified value |
| * @param val the value to be stored in all elements of the array |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| */ |
| public static void fill(short[] a, int fromIndex, int toIndex, short val) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| for (int i = fromIndex; i < toIndex; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified char value to each element of the specified array |
| * of chars. |
| * |
| * @param a the array to be filled |
| * @param val the value to be stored in all elements of the array |
| */ |
| public static void fill(char[] a, char val) { |
| for (int i = 0, len = a.length; i < len; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified char value to each element of the specified |
| * range of the specified array of chars. The range to be filled |
| * extends from index {@code fromIndex}, inclusive, to index |
| * {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
| * range to be filled is empty.) |
| * |
| * @param a the array to be filled |
| * @param fromIndex the index of the first element (inclusive) to be |
| * filled with the specified value |
| * @param toIndex the index of the last element (exclusive) to be |
| * filled with the specified value |
| * @param val the value to be stored in all elements of the array |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| */ |
| public static void fill(char[] a, int fromIndex, int toIndex, char val) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| for (int i = fromIndex; i < toIndex; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified byte value to each element of the specified array |
| * of bytes. |
| * |
| * @param a the array to be filled |
| * @param val the value to be stored in all elements of the array |
| */ |
| public static void fill(byte[] a, byte val) { |
| for (int i = 0, len = a.length; i < len; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified byte value to each element of the specified |
| * range of the specified array of bytes. The range to be filled |
| * extends from index {@code fromIndex}, inclusive, to index |
| * {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
| * range to be filled is empty.) |
| * |
| * @param a the array to be filled |
| * @param fromIndex the index of the first element (inclusive) to be |
| * filled with the specified value |
| * @param toIndex the index of the last element (exclusive) to be |
| * filled with the specified value |
| * @param val the value to be stored in all elements of the array |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| */ |
| public static void fill(byte[] a, int fromIndex, int toIndex, byte val) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| for (int i = fromIndex; i < toIndex; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified boolean value to each element of the specified |
| * array of booleans. |
| * |
| * @param a the array to be filled |
| * @param val the value to be stored in all elements of the array |
| */ |
| public static void fill(boolean[] a, boolean val) { |
| for (int i = 0, len = a.length; i < len; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified boolean value to each element of the specified |
| * range of the specified array of booleans. The range to be filled |
| * extends from index {@code fromIndex}, inclusive, to index |
| * {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
| * range to be filled is empty.) |
| * |
| * @param a the array to be filled |
| * @param fromIndex the index of the first element (inclusive) to be |
| * filled with the specified value |
| * @param toIndex the index of the last element (exclusive) to be |
| * filled with the specified value |
| * @param val the value to be stored in all elements of the array |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| */ |
| public static void fill(boolean[] a, int fromIndex, int toIndex, |
| boolean val) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| for (int i = fromIndex; i < toIndex; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified double value to each element of the specified |
| * array of doubles. |
| * |
| * @param a the array to be filled |
| * @param val the value to be stored in all elements of the array |
| */ |
| public static void fill(double[] a, double val) { |
| for (int i = 0, len = a.length; i < len; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified double value to each element of the specified |
| * range of the specified array of doubles. The range to be filled |
| * extends from index {@code fromIndex}, inclusive, to index |
| * {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
| * range to be filled is empty.) |
| * |
| * @param a the array to be filled |
| * @param fromIndex the index of the first element (inclusive) to be |
| * filled with the specified value |
| * @param toIndex the index of the last element (exclusive) to be |
| * filled with the specified value |
| * @param val the value to be stored in all elements of the array |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| */ |
| public static void fill(double[] a, int fromIndex, int toIndex,double val){ |
| rangeCheck(a.length, fromIndex, toIndex); |
| for (int i = fromIndex; i < toIndex; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified float value to each element of the specified array |
| * of floats. |
| * |
| * @param a the array to be filled |
| * @param val the value to be stored in all elements of the array |
| */ |
| public static void fill(float[] a, float val) { |
| for (int i = 0, len = a.length; i < len; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified float value to each element of the specified |
| * range of the specified array of floats. The range to be filled |
| * extends from index {@code fromIndex}, inclusive, to index |
| * {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
| * range to be filled is empty.) |
| * |
| * @param a the array to be filled |
| * @param fromIndex the index of the first element (inclusive) to be |
| * filled with the specified value |
| * @param toIndex the index of the last element (exclusive) to be |
| * filled with the specified value |
| * @param val the value to be stored in all elements of the array |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| */ |
| public static void fill(float[] a, int fromIndex, int toIndex, float val) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| for (int i = fromIndex; i < toIndex; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified Object reference to each element of the specified |
| * array of Objects. |
| * |
| * @param a the array to be filled |
| * @param val the value to be stored in all elements of the array |
| * @throws ArrayStoreException if the specified value is not of a |
| * runtime type that can be stored in the specified array |
| */ |
| public static void fill(Object[] a, Object val) { |
| for (int i = 0, len = a.length; i < len; i++) |
| a[i] = val; |
| } |
| |
| /** |
| * Assigns the specified Object reference to each element of the specified |
| * range of the specified array of Objects. The range to be filled |
| * extends from index {@code fromIndex}, inclusive, to index |
| * {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the |
| * range to be filled is empty.) |
| * |
| * @param a the array to be filled |
| * @param fromIndex the index of the first element (inclusive) to be |
| * filled with the specified value |
| * @param toIndex the index of the last element (exclusive) to be |
| * filled with the specified value |
| * @param val the value to be stored in all elements of the array |
| * @throws IllegalArgumentException if {@code fromIndex > toIndex} |
| * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or |
| * {@code toIndex > a.length} |
| * @throws ArrayStoreException if the specified value is not of a |
| * runtime type that can be stored in the specified array |
| */ |
| public static void fill(Object[] a, int fromIndex, int toIndex, Object val) { |
| rangeCheck(a.length, fromIndex, toIndex); |
| for (int i = fromIndex; i < toIndex; i++) |
| a[i] = val; |
| } |
| |
| // Cloning |
| |
| /** |
| * Copies the specified array, truncating or padding with nulls (if necessary) |
| * so the copy has the specified length. For all indices that are |
| * valid in both the original array and the copy, the two arrays will |
| * contain identical values. For any indices that are valid in the |
| * copy but not the original, the copy will contain {@code null}. |
| * Such indices will exist if and only if the specified length |
| * is greater than that of the original array. |
| * The resulting array is of exactly the same class as the original array. |
| * |
| * @param <T> the class of the objects in the array |
| * @param original the array to be copied |
| * @param newLength the length of the copy to be returned |
| * @return a copy of the original array, truncated or padded with nulls |
| * to obtain the specified length |
| * @throws NegativeArraySizeException if {@code newLength} is negative |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> T[] copyOf(T[] original, int newLength) { |
| return (T[]) copyOf(original, newLength, original.getClass()); |
| } |
| |
| /** |
| * Copies the specified array, truncating or padding with nulls (if necessary) |
| * so the copy has the specified length. For all indices that are |
| * valid in both the original array and the copy, the two arrays will |
| * contain identical values. For any indices that are valid in the |
| * copy but not the original, the copy will contain {@code null}. |
| * Such indices will exist if and only if the specified length |
| * is greater than that of the original array. |
| * The resulting array is of the class {@code newType}. |
| * |
| * @param <U> the class of the objects in the original array |
| * @param <T> the class of the objects in the returned array |
| * @param original the array to be copied |
| * @param newLength the length of the copy to be returned |
| * @param newType the class of the copy to be returned |
| * @return a copy of the original array, truncated or padded with nulls |
| * to obtain the specified length |
| * @throws NegativeArraySizeException if {@code newLength} is negative |
| * @throws NullPointerException if {@code original} is null |
| * @throws ArrayStoreException if an element copied from |
| * {@code original} is not of a runtime type that can be stored in |
| * an array of class {@code newType} |
| * @since 1.6 |
| */ |
| @IntrinsicCandidate |
| public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) { |
| @SuppressWarnings("unchecked") |
| T[] copy = ((Object)newType == (Object)Object[].class) |
| ? (T[]) new Object[newLength] |
| : (T[]) Array.newInstance(newType.getComponentType(), newLength); |
| System.arraycopy(original, 0, copy, 0, |
| Math.min(original.length, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified array, truncating or padding with zeros (if necessary) |
| * so the copy has the specified length. For all indices that are |
| * valid in both the original array and the copy, the two arrays will |
| * contain identical values. For any indices that are valid in the |
| * copy but not the original, the copy will contain {@code (byte)0}. |
| * Such indices will exist if and only if the specified length |
| * is greater than that of the original array. |
| * |
| * @param original the array to be copied |
| * @param newLength the length of the copy to be returned |
| * @return a copy of the original array, truncated or padded with zeros |
| * to obtain the specified length |
| * @throws NegativeArraySizeException if {@code newLength} is negative |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static byte[] copyOf(byte[] original, int newLength) { |
| byte[] copy = new byte[newLength]; |
| System.arraycopy(original, 0, copy, 0, |
| Math.min(original.length, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified array, truncating or padding with zeros (if necessary) |
| * so the copy has the specified length. For all indices that are |
| * valid in both the original array and the copy, the two arrays will |
| * contain identical values. For any indices that are valid in the |
| * copy but not the original, the copy will contain {@code (short)0}. |
| * Such indices will exist if and only if the specified length |
| * is greater than that of the original array. |
| * |
| * @param original the array to be copied |
| * @param newLength the length of the copy to be returned |
| * @return a copy of the original array, truncated or padded with zeros |
| * to obtain the specified length |
| * @throws NegativeArraySizeException if {@code newLength} is negative |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static short[] copyOf(short[] original, int newLength) { |
| short[] copy = new short[newLength]; |
| System.arraycopy(original, 0, copy, 0, |
| Math.min(original.length, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified array, truncating or padding with zeros (if necessary) |
| * so the copy has the specified length. For all indices that are |
| * valid in both the original array and the copy, the two arrays will |
| * contain identical values. For any indices that are valid in the |
| * copy but not the original, the copy will contain {@code 0}. |
| * Such indices will exist if and only if the specified length |
| * is greater than that of the original array. |
| * |
| * @param original the array to be copied |
| * @param newLength the length of the copy to be returned |
| * @return a copy of the original array, truncated or padded with zeros |
| * to obtain the specified length |
| * @throws NegativeArraySizeException if {@code newLength} is negative |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static int[] copyOf(int[] original, int newLength) { |
| int[] copy = new int[newLength]; |
| System.arraycopy(original, 0, copy, 0, |
| Math.min(original.length, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified array, truncating or padding with zeros (if necessary) |
| * so the copy has the specified length. For all indices that are |
| * valid in both the original array and the copy, the two arrays will |
| * contain identical values. For any indices that are valid in the |
| * copy but not the original, the copy will contain {@code 0L}. |
| * Such indices will exist if and only if the specified length |
| * is greater than that of the original array. |
| * |
| * @param original the array to be copied |
| * @param newLength the length of the copy to be returned |
| * @return a copy of the original array, truncated or padded with zeros |
| * to obtain the specified length |
| * @throws NegativeArraySizeException if {@code newLength} is negative |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static long[] copyOf(long[] original, int newLength) { |
| long[] copy = new long[newLength]; |
| System.arraycopy(original, 0, copy, 0, |
| Math.min(original.length, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified array, truncating or padding with null characters (if necessary) |
| * so the copy has the specified length. For all indices that are valid |
| * in both the original array and the copy, the two arrays will contain |
| * identical values. For any indices that are valid in the copy but not |
| * the original, the copy will contain {@code '\u005cu0000'}. Such indices |
| * will exist if and only if the specified length is greater than that of |
| * the original array. |
| * |
| * @param original the array to be copied |
| * @param newLength the length of the copy to be returned |
| * @return a copy of the original array, truncated or padded with null characters |
| * to obtain the specified length |
| * @throws NegativeArraySizeException if {@code newLength} is negative |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static char[] copyOf(char[] original, int newLength) { |
| char[] copy = new char[newLength]; |
| System.arraycopy(original, 0, copy, 0, |
| Math.min(original.length, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified array, truncating or padding with zeros (if necessary) |
| * so the copy has the specified length. For all indices that are |
| * valid in both the original array and the copy, the two arrays will |
| * contain identical values. For any indices that are valid in the |
| * copy but not the original, the copy will contain {@code 0f}. |
| * Such indices will exist if and only if the specified length |
| * is greater than that of the original array. |
| * |
| * @param original the array to be copied |
| * @param newLength the length of the copy to be returned |
| * @return a copy of the original array, truncated or padded with zeros |
| * to obtain the specified length |
| * @throws NegativeArraySizeException if {@code newLength} is negative |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static float[] copyOf(float[] original, int newLength) { |
| float[] copy = new float[newLength]; |
| System.arraycopy(original, 0, copy, 0, |
| Math.min(original.length, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified array, truncating or padding with zeros (if necessary) |
| * so the copy has the specified length. For all indices that are |
| * valid in both the original array and the copy, the two arrays will |
| * contain identical values. For any indices that are valid in the |
| * copy but not the original, the copy will contain {@code 0d}. |
| * Such indices will exist if and only if the specified length |
| * is greater than that of the original array. |
| * |
| * @param original the array to be copied |
| * @param newLength the length of the copy to be returned |
| * @return a copy of the original array, truncated or padded with zeros |
| * to obtain the specified length |
| * @throws NegativeArraySizeException if {@code newLength} is negative |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static double[] copyOf(double[] original, int newLength) { |
| double[] copy = new double[newLength]; |
| System.arraycopy(original, 0, copy, 0, |
| Math.min(original.length, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified array, truncating or padding with {@code false} (if necessary) |
| * so the copy has the specified length. For all indices that are |
| * valid in both the original array and the copy, the two arrays will |
| * contain identical values. For any indices that are valid in the |
| * copy but not the original, the copy will contain {@code false}. |
| * Such indices will exist if and only if the specified length |
| * is greater than that of the original array. |
| * |
| * @param original the array to be copied |
| * @param newLength the length of the copy to be returned |
| * @return a copy of the original array, truncated or padded with false elements |
| * to obtain the specified length |
| * @throws NegativeArraySizeException if {@code newLength} is negative |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static boolean[] copyOf(boolean[] original, int newLength) { |
| boolean[] copy = new boolean[newLength]; |
| System.arraycopy(original, 0, copy, 0, |
| Math.min(original.length, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified range of the specified array into a new array. |
| * The initial index of the range ({@code from}) must lie between zero |
| * and {@code original.length}, inclusive. The value at |
| * {@code original[from]} is placed into the initial element of the copy |
| * (unless {@code from == original.length} or {@code from == to}). |
| * Values from subsequent elements in the original array are placed into |
| * subsequent elements in the copy. The final index of the range |
| * ({@code to}), which must be greater than or equal to {@code from}, |
| * may be greater than {@code original.length}, in which case |
| * {@code null} is placed in all elements of the copy whose index is |
| * greater than or equal to {@code original.length - from}. The length |
| * of the returned array will be {@code to - from}. |
| * <p> |
| * The resulting array is of exactly the same class as the original array. |
| * |
| * @param <T> the class of the objects in the array |
| * @param original the array from which a range is to be copied |
| * @param from the initial index of the range to be copied, inclusive |
| * @param to the final index of the range to be copied, exclusive. |
| * (This index may lie outside the array.) |
| * @return a new array containing the specified range from the original array, |
| * truncated or padded with nulls to obtain the required length |
| * @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
| * or {@code from > original.length} |
| * @throws IllegalArgumentException if {@code from > to} |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> T[] copyOfRange(T[] original, int from, int to) { |
| return copyOfRange(original, from, to, (Class<? extends T[]>) original.getClass()); |
| } |
| |
| /** |
| * Copies the specified range of the specified array into a new array. |
| * The initial index of the range ({@code from}) must lie between zero |
| * and {@code original.length}, inclusive. The value at |
| * {@code original[from]} is placed into the initial element of the copy |
| * (unless {@code from == original.length} or {@code from == to}). |
| * Values from subsequent elements in the original array are placed into |
| * subsequent elements in the copy. The final index of the range |
| * ({@code to}), which must be greater than or equal to {@code from}, |
| * may be greater than {@code original.length}, in which case |
| * {@code null} is placed in all elements of the copy whose index is |
| * greater than or equal to {@code original.length - from}. The length |
| * of the returned array will be {@code to - from}. |
| * The resulting array is of the class {@code newType}. |
| * |
| * @param <U> the class of the objects in the original array |
| * @param <T> the class of the objects in the returned array |
| * @param original the array from which a range is to be copied |
| * @param from the initial index of the range to be copied, inclusive |
| * @param to the final index of the range to be copied, exclusive. |
| * (This index may lie outside the array.) |
| * @param newType the class of the copy to be returned |
| * @return a new array containing the specified range from the original array, |
| * truncated or padded with nulls to obtain the required length |
| * @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
| * or {@code from > original.length} |
| * @throws IllegalArgumentException if {@code from > to} |
| * @throws NullPointerException if {@code original} is null |
| * @throws ArrayStoreException if an element copied from |
| * {@code original} is not of a runtime type that can be stored in |
| * an array of class {@code newType}. |
| * @since 1.6 |
| */ |
| @IntrinsicCandidate |
| public static <T,U> T[] copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType) { |
| int newLength = to - from; |
| if (newLength < 0) |
| throw new IllegalArgumentException(from + " > " + to); |
| @SuppressWarnings("unchecked") |
| T[] copy = ((Object)newType == (Object)Object[].class) |
| ? (T[]) new Object[newLength] |
| : (T[]) Array.newInstance(newType.getComponentType(), newLength); |
| System.arraycopy(original, from, copy, 0, |
| Math.min(original.length - from, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified range of the specified array into a new array. |
| * The initial index of the range ({@code from}) must lie between zero |
| * and {@code original.length}, inclusive. The value at |
| * {@code original[from]} is placed into the initial element of the copy |
| * (unless {@code from == original.length} or {@code from == to}). |
| * Values from subsequent elements in the original array are placed into |
| * subsequent elements in the copy. The final index of the range |
| * ({@code to}), which must be greater than or equal to {@code from}, |
| * may be greater than {@code original.length}, in which case |
| * {@code (byte)0} is placed in all elements of the copy whose index is |
| * greater than or equal to {@code original.length - from}. The length |
| * of the returned array will be {@code to - from}. |
| * |
| * @param original the array from which a range is to be copied |
| * @param from the initial index of the range to be copied, inclusive |
| * @param to the final index of the range to be copied, exclusive. |
| * (This index may lie outside the array.) |
| * @return a new array containing the specified range from the original array, |
| * truncated or padded with zeros to obtain the required length |
| * @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
| * or {@code from > original.length} |
| * @throws IllegalArgumentException if {@code from > to} |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static byte[] copyOfRange(byte[] original, int from, int to) { |
| int newLength = to - from; |
| if (newLength < 0) |
| throw new IllegalArgumentException(from + " > " + to); |
| byte[] copy = new byte[newLength]; |
| System.arraycopy(original, from, copy, 0, |
| Math.min(original.length - from, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified range of the specified array into a new array. |
| * The initial index of the range ({@code from}) must lie between zero |
| * and {@code original.length}, inclusive. The value at |
| * {@code original[from]} is placed into the initial element of the copy |
| * (unless {@code from == original.length} or {@code from == to}). |
| * Values from subsequent elements in the original array are placed into |
| * subsequent elements in the copy. The final index of the range |
| * ({@code to}), which must be greater than or equal to {@code from}, |
| * may be greater than {@code original.length}, in which case |
| * {@code (short)0} is placed in all elements of the copy whose index is |
| * greater than or equal to {@code original.length - from}. The length |
| * of the returned array will be {@code to - from}. |
| * |
| * @param original the array from which a range is to be copied |
| * @param from the initial index of the range to be copied, inclusive |
| * @param to the final index of the range to be copied, exclusive. |
| * (This index may lie outside the array.) |
| * @return a new array containing the specified range from the original array, |
| * truncated or padded with zeros to obtain the required length |
| * @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
| * or {@code from > original.length} |
| * @throws IllegalArgumentException if {@code from > to} |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static short[] copyOfRange(short[] original, int from, int to) { |
| int newLength = to - from; |
| if (newLength < 0) |
| throw new IllegalArgumentException(from + " > " + to); |
| short[] copy = new short[newLength]; |
| System.arraycopy(original, from, copy, 0, |
| Math.min(original.length - from, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified range of the specified array into a new array. |
| * The initial index of the range ({@code from}) must lie between zero |
| * and {@code original.length}, inclusive. The value at |
| * {@code original[from]} is placed into the initial element of the copy |
| * (unless {@code from == original.length} or {@code from == to}). |
| * Values from subsequent elements in the original array are placed into |
| * subsequent elements in the copy. The final index of the range |
| * ({@code to}), which must be greater than or equal to {@code from}, |
| * may be greater than {@code original.length}, in which case |
| * {@code 0} is placed in all elements of the copy whose index is |
| * greater than or equal to {@code original.length - from}. The length |
| * of the returned array will be {@code to - from}. |
| * |
| * @param original the array from which a range is to be copied |
| * @param from the initial index of the range to be copied, inclusive |
| * @param to the final index of the range to be copied, exclusive. |
| * (This index may lie outside the array.) |
| * @return a new array containing the specified range from the original array, |
| * truncated or padded with zeros to obtain the required length |
| * @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
| * or {@code from > original.length} |
| * @throws IllegalArgumentException if {@code from > to} |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static int[] copyOfRange(int[] original, int from, int to) { |
| int newLength = to - from; |
| if (newLength < 0) |
| throw new IllegalArgumentException(from + " > " + to); |
| int[] copy = new int[newLength]; |
| System.arraycopy(original, from, copy, 0, |
| Math.min(original.length - from, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified range of the specified array into a new array. |
| * The initial index of the range ({@code from}) must lie between zero |
| * and {@code original.length}, inclusive. The value at |
| * {@code original[from]} is placed into the initial element of the copy |
| * (unless {@code from == original.length} or {@code from == to}). |
| * Values from subsequent elements in the original array are placed into |
| * subsequent elements in the copy. The final index of the range |
| * ({@code to}), which must be greater than or equal to {@code from}, |
| * may be greater than {@code original.length}, in which case |
| * {@code 0L} is placed in all elements of the copy whose index is |
| * greater than or equal to {@code original.length - from}. The length |
| * of the returned array will be {@code to - from}. |
| * |
| * @param original the array from which a range is to be copied |
| * @param from the initial index of the range to be copied, inclusive |
| * @param to the final index of the range to be copied, exclusive. |
| * (This index may lie outside the array.) |
| * @return a new array containing the specified range from the original array, |
| * truncated or padded with zeros to obtain the required length |
| * @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
| * or {@code from > original.length} |
| * @throws IllegalArgumentException if {@code from > to} |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static long[] copyOfRange(long[] original, int from, int to) { |
| int newLength = to - from; |
| if (newLength < 0) |
| throw new IllegalArgumentException(from + " > " + to); |
| long[] copy = new long[newLength]; |
| System.arraycopy(original, from, copy, 0, |
| Math.min(original.length - from, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified range of the specified array into a new array. |
| * The initial index of the range ({@code from}) must lie between zero |
| * and {@code original.length}, inclusive. The value at |
| * {@code original[from]} is placed into the initial element of the copy |
| * (unless {@code from == original.length} or {@code from == to}). |
| * Values from subsequent elements in the original array are placed into |
| * subsequent elements in the copy. The final index of the range |
| * ({@code to}), which must be greater than or equal to {@code from}, |
| * may be greater than {@code original.length}, in which case |
| * {@code '\u005cu0000'} is placed in all elements of the copy whose index is |
| * greater than or equal to {@code original.length - from}. The length |
| * of the returned array will be {@code to - from}. |
| * |
| * @param original the array from which a range is to be copied |
| * @param from the initial index of the range to be copied, inclusive |
| * @param to the final index of the range to be copied, exclusive. |
| * (This index may lie outside the array.) |
| * @return a new array containing the specified range from the original array, |
| * truncated or padded with null characters to obtain the required length |
| * @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
| * or {@code from > original.length} |
| * @throws IllegalArgumentException if {@code from > to} |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static char[] copyOfRange(char[] original, int from, int to) { |
| int newLength = to - from; |
| if (newLength < 0) |
| throw new IllegalArgumentException(from + " > " + to); |
| char[] copy = new char[newLength]; |
| System.arraycopy(original, from, copy, 0, |
| Math.min(original.length - from, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified range of the specified array into a new array. |
| * The initial index of the range ({@code from}) must lie between zero |
| * and {@code original.length}, inclusive. The value at |
| * {@code original[from]} is placed into the initial element of the copy |
| * (unless {@code from == original.length} or {@code from == to}). |
| * Values from subsequent elements in the original array are placed into |
| * subsequent elements in the copy. The final index of the range |
| * ({@code to}), which must be greater than or equal to {@code from}, |
| * may be greater than {@code original.length}, in which case |
| * {@code 0f} is placed in all elements of the copy whose index is |
| * greater than or equal to {@code original.length - from}. The length |
| * of the returned array will be {@code to - from}. |
| * |
| * @param original the array from which a range is to be copied |
| * @param from the initial index of the range to be copied, inclusive |
| * @param to the final index of the range to be copied, exclusive. |
| * (This index may lie outside the array.) |
| * @return a new array containing the specified range from the original array, |
| * truncated or padded with zeros to obtain the required length |
| * @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
| * or {@code from > original.length} |
| * @throws IllegalArgumentException if {@code from > to} |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static float[] copyOfRange(float[] original, int from, int to) { |
| int newLength = to - from; |
| if (newLength < 0) |
| throw new IllegalArgumentException(from + " > " + to); |
| float[] copy = new float[newLength]; |
| System.arraycopy(original, from, copy, 0, |
| Math.min(original.length - from, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified range of the specified array into a new array. |
| * The initial index of the range ({@code from}) must lie between zero |
| * and {@code original.length}, inclusive. The value at |
| * {@code original[from]} is placed into the initial element of the copy |
| * (unless {@code from == original.length} or {@code from == to}). |
| * Values from subsequent elements in the original array are placed into |
| * subsequent elements in the copy. The final index of the range |
| * ({@code to}), which must be greater than or equal to {@code from}, |
| * may be greater than {@code original.length}, in which case |
| * {@code 0d} is placed in all elements of the copy whose index is |
| * greater than or equal to {@code original.length - from}. The length |
| * of the returned array will be {@code to - from}. |
| * |
| * @param original the array from which a range is to be copied |
| * @param from the initial index of the range to be copied, inclusive |
| * @param to the final index of the range to be copied, exclusive. |
| * (This index may lie outside the array.) |
| * @return a new array containing the specified range from the original array, |
| * truncated or padded with zeros to obtain the required length |
| * @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
| * or {@code from > original.length} |
| * @throws IllegalArgumentException if {@code from > to} |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static double[] copyOfRange(double[] original, int from, int to) { |
| int newLength = to - from; |
| if (newLength < 0) |
| throw new IllegalArgumentException(from + " > " + to); |
| double[] copy = new double[newLength]; |
| System.arraycopy(original, from, copy, 0, |
| Math.min(original.length - from, newLength)); |
| return copy; |
| } |
| |
| /** |
| * Copies the specified range of the specified array into a new array. |
| * The initial index of the range ({@code from}) must lie between zero |
| * and {@code original.length}, inclusive. The value at |
| * {@code original[from]} is placed into the initial element of the copy |
| * (unless {@code from == original.length} or {@code from == to}). |
| * Values from subsequent elements in the original array are placed into |
| * subsequent elements in the copy. The final index of the range |
| * ({@code to}), which must be greater than or equal to {@code from}, |
| * may be greater than {@code original.length}, in which case |
| * {@code false} is placed in all elements of the copy whose index is |
| * greater than or equal to {@code original.length - from}. The length |
| * of the returned array will be {@code to - from}. |
| * |
| * @param original the array from which a range is to be copied |
| * @param from the initial index of the range to be copied, inclusive |
| * @param to the final index of the range to be copied, exclusive. |
| * (This index may lie outside the array.) |
| * @return a new array containing the specified range from the original array, |
| * truncated or padded with false elements to obtain the required length |
| * @throws ArrayIndexOutOfBoundsException if {@code from < 0} |
| * or {@code from > original.length} |
| * @throws IllegalArgumentException if {@code from > to} |
| * @throws NullPointerException if {@code original} is null |
| * @since 1.6 |
| */ |
| public static boolean[] copyOfRange(boolean[] original, int from, int to) { |
| int newLength = to - from; |
| if (newLength < 0) |
| throw new IllegalArgumentException(from + " > " + to); |
| boolean[] copy = new boolean[newLength]; |
| System.arraycopy(original, from, copy, 0, |
| Math.min(original.length - from, newLength)); |
| return copy; |
| } |
| |
| // Misc |
| |
| /** |
| * Returns a fixed-size list backed by the specified array. Changes made to |
| * the array will be visible in the returned list, and changes made to the |
| * list will be visible in the array. The returned list is |
| * {@link Serializable} and implements {@link RandomAccess}. |
| * |
| * <p>The returned list implements the optional {@code Collection} methods, except |
| * those that would change the size of the returned list. Those methods leave |
| * the list unchanged and throw {@link UnsupportedOperationException}. |
| * |
| * @apiNote |
| * This method acts as bridge between array-based and collection-based |
| * APIs, in combination with {@link Collection#toArray}. |
| * |
| * <p>This method provides a way to wrap an existing array: |
| * <pre>{@code |
| * Integer[] numbers = ... |
| * ... |
| * List<Integer> values = Arrays.asList(numbers); |
| * }</pre> |
| * |
| * <p>This method also provides a convenient way to create a fixed-size |
| * list initialized to contain several elements: |
| * <pre>{@code |
| * List<String> stooges = Arrays.asList("Larry", "Moe", "Curly"); |
| * }</pre> |
| * |
| * <p><em>The list returned by this method is modifiable.</em> |
| * To create an unmodifiable list, use |
| * {@link Collections#unmodifiableList Collections.unmodifiableList} |
| * or <a href="List.html#unmodifiable">Unmodifiable Lists</a>. |
| * |
| * @param <T> the class of the objects in the array |
| * @param a the array by which the list will be backed |
| * @return a list view of the specified array |
| * @throws NullPointerException if the specified array is {@code null} |
| */ |
| @SafeVarargs |
| @SuppressWarnings("varargs") |
| public static <T> List<T> asList(T... a) { |
| return new ArrayList<>(a); |
| } |
| |
| /** |
| * Since Android 15 Arrays.asList(...).toArray()'s component type is {@link Object}, |
| * not the underlying array's elements type. So the following code will throw |
| * {@link ClassCastException}: |
| * <pre>{@code |
| * String[] elements = (String[]) Arrays.asList("one", "two").toArray(); |
| * }</pre> |
| * You can overcome this by using {@link Collection#toArray(Object[])}: |
| * <pre>{@code |
| * String[] elements = Arrays.asList("two", "one").toArray(new String[0]); |
| * }</pre> |
| * @hide |
| */ |
| @ChangeId |
| @EnabledSince(targetSdkVersion = VersionCodes.VANILLA_ICE_CREAM) |
| public static final long DO_NOT_CLONE_IN_ARRAYS_AS_LIST = 202956589L; |
| |
| /** |
| * @serial include |
| */ |
| private static class ArrayList<E> extends AbstractList<E> |
| implements RandomAccess, java.io.Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = -2764017481108945198L; |
| private final E[] a; |
| |
| ArrayList(E[] array) { |
| a = Objects.requireNonNull(array); |
| } |
| |
| @Override |
| public int size() { |
| return a.length; |
| } |
| |
| @Override |
| public Object[] toArray() { |
| // Android-changed: there are applications which expect this method |
| // to return array with component type E, not just Object. |
| // Keeping pre-Java 9 behaviour for compatibility's sake. |
| // See b/204397945. |
| if (VMRuntime.getSdkVersion() >= VersionCodes.VANILLA_ICE_CREAM |
| && Compatibility.isChangeEnabled(DO_NOT_CLONE_IN_ARRAYS_AS_LIST)) { |
| return toArrayWithoutComponentType(); |
| } |
| return toArrayPreserveComponentType(); |
| } |
| |
| private Object[] toArrayWithoutComponentType() { |
| return Arrays.copyOf(a, a.length, Object[].class); |
| } |
| |
| private Object[] toArrayPreserveComponentType() { |
| return a.clone(); |
| } |
| |
| @Override |
| @SuppressWarnings("unchecked") |
| public <T> T[] toArray(T[] a) { |
| int size = size(); |
| if (a.length < size) |
| return Arrays.copyOf(this.a, size, |
| (Class<? extends T[]>) a.getClass()); |
| System.arraycopy(this.a, 0, a, 0, size); |
| if (a.length > size) |
| a[size] = null; |
| return a; |
| } |
| |
| @Override |
| public E get(int index) { |
| return a[index]; |
| } |
| |
| @Override |
| public E set(int index, E element) { |
| E oldValue = a[index]; |
| a[index] = element; |
| return oldValue; |
| } |
| |
| @Override |
| public int indexOf(Object o) { |
| E[] a = this.a; |
| if (o == null) { |
| for (int i = 0; i < a.length; i++) |
| if (a[i] == null) |
| return i; |
| } else { |
| for (int i = 0; i < a.length; i++) |
| if (o.equals(a[i])) |
| return i; |
| } |
| return -1; |
| } |
| |
| @Override |
| public boolean contains(Object o) { |
| return indexOf(o) >= 0; |
| } |
| |
| @Override |
| public Spliterator<E> spliterator() { |
| return Spliterators.spliterator(a, Spliterator.ORDERED); |
| } |
| |
| @Override |
| public void forEach(Consumer<? super E> action) { |
| Objects.requireNonNull(action); |
| for (E e : a) { |
| action.accept(e); |
| } |
| } |
| |
| @Override |
| public void replaceAll(UnaryOperator<E> operator) { |
| Objects.requireNonNull(operator); |
| E[] a = this.a; |
| for (int i = 0; i < a.length; i++) { |
| a[i] = operator.apply(a[i]); |
| } |
| } |
| |
| @Override |
| public void sort(Comparator<? super E> c) { |
| Arrays.sort(a, c); |
| } |
| |
| @Override |
| public Iterator<E> iterator() { |
| return new ArrayItr<>(a); |
| } |
| } |
| |
| private static class ArrayItr<E> implements Iterator<E> { |
| private int cursor; |
| private final E[] a; |
| |
| ArrayItr(E[] a) { |
| this.a = a; |
| } |
| |
| @Override |
| public boolean hasNext() { |
| return cursor < a.length; |
| } |
| |
| @Override |
| public E next() { |
| int i = cursor; |
| if (i >= a.length) { |
| throw new NoSuchElementException(); |
| } |
| cursor = i + 1; |
| return a[i]; |
| } |
| } |
| |
| /** |
| * Returns a hash code based on the contents of the specified array. |
| * For any two {@code long} arrays {@code a} and {@code b} |
| * such that {@code Arrays.equals(a, b)}, it is also the case that |
| * {@code Arrays.hashCode(a) == Arrays.hashCode(b)}. |
| * |
| * <p>The value returned by this method is the same value that would be |
| * obtained by invoking the {@link List#hashCode() hashCode} |
| * method on a {@link List} containing a sequence of {@link Long} |
| * instances representing the elements of {@code a} in the same order. |
| * If {@code a} is {@code null}, this method returns 0. |
| * |
| * @param a the array whose hash value to compute |
| * @return a content-based hash code for {@code a} |
| * @since 1.5 |
| */ |
| public static int hashCode(long a[]) { |
| if (a == null) |
| return 0; |
| |
| int result = 1; |
| for (long element : a) { |
| int elementHash = (int)(element ^ (element >>> 32)); |
| result = 31 * result + elementHash; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Returns a hash code based on the contents of the specified array. |
| * For any two non-null {@code int} arrays {@code a} and {@code b} |
| * such that {@code Arrays.equals(a, b)}, it is also the case that |
| * {@code Arrays.hashCode(a) == Arrays.hashCode(b)}. |
| * |
| * <p>The value returned by this method is the same value that would be |
| * obtained by invoking the {@link List#hashCode() hashCode} |
| * method on a {@link List} containing a sequence of {@link Integer} |
| * instances representing the elements of {@code a} in the same order. |
| * If {@code a} is {@code null}, this method returns 0. |
| * |
| * @param a the array whose hash value to compute |
| * @return a content-based hash code for {@code a} |
| * @since 1.5 |
| */ |
| public static int hashCode(int a[]) { |
| if (a == null) |
| return 0; |
| |
| int result = 1; |
| for (int element : a) |
| result = 31 * result + element; |
| |
| return result; |
| } |
| |
| /** |
| * Returns a hash code based on the contents of the specified array. |
| * For any two {@code short} arrays {@code a} and {@code b} |
| * such that {@code Arrays.equals(a, b)}, it is also the case that |
| * {@code Arrays.hashCode(a) == Arrays.hashCode(b)}. |
| * |
| * <p>The value returned by this method is the same value that would be |
| * obtained by invoking the {@link List#hashCode() hashCode} |
| * method on a {@link List} containing a sequence of {@link Short} |
| * instances representing the elements of {@code a} in the same order. |
| * If {@code a} is {@code null}, this method returns 0. |
| * |
| * @param a the array whose hash value to compute |
| * @return a content-based hash code for {@code a} |
| * @since 1.5 |
| */ |
| public static int hashCode(short a[]) { |
| if (a == null) |
| return 0; |
| |
| int result = 1; |
| for (short element : a) |
| result = 31 * result + element; |
| |
| return result; |
| } |
| |
| /** |
| * Returns a hash code based on the contents of the specified array. |
| * For any two {@code char} arrays {@code a} and {@code b} |
| * such that {@code Arrays.equals(a, b)}, it is also the case that |
| * {@code Arrays.hashCode(a) == Arrays.hashCode(b)}. |
| * |
| * <p>The value returned by this method is the same value that would be |
| * obtained by invoking the {@link List#hashCode() hashCode} |
| * method on a {@link List} containing a sequence of {@link Character} |
| * instances representing the elements of {@code a} in the same order. |
| * If {@code a} is {@code null}, this method returns 0. |
| * |
| * @param a the array whose hash value to compute |
| * @return a content-based hash code for {@code a} |
| * @since 1.5 |
| */ |
| public static int hashCode(char a[]) { |
| if (a == null) |
| return 0; |
| |
| int result = 1; |
| for (char element : a) |
| result = 31 * result + element; |
| |
| return result; |
| } |
| |
| /** |
| * Returns a hash code based on the contents of the specified array. |
| * For any two {@code byte} arrays {@code a} and {@code b} |
| * such that {@code Arrays.equals(a, b)}, it is also the case that |
| * {@code Arrays.hashCode(a) == Arrays.hashCode(b)}. |
| * |
| * <p>The value returned by this method is the same value that would be |
| * obtained by invoking the {@link List#hashCode() hashCode} |
| * method on a {@link List} containing a sequence of {@link Byte} |
| * instances representing the elements of {@code a} in the same order. |
| * If {@code a} is {@code null}, this method returns 0. |
| * |
| * @param a the array whose hash value to compute |
| * @return a content-based hash code for {@code a} |
| * @since 1.5 |
| */ |
| public static int hashCode(byte a[]) { |
| if (a == null) |
| return 0; |
| |
| int result = 1; |
| for (byte element : a) |
| result = 31 * result + element; |
| |
| return result; |
| } |
| |
| /** |
| * Returns a hash code based on the contents of the specified array. |
| * For any two {@code boolean} arrays {@code a} and {@code b} |
| * such that {@code Arrays.equals(a, b)}, it is also the case that |
| * {@code Arrays.hashCode(a) == Arrays.hashCode(b)}. |
| * |
| * <p>The value returned by this method is the same value that would be |
| * obtained by invoking the {@link List#hashCode() hashCode} |
| * method on a {@link List} containing a sequence of {@link Boolean} |
| * instances representing the elements of {@code a} in the same order. |
| * If {@code a} is {@code null}, this method returns 0. |
| * |
| * @param a the array whose hash value to compute |
| * @return a content-based hash code for {@code a} |
| * @since 1.5 |
| */ |
| public static int hashCode(boolean a[]) { |
| if (a == null) |
| return 0; |
| |
| int result = 1; |
| for (boolean element : a) |
| result = 31 * result + (element ? 1231 : 1237); |
| |
| return result; |
| } |
| |
| /** |
| * Returns a hash code based on the contents of the specified array. |
| * For any two {@code float} arrays {@code a} and {@code b} |
| * such that {@code Arrays.equals(a, b)}, it is also the case that |
| * {@code Arrays.hashCode(a) == Arrays.hashCode(b)}. |
| * |
| * <p>The value returned by this method is the same value that would be |
| * obtained by invoking the {@link List#hashCode() hashCode} |
| * method on a {@link List} containing a sequence of {@link Float} |
| * instances representing the elements of {@code a} in the same order. |
| * If {@code a} is {@code null}, this method returns 0. |
| * |
| * @param a the array whose hash value to compute |
| * @return a content-based hash code for {@code a} |
| * @since 1.5 |
| */ |
| public static int hashCode(float a[]) { |
| if (a == null) |
| return 0; |
| |
| int result = 1; |
| for (float element : a) |
| result = 31 * result + Float.floatToIntBits(element); |
| |
| return result; |
| } |
| |
| /** |
| * Returns a hash code based on the contents of the specified array. |
| * For any two {@code double} arrays {@code a} and {@code b} |
| * such that {@code Arrays.equals(a, b)}, it is also the case that |
| * {@code Arrays.hashCode(a) == Arrays.hashCode(b)}. |
| * |
| * <p>The value returned by this method is the same value that would be |
| * obtained by invoking the {@link List#hashCode() hashCode} |
| * method on a {@link List} containing a sequence of {@link Double} |
| * instances representing the elements of {@code a} in the same order. |
| * If {@code a} is {@code null}, this method returns 0. |
| * |
| * @param a the array whose hash value to compute |
| * @return a content-based hash code for {@code a} |
| * @since 1.5 |
| */ |
| public static int hashCode(double a[]) { |
| if (a == null) |
| return 0; |
| |
| int result = 1; |
| for (double element : a) { |
| long bits = Double.doubleToLongBits(element); |
| result = 31 * result + (int)(bits ^ (bits >>> 32)); |
| } |
| return result; |
| } |
| |
| /** |
| * Returns a hash code based on the contents of the specified array. If |
| * the array contains other arrays as elements, the hash code is based on |
| * their identities rather than their contents. It is therefore |
| * acceptable to invoke this method on an array that contains itself as an |
| * element, either directly or indirectly through one or more levels of |
| * arrays. |
| * |
| * <p>For any two arrays {@code a} and {@code b} such that |
| * {@code Arrays.equals(a, b)}, it is also the case that |
| * {@code Arrays.hashCode(a) == Arrays.hashCode(b)}. |
| * |
| * <p>The value returned by this method is equal to the value that would |
| * be returned by {@code Arrays.asList(a).hashCode()}, unless {@code a} |
| * is {@code null}, in which case {@code 0} is returned. |
| * |
| * @param a the array whose content-based hash code to compute |
| * @return a content-based hash code for {@code a} |
| * @see #deepHashCode(Object[]) |
| * @since 1.5 |
| */ |
| public static int hashCode(Object a[]) { |
| if (a == null) |
| return 0; |
| |
| int result = 1; |
| |
| for (Object element : a) |
| result = 31 * result + (element == null ? 0 : element.hashCode()); |
| |
| return result; |
| } |
| |
| /** |
| * Returns a hash code based on the "deep contents" of the specified |
| * array. If the array contains other arrays as elements, the |
| * hash code is based on their contents and so on, ad infinitum. |
| * It is therefore unacceptable to invoke this method on an array that |
| * contains itself as an element, either directly or indirectly through |
| * one or more levels of arrays. The behavior of such an invocation is |
| * undefined. |
| * |
| * <p>For any two arrays {@code a} and {@code b} such that |
| * {@code Arrays.deepEquals(a, b)}, it is also the case that |
| * {@code Arrays.deepHashCode(a) == Arrays.deepHashCode(b)}. |
| * |
| * <p>The computation of the value returned by this method is similar to |
| * that of the value returned by {@link List#hashCode()} on a list |
| * containing the same elements as {@code a} in the same order, with one |
| * difference: If an element {@code e} of {@code a} is itself an array, |
| * its hash code is computed not by calling {@code e.hashCode()}, but as |
| * by calling the appropriate overloading of {@code Arrays.hashCode(e)} |
| * if {@code e} is an array of a primitive type, or as by calling |
| * {@code Arrays.deepHashCode(e)} recursively if {@code e} is an array |
| * of a reference type. If {@code a} is {@code null}, this method |
| * returns 0. |
| * |
| * @param a the array whose deep-content-based hash code to compute |
| * @return a deep-content-based hash code for {@code a} |
| * @see #hashCode(Object[]) |
| * @since 1.5 |
| */ |
| public static int deepHashCode(Object a[]) { |
| if (a == null) |
| return 0; |
| |
| int result = 1; |
| |
| for (Object element : a) { |
| final int elementHash; |
| final Class<?> cl; |
| if (element == null) |
| elementHash = 0; |
| else if ((cl = element.getClass().getComponentType()) == null) |
| elementHash = element.hashCode(); |
| else if (element instanceof Object[]) |
| elementHash = deepHashCode((Object[]) element); |
| else |
| elementHash = primitiveArrayHashCode(element, cl); |
| |
| result = 31 * result + elementHash; |
| } |
| |
| return result; |
| } |
| |
| private static int primitiveArrayHashCode(Object a, Class<?> cl) { |
| return |
| (cl == byte.class) ? hashCode((byte[]) a) : |
| (cl == int.class) ? hashCode((int[]) a) : |
| (cl == long.class) ? hashCode((long[]) a) : |
| (cl == char.class) ? hashCode((char[]) a) : |
| (cl == short.class) ? hashCode((short[]) a) : |
| (cl == boolean.class) ? hashCode((boolean[]) a) : |
| (cl == double.class) ? hashCode((double[]) a) : |
| // If new primitive types are ever added, this method must be |
| // expanded or we will fail here with ClassCastException. |
| hashCode((float[]) a); |
| } |
| |
| /** |
| * Returns {@code true} if the two specified arrays are <i>deeply |
| * equal</i> to one another. Unlike the {@link #equals(Object[],Object[])} |
| * method, this method is appropriate for use with nested arrays of |
| * arbitrary depth. |
| * |
| * <p>Two array references are considered deeply equal if both |
| * are {@code null}, or if they refer to arrays that contain the same |
| * number of elements and all corresponding pairs of elements in the two |
| * arrays are deeply equal. |
| * |
| * <p>Two possibly {@code null} elements {@code e1} and {@code e2} are |
| * deeply equal if any of the following conditions hold: |
| * <ul> |
| * <li> {@code e1} and {@code e2} are both arrays of object reference |
| * types, and {@code Arrays.deepEquals(e1, e2) would return true} |
| * <li> {@code e1} and {@code e2} are arrays of the same primitive |
| * type, and the appropriate overloading of |
| * {@code Arrays.equals(e1, e2)} would return true. |
| * <li> {@code e1 == e2} |
| * <li> {@code e1.equals(e2)} would return true. |
| * </ul> |
| * Note that this definition permits {@code null} elements at any depth. |
| * |
| * <p>If either of the specified arrays contain themselves as elements |
| * either directly or indirectly through one or more levels of arrays, |
| * the behavior of this method is undefined. |
| * |
| * @param a1 one array to be tested for equality |
| * @param a2 the other array to be tested for equality |
| * @return {@code true} if the two arrays are equal |
| * @see #equals(Object[],Object[]) |
| * @see Objects#deepEquals(Object, Object) |
| * @since 1.5 |
| */ |
| public static boolean deepEquals(Object[] a1, Object[] a2) { |
| if (a1 == a2) |
| return true; |
| if (a1 == null || a2==null) |
| return false; |
| int length = a1.length; |
| if (a2.length != length) |
| return false; |
| |
| for (int i = 0; i < length; i++) { |
| Object e1 = a1[i]; |
| Object e2 = a2[i]; |
| |
| if (e1 == e2) |
| continue; |
| if (e1 == null) |
| return false; |
| |
| // Figure out whether the two elements are equal |
| boolean eq = deepEquals0(e1, e2); |
| |
| if (!eq) |
| return false; |
| } |
| return true; |
| } |
| |
| static boolean deepEquals0(Object e1, Object e2) { |
| assert e1 != null; |
| boolean eq; |
| if (e1 instanceof Object[] && e2 instanceof Object[]) |
| eq = deepEquals ((Object[]) e1, (Object[]) e2); |
| else if (e1 instanceof byte[] && e2 instanceof byte[]) |
| eq = equals((byte[]) e1, (byte[]) e2); |
| else if (e1 instanceof short[] && e2 instanceof short[]) |
| eq = equals((short[]) e1, (short[]) e2); |
| else if (e1 instanceof int[] && e2 instanceof int[]) |
| eq = equals((int[]) e1, (int[]) e2); |
| else if (e1 instanceof long[] && e2 instanceof long[]) |
| eq = equals((long[]) e1, (long[]) e2); |
| else if (e1 instanceof char[] && e2 instanceof char[]) |
| eq = equals((char[]) e1, (char[]) e2); |
| else if (e1 instanceof float[] && e2 instanceof float[]) |
| eq = equals((float[]) e1, (float[]) e2); |
| else if (e1 instanceof double[] && e2 instanceof double[]) |
| eq = equals((double[]) e1, (double[]) e2); |
| else if (e1 instanceof boolean[] && e2 instanceof boolean[]) |
| eq = equals((boolean[]) e1, (boolean[]) e2); |
| else |
| eq = e1.equals(e2); |
| return eq; |
| } |
| |
| /** |
| * Returns a string representation of the contents of the specified array. |
| * The string representation consists of a list of the array's elements, |
| * enclosed in square brackets ({@code "[]"}). Adjacent elements are |
| * separated by the characters {@code ", "} (a comma followed by a |
| * space). Elements are converted to strings as by |
| * {@code String.valueOf(long)}. Returns {@code "null"} if {@code a} |
| * is {@code null}. |
| * |
| * @param a the array whose string representation to return |
| * @return a string representation of {@code a} |
| * @since 1.5 |
| */ |
| public static String toString(long[] a) { |
| if (a == null) |
| return "null"; |
| int iMax = a.length - 1; |
| if (iMax == -1) |
| return "[]"; |
| |
| StringBuilder b = new StringBuilder(); |
| b.append('['); |
| for (int i = 0; ; i++) { |
| b.append(a[i]); |
| if (i == iMax) |
| return b.append(']').toString(); |
| b.append(", "); |
| } |
| } |
| |
| /** |
| * Returns a string representation of the contents of the specified array. |
| * The string representation consists of a list of the array's elements, |
| * enclosed in square brackets ({@code "[]"}). Adjacent elements are |
| * separated by the characters {@code ", "} (a comma followed by a |
| * space). Elements are converted to strings as by |
| * {@code String.valueOf(int)}. Returns {@code "null"} if {@code a} is |
| * {@code null}. |
| * |
| * @param a the array whose string representation to return |
| * @return a string representation of {@code a} |
| * @since 1.5 |
| */ |
| public static String toString(int[] a) { |
| if (a == null) |
| return "null"; |
| int iMax = a.length - 1; |
| if (iMax == -1) |
| return "[]"; |
| |
| StringBuilder b = new StringBuilder(); |
| b.append('['); |
| for (int i = 0; ; i++) { |
| b.append(a[i]); |
| if (i == iMax) |
| return b.append(']').toString(); |
| b.append(", "); |
| } |
| } |
| |
| /** |
| * Returns a string representation of the contents of the specified array. |
| * The string representation consists of a list of the array's elements, |
| * enclosed in square brackets ({@code "[]"}). Adjacent elements are |
| * separated by the characters {@code ", "} (a comma followed by a |
| * space). Elements are converted to strings as by |
| * {@code String.valueOf(short)}. Returns {@code "null"} if {@code a} |
| * is {@code null}. |
| * |
| * @param a the array whose string representation to return |
| * @return a string representation of {@code a} |
| * @since 1.5 |
| */ |
| public static String toString(short[] a) { |
| if (a == null) |
| return "null"; |
| int iMax = a.length - 1; |
| if (iMax == -1) |
| return "[]"; |
| |
| StringBuilder b = new StringBuilder(); |
| b.append('['); |
| for (int i = 0; ; i++) { |
| b.append(a[i]); |
| if (i == iMax) |
| return b.append(']').toString(); |
| b.append(", "); |
| } |
| } |
| |
| /** |
| * Returns a string representation of the contents of the specified array. |
| * The string representation consists of a list of the array's elements, |
| * enclosed in square brackets ({@code "[]"}). Adjacent elements are |
| * separated by the characters {@code ", "} (a comma followed by a |
| * space). Elements are converted to strings as by |
| * {@code String.valueOf(char)}. Returns {@code "null"} if {@code a} |
| * is {@code null}. |
| * |
| * @param a the array whose string representation to return |
| * @return a string representation of {@code a} |
| * @since 1.5 |
| */ |
| public static String toString(char[] a) { |
| if (a == null) |
| return "null"; |
| int iMax = a.length - 1; |
| if (iMax == -1) |
| return "[]"; |
| |
| StringBuilder b = new StringBuilder(); |
| b.append('['); |
| for (int i = 0; ; i++) { |
| b.append(a[i]); |
| if (i == iMax) |
| return b.append(']').toString(); |
| b.append(", "); |
| } |
| } |
| |
| /** |
| * Returns a string representation of the contents of the specified array. |
| * The string representation consists of a list of the array's elements, |
| * enclosed in square brackets ({@code "[]"}). Adjacent elements |
| * are separated by the characters {@code ", "} (a comma followed |
| * by a space). Elements are converted to strings as by |
| * {@code String.valueOf(byte)}. Returns {@code "null"} if |
| * {@code a} is {@code null}. |
| * |
| * @param a the array whose string representation to return |
| * @return a string representation of {@code a} |
| * @since 1.5 |
| */ |
| public static String toString(byte[] a) { |
| if (a == null) |
| return "null"; |
| int iMax = a.length - 1; |
| if (iMax == -1) |
| return "[]"; |
| |
| StringBuilder b = new StringBuilder(); |
| b.append('['); |
| for (int i = 0; ; i++) { |
| b.append(a[i]); |
| if (i == iMax) |
| return b.append(']').toString(); |
| b.append(", "); |
| } |
| } |
| |
| /** |
| * Returns a string representation of the contents of the specified array. |
| * The string representation consists of a list of the array's elements, |
| * enclosed in square brackets ({@code "[]"}). Adjacent elements are |
| * separated by the characters {@code ", "} (a comma followed by a |
| * space). Elements are converted to strings as by |
| * {@code String.valueOf(boolean)}. Returns {@code "null"} if |
| * {@code a} is {@code null}. |
| * |
| * @param a the array whose string representation to return |
| * @return a string representation of {@code a} |
| * @since 1.5 |
| */ |
| public static String toString(boolean[] a) { |
| if (a == null) |
| return "null"; |
| int iMax = a.length - 1; |
| if (iMax == -1) |
| return "[]"; |
| |
| StringBuilder b = new StringBuilder(); |
| b.append('['); |
| for (int i = 0; ; i++) { |
| b.append(a[i]); |
| if (i == iMax) |
| return b.append(']').toString(); |
| b.append(", "); |
| } |
| } |
| |
| /** |
| * Returns a string representation of the contents of the specified array. |
| * The string representation consists of a list of the array's elements, |
| * enclosed in square brackets ({@code "[]"}). Adjacent elements are |
| * separated by the characters {@code ", "} (a comma followed by a |
| * space). Elements are converted to strings as by |
| * {@code String.valueOf(float)}. Returns {@code "null"} if {@code a} |
| * is {@code null}. |
| * |
| * @param a the array whose string representation to return |
| * @return a string representation of {@code a} |
| * @since 1.5 |
| */ |
| public static String toString(float[] a) { |
| if (a == null) |
| return "null"; |
| |
| int iMax = a.length - 1; |
| if (iMax == -1) |
| return "[]"; |
| |
| StringBuilder b = new StringBuilder(); |
| b.append('['); |
| for (int i = 0; ; i++) { |
| b.append(a[i]); |
| if (i == iMax) |
| return b.append(']').toString(); |
| b.append(", "); |
| } |
| } |
| |
| /** |
| * Returns a string representation of the contents of the specified array. |
| * The string representation consists of a list of the array's elements, |
| * enclosed in square brackets ({@code "[]"}). Adjacent elements are |
| * separated by the characters {@code ", "} (a comma followed by a |
| * space). Elements are converted to strings as by |
| * {@code String.valueOf(double)}. Returns {@code "null"} if {@code a} |
| * is {@code null}. |
| * |
| * @param a the array whose string representation to return |
| * @return a string representation of {@code a} |
| * @since 1.5 |
| */ |
| public static String toString(double[] a) { |
| if (a == null) |
| return "null"; |
| int iMax = a.length - 1; |
| if (iMax == -1) |
| return "[]"; |
| |
| StringBuilder b = new StringBuilder(); |
| b.append('['); |
| for (int i = 0; ; i++) { |
| b.append(a[i]); |
| if (i == iMax) |
| return b.append(']').toString(); |
| b.append(", "); |
| } |
| } |
| |
| /** |
| * Returns a string representation of the contents of the specified array. |
| * If the array contains other arrays as elements, they are converted to |
| * strings by the {@link Object#toString} method inherited from |
| * {@code Object}, which describes their <i>identities</i> rather than |
| * their contents. |
| * |
| * <p>The value returned by this method is equal to the value that would |
| * be returned by {@code Arrays.asList(a).toString()}, unless {@code a} |
| * is {@code null}, in which case {@code "null"} is returned. |
| * |
| * @param a the array whose string representation to return |
| * @return a string representation of {@code a} |
| * @see #deepToString(Object[]) |
| * @since 1.5 |
| */ |
| public static String toString(Object[] a) { |
| if (a == null) |
| return "null"; |
| |
| int iMax = a.length - 1; |
| if (iMax == -1) |
| return "[]"; |
| |
| StringBuilder b = new StringBuilder(); |
| b.append('['); |
| for (int i = 0; ; i++) { |
| b.append(String.valueOf(a[i])); |
| if (i == iMax) |
| return b.append(']').toString(); |
| b.append(", "); |
| } |
| } |
| |
| /** |
| * Returns a string representation of the "deep contents" of the specified |
| * array. If the array contains other arrays as elements, the string |
| * representation contains their contents and so on. This method is |
| * designed for converting multidimensional arrays to strings. |
| * |
| * <p>The string representation consists of a list of the array's |
| * elements, enclosed in square brackets ({@code "[]"}). Adjacent |
| * elements are separated by the characters {@code ", "} (a comma |
| * followed by a space). Elements are converted to strings as by |
| * {@code String.valueOf(Object)}, unless they are themselves |
| * arrays. |
| * |
| * <p>If an element {@code e} is an array of a primitive type, it is |
| * converted to a string as by invoking the appropriate overloading of |
| * {@code Arrays.toString(e)}. If an element {@code e} is an array of a |
| * reference type, it is converted to a string as by invoking |
| * this method recursively. |
| * |
| * <p>To avoid infinite recursion, if the specified array contains itself |
| * as an element, or contains an indirect reference to itself through one |
| * or more levels of arrays, the self-reference is converted to the string |
| * {@code "[...]"}. For example, an array containing only a reference |
| * to itself would be rendered as {@code "[[...]]"}. |
| * |
| * <p>This method returns {@code "null"} if the specified array |
| * is {@code null}. |
| * |
| * @param a the array whose string representation to return |
| * @return a string representation of {@code a} |
| * @see #toString(Object[]) |
| * @since 1.5 |
| */ |
| public static String deepToString(Object[] a) { |
| if (a == null) |
| return "null"; |
| |
| int bufLen = 20 * a.length; |
| if (a.length != 0 && bufLen <= 0) |
| bufLen = Integer.MAX_VALUE; |
| StringBuilder buf = new StringBuilder(bufLen); |
| deepToString(a, buf, new HashSet<>()); |
| return buf.toString(); |
| } |
| |
| private static void deepToString(Object[] a, StringBuilder buf, |
| Set<Object[]> dejaVu) { |
| if (a == null) { |
| buf.append("null"); |
| return; |
| } |
| int iMax = a.length - 1; |
| if (iMax == -1) { |
| buf.append("[]"); |
| return; |
| } |
| |
| dejaVu.add(a); |
| buf.append('['); |
| for (int i = 0; ; i++) { |
| |
| Object element = a[i]; |
| if (element == null) { |
| buf.append("null"); |
| } else { |
| Class<?> eClass = element.getClass(); |
| |
| if (eClass.isArray()) { |
| if (eClass == byte[].class) |
| buf.append(toString((byte[]) element)); |
| else if (eClass == short[].class) |
| buf.append(toString((short[]) element)); |
| else if (eClass == int[].class) |
| buf.append(toString((int[]) element)); |
| else if (eClass == long[].class) |
| buf.append(toString((long[]) element)); |
| else if (eClass == char[].class) |
| buf.append(toString((char[]) element)); |
| else if (eClass == float[].class) |
| buf.append(toString((float[]) element)); |
| else if (eClass == double[].class) |
| buf.append(toString((double[]) element)); |
| else if (eClass == boolean[].class) |
| buf.append(toString((boolean[]) element)); |
| else { // element is an array of object references |
| if (dejaVu.contains(element)) |
| buf.append("[...]"); |
| else |
| deepToString((Object[])element, buf, dejaVu); |
| } |
| } else { // element is non-null and not an array |
| buf.append(element.toString()); |
| } |
| } |
| if (i == iMax) |
| break; |
| buf.append(", "); |
| } |
| buf.append(']'); |
| dejaVu.remove(a); |
| } |
| |
| |
| /** |
| * Set all elements of the specified array, using the provided |
| * generator function to compute each element. |
| * |
| * <p>If the generator function throws an exception, it is relayed to |
| * the caller and the array is left in an indeterminate state. |
| * |
| * @apiNote |
| * Setting a subrange of an array, using a generator function to compute |
| * each element, can be written as follows: |
| * <pre>{@code |
| * IntStream.range(startInclusive, endExclusive) |
| * .forEach(i -> array[i] = generator.apply(i)); |
| * }</pre> |
| * |
| * @param <T> type of elements of the array |
| * @param array array to be initialized |
| * @param generator a function accepting an index and producing the desired |
| * value for that position |
| * @throws NullPointerException if the generator is null |
| * @since 1.8 |
| */ |
| public static <T> void setAll(T[] array, IntFunction<? extends T> generator) { |
| Objects.requireNonNull(generator); |
| for (int i = 0; i < array.length; i++) |
| array[i] = generator.apply(i); |
| } |
| |
| /** |
| * Set all elements of the specified array, in parallel, using the |
| * provided generator function to compute each element. |
| * |
| * <p>If the generator function throws an exception, an unchecked exception |
| * is thrown from {@code parallelSetAll} and the array is left in an |
| * indeterminate state. |
| * |
| * @apiNote |
| * Setting a subrange of an array, in parallel, using a generator function |
| * to compute each element, can be written as follows: |
| * <pre>{@code |
| * IntStream.range(startInclusive, endExclusive) |
| * .parallel() |
| * .forEach(i -> array[i] = generator.apply(i)); |
| * }</pre> |
| * |
| * @param <T> type of elements of the array |
| * @param array array to be initialized |
| * @param generator a function accepting an index and producing the desired |
| * value for that position |
| * @throws NullPointerException if the generator is null |
| * @since 1.8 |
| */ |
| public static <T> void parallelSetAll(T[] array, IntFunction<? extends T> generator) { |
| Objects.requireNonNull(generator); |
| IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.apply(i); }); |
| } |
| |
| /** |
| * Set all elements of the specified array, using the provided |
| * generator function to compute each element. |
| * |
| * <p>If the generator function throws an exception, it is relayed to |
| * the caller and the array is left in an indeterminate state. |
| * |
| * @apiNote |
| * Setting a subrange of an array, using a generator function to compute |
| * each element, can be written as follows: |
| * <pre>{@code |
| * IntStream.range(startInclusive, endExclusive) |
| * .forEach(i -> array[i] = generator.applyAsInt(i)); |
| * }</pre> |
| * |
| * @param array array to be initialized |
| * @param generator a function accepting an index and producing the desired |
| * value for that position |
| * @throws NullPointerException if the generator is null |
| * @since 1.8 |
| */ |
| public static void setAll(int[] array, IntUnaryOperator generator) { |
| Objects.requireNonNull(generator); |
| for (int i = 0; i < array.length; i++) |
| array[i] = generator.applyAsInt(i); |
| } |
| |
| /** |
| * Set all elements of the specified array, in parallel, using the |
| * provided generator function to compute each element. |
| * |
| * <p>If the generator function throws an exception, an unchecked exception |
| * is thrown from {@code parallelSetAll} and the array is left in an |
| * indeterminate state. |
| * |
| * @apiNote |
| * Setting a subrange of an array, in parallel, using a generator function |
| * to compute each element, can be written as follows: |
| * <pre>{@code |
| * IntStream.range(startInclusive, endExclusive) |
| * .parallel() |
| * .forEach(i -> array[i] = generator.applyAsInt(i)); |
| * }</pre> |
| * |
| * @param array array to be initialized |
| * @param generator a function accepting an index and producing the desired |
| * value for that position |
| * @throws NullPointerException if the generator is null |
| * @since 1.8 |
| */ |
| public static void parallelSetAll(int[] array, IntUnaryOperator generator) { |
| Objects.requireNonNull(generator); |
| IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.applyAsInt(i); }); |
| } |
| |
| /** |
| * Set all elements of the specified array, using the provided |
| * generator function to compute each element. |
| * |
| * <p>If the generator function throws an exception, it is relayed to |
| * the caller and the array is left in an indeterminate state. |
| * |
| * @apiNote |
| * Setting a subrange of an array, using a generator function to compute |
| * each element, can be written as follows: |
| * <pre>{@code |
| * IntStream.range(startInclusive, endExclusive) |
| * .forEach(i -> array[i] = generator.applyAsLong(i)); |
| * }</pre> |
| * |
| * @param array array to be initialized |
| * @param generator a function accepting an index and producing the desired |
| * value for that position |
| * @throws NullPointerException if the generator is null |
| * @since 1.8 |
| */ |
| public static void setAll(long[] array, IntToLongFunction generator) { |
| Objects.requireNonNull(generator); |
| for (int i = 0; i < array.length; i++) |
| array[i] = generator.applyAsLong(i); |
| } |
| |
| /** |
| * Set all elements of the specified array, in parallel, using the |
| * provided generator function to compute each element. |
| * |
| * <p>If the generator function throws an exception, an unchecked exception |
| * is thrown from {@code parallelSetAll} and the array is left in an |
| * indeterminate state. |
| * |
| * @apiNote |
| * Setting a subrange of an array, in parallel, using a generator function |
| * to compute each element, can be written as follows: |
| * <pre>{@code |
| * IntStream.range(startInclusive, endExclusive) |
| * .parallel() |
| * .forEach(i -> array[i] = generator.applyAsLong(i)); |
| * }</pre> |
| * |
| * @param array array to be initialized |
| * @param generator a function accepting an index and producing the desired |
| * value for that position |
| * @throws NullPointerException if the generator is null |
| * @since 1.8 |
| */ |
| public static void parallelSetAll(long[] array, IntToLongFunction generator) { |
| Objects.requireNonNull(generator); |
| IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.applyAsLong(i); }); |
| } |
| |
| /** |
| * Set all elements of the specified array, using the provided |
| * generator function to compute each element. |
| * |
| * <p>If the generator function throws an exception, it is relayed to |
| * the caller and the array is left in an indeterminate state. |
| * |
| * @apiNote |
| * Setting a subrange of an array, using a generator function to compute |
| * each element, can be written as follows: |
| * <pre>{@code |
| * IntStream.range(startInclusive, endExclusive) |
| * .forEach(i -> array[i] = generator.applyAsDouble(i)); |
| * }</pre> |
| * |
| * @param array array to be initialized |
| * @param generator a function accepting an index and producing the desired |
| * value for that position |
| * @throws NullPointerException if the generator is null |
| * @since 1.8 |
| */ |
| public static void setAll(double[] array, IntToDoubleFunction generator) { |
| Objects.requireNonNull(generator); |
| for (int i = 0; i < array.length; i++) |
| array[i] = generator.applyAsDouble(i); |
| } |
| |
| /** |
| * Set all elements of the specified array, in parallel, using the |
| * provided generator function to compute each element. |
| * |
| * <p>If the generator function throws an exception, an unchecked exception |
| * is thrown from {@code parallelSetAll} and the array is left in an |
| * indeterminate state. |
| * |
| * @apiNote |
| * Setting a subrange of an array, in parallel, using a generator function |
| * to compute each element, can be written as follows: |
| * <pre>{@code |
| * IntStream.range(startInclusive, endExclusive) |
| * .parallel() |
| * .forEach(i -> array[i] = generator.applyAsDouble(i)); |
| * }</pre> |
| * |
| * @param array array to be initialized |
| * @param generator a function accepting an index and producing the desired |
| * value for that position |
| * @throws NullPointerException if the generator is null |
| * @since 1.8 |
| */ |
| public static void parallelSetAll(double[] array, IntToDoubleFunction generator) { |
| Objects.requireNonNull(generator); |
| IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.applyAsDouble(i); }); |
| } |
| |
| /** |
| * Returns a {@link Spliterator} covering all of the specified array. |
| * |
| * <p>The spliterator reports {@link Spliterator#SIZED}, |
| * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
| * {@link Spliterator#IMMUTABLE}. |
| * |
| * @param <T> type of elements |
| * @param array the array, assumed to be unmodified during use |
| * @return a spliterator for the array elements |
| * @since 1.8 |
| */ |
| public static <T> Spliterator<T> spliterator(T[] array) { |
| return Spliterators.spliterator(array, |
| Spliterator.ORDERED | Spliterator.IMMUTABLE); |
| } |
| |
| /** |
| * Returns a {@link Spliterator} covering the specified range of the |
| * specified array. |
| * |
| * <p>The spliterator reports {@link Spliterator#SIZED}, |
| * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
| * {@link Spliterator#IMMUTABLE}. |
| * |
| * @param <T> type of elements |
| * @param array the array, assumed to be unmodified during use |
| * @param startInclusive the first index to cover, inclusive |
| * @param endExclusive index immediately past the last index to cover |
| * @return a spliterator for the array elements |
| * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
| * negative, {@code endExclusive} is less than |
| * {@code startInclusive}, or {@code endExclusive} is greater than |
| * the array size |
| * @since 1.8 |
| */ |
| public static <T> Spliterator<T> spliterator(T[] array, int startInclusive, int endExclusive) { |
| return Spliterators.spliterator(array, startInclusive, endExclusive, |
| Spliterator.ORDERED | Spliterator.IMMUTABLE); |
| } |
| |
| /** |
| * Returns a {@link Spliterator.OfInt} covering all of the specified array. |
| * |
| * <p>The spliterator reports {@link Spliterator#SIZED}, |
| * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
| * {@link Spliterator#IMMUTABLE}. |
| * |
| * @param array the array, assumed to be unmodified during use |
| * @return a spliterator for the array elements |
| * @since 1.8 |
| */ |
| public static Spliterator.OfInt spliterator(int[] array) { |
| return Spliterators.spliterator(array, |
| Spliterator.ORDERED | Spliterator.IMMUTABLE); |
| } |
| |
| /** |
| * Returns a {@link Spliterator.OfInt} covering the specified range of the |
| * specified array. |
| * |
| * <p>The spliterator reports {@link Spliterator#SIZED}, |
| * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
| * {@link Spliterator#IMMUTABLE}. |
| * |
| * @param array the array, assumed to be unmodified during use |
| * @param startInclusive the first index to cover, inclusive |
| * @param endExclusive index immediately past the last index to cover |
| * @return a spliterator for the array elements |
| * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
| * negative, {@code endExclusive} is less than |
| * {@code startInclusive}, or {@code endExclusive} is greater than |
| * the array size |
| * @since 1.8 |
| */ |
| public static Spliterator.OfInt spliterator(int[] array, int startInclusive, int endExclusive) { |
| return Spliterators.spliterator(array, startInclusive, endExclusive, |
| Spliterator.ORDERED | Spliterator.IMMUTABLE); |
| } |
| |
| /** |
| * Returns a {@link Spliterator.OfLong} covering all of the specified array. |
| * |
| * <p>The spliterator reports {@link Spliterator#SIZED}, |
| * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
| * {@link Spliterator#IMMUTABLE}. |
| * |
| * @param array the array, assumed to be unmodified during use |
| * @return the spliterator for the array elements |
| * @since 1.8 |
| */ |
| public static Spliterator.OfLong spliterator(long[] array) { |
| return Spliterators.spliterator(array, |
| Spliterator.ORDERED | Spliterator.IMMUTABLE); |
| } |
| |
| /** |
| * Returns a {@link Spliterator.OfLong} covering the specified range of the |
| * specified array. |
| * |
| * <p>The spliterator reports {@link Spliterator#SIZED}, |
| * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
| * {@link Spliterator#IMMUTABLE}. |
| * |
| * @param array the array, assumed to be unmodified during use |
| * @param startInclusive the first index to cover, inclusive |
| * @param endExclusive index immediately past the last index to cover |
| * @return a spliterator for the array elements |
| * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
| * negative, {@code endExclusive} is less than |
| * {@code startInclusive}, or {@code endExclusive} is greater than |
| * the array size |
| * @since 1.8 |
| */ |
| public static Spliterator.OfLong spliterator(long[] array, int startInclusive, int endExclusive) { |
| return Spliterators.spliterator(array, startInclusive, endExclusive, |
| Spliterator.ORDERED | Spliterator.IMMUTABLE); |
| } |
| |
| /** |
| * Returns a {@link Spliterator.OfDouble} covering all of the specified |
| * array. |
| * |
| * <p>The spliterator reports {@link Spliterator#SIZED}, |
| * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
| * {@link Spliterator#IMMUTABLE}. |
| * |
| * @param array the array, assumed to be unmodified during use |
| * @return a spliterator for the array elements |
| * @since 1.8 |
| */ |
| public static Spliterator.OfDouble spliterator(double[] array) { |
| return Spliterators.spliterator(array, |
| Spliterator.ORDERED | Spliterator.IMMUTABLE); |
| } |
| |
| /** |
| * Returns a {@link Spliterator.OfDouble} covering the specified range of |
| * the specified array. |
| * |
| * <p>The spliterator reports {@link Spliterator#SIZED}, |
| * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and |
| * {@link Spliterator#IMMUTABLE}. |
| * |
| * @param array the array, assumed to be unmodified during use |
| * @param startInclusive the first index to cover, inclusive |
| * @param endExclusive index immediately past the last index to cover |
| * @return a spliterator for the array elements |
| * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
| * negative, {@code endExclusive} is less than |
| * {@code startInclusive}, or {@code endExclusive} is greater than |
| * the array size |
| * @since 1.8 |
| */ |
| public static Spliterator.OfDouble spliterator(double[] array, int startInclusive, int endExclusive) { |
| return Spliterators.spliterator(array, startInclusive, endExclusive, |
| Spliterator.ORDERED | Spliterator.IMMUTABLE); |
| } |
| |
| /** |
| * Returns a sequential {@link Stream} with the specified array as its |
| * source. |
| * |
| * @param <T> The type of the array elements |
| * @param array The array, assumed to be unmodified during use |
| * @return a {@code Stream} for the array |
| * @since 1.8 |
| */ |
| public static <T> Stream<T> stream(T[] array) { |
| return stream(array, 0, array.length); |
| } |
| |
| /** |
| * Returns a sequential {@link Stream} with the specified range of the |
| * specified array as its source. |
| * |
| * @param <T> the type of the array elements |
| * @param array the array, assumed to be unmodified during use |
| * @param startInclusive the first index to cover, inclusive |
| * @param endExclusive index immediately past the last index to cover |
| * @return a {@code Stream} for the array range |
| * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
| * negative, {@code endExclusive} is less than |
| * {@code startInclusive}, or {@code endExclusive} is greater than |
| * the array size |
| * @since 1.8 |
| */ |
| public static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive) { |
| return StreamSupport.stream(spliterator(array, startInclusive, endExclusive), false); |
| } |
| |
| /** |
| * Returns a sequential {@link IntStream} with the specified array as its |
| * source. |
| * |
| * @param array the array, assumed to be unmodified during use |
| * @return an {@code IntStream} for the array |
| * @since 1.8 |
| */ |
| public static IntStream stream(int[] array) { |
| return stream(array, 0, array.length); |
| } |
| |
| /** |
| * Returns a sequential {@link IntStream} with the specified range of the |
| * specified array as its source. |
| * |
| * @param array the array, assumed to be unmodified during use |
| * @param startInclusive the first index to cover, inclusive |
| * @param endExclusive index immediately past the last index to cover |
| * @return an {@code IntStream} for the array range |
| * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
| * negative, {@code endExclusive} is less than |
| * {@code startInclusive}, or {@code endExclusive} is greater than |
| * the array size |
| * @since 1.8 |
| */ |
| public static IntStream stream(int[] array, int startInclusive, int endExclusive) { |
| return StreamSupport.intStream(spliterator(array, startInclusive, endExclusive), false); |
| } |
| |
| /** |
| * Returns a sequential {@link LongStream} with the specified array as its |
| * source. |
| * |
| * @param array the array, assumed to be unmodified during use |
| * @return a {@code LongStream} for the array |
| * @since 1.8 |
| */ |
| public static LongStream stream(long[] array) { |
| return stream(array, 0, array.length); |
| } |
| |
| /** |
| * Returns a sequential {@link LongStream} with the specified range of the |
| * specified array as its source. |
| * |
| * @param array the array, assumed to be unmodified during use |
| * @param startInclusive the first index to cover, inclusive |
| * @param endExclusive index immediately past the last index to cover |
| * @return a {@code LongStream} for the array range |
| * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
| * negative, {@code endExclusive} is less than |
| * {@code startInclusive}, or {@code endExclusive} is greater than |
| * the array size |
| * @since 1.8 |
| */ |
| public static LongStream stream(long[] array, int startInclusive, int endExclusive) { |
| return StreamSupport.longStream(spliterator(array, startInclusive, endExclusive), false); |
| } |
| |
| /** |
| * Returns a sequential {@link DoubleStream} with the specified array as its |
| * source. |
| * |
| * @param array the array, assumed to be unmodified during use |
| * @return a {@code DoubleStream} for the array |
| * @since 1.8 |
| */ |
| public static DoubleStream stream(double[] array) { |
| return stream(array, 0, array.length); |
| } |
| |
| /** |
| * Returns a sequential {@link DoubleStream} with the specified range of the |
| * specified array as its source. |
| * |
| * @param array the array, assumed to be unmodified during use |
| * @param startInclusive the first index to cover, inclusive |
| * @param endExclusive index immediately past the last index to cover |
| * @return a {@code DoubleStream} for the array range |
| * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is |
| * negative, {@code endExclusive} is less than |
| * {@code startInclusive}, or {@code endExclusive} is greater than |
| * the array size |
| * @since 1.8 |
| */ |
| public static DoubleStream stream(double[] array, int startInclusive, int endExclusive) { |
| return StreamSupport.doubleStream(spliterator(array, startInclusive, endExclusive), false); |
| } |
| |
| |
| // Comparison methods |
| |
| // Compare boolean |
| |
| /** |
| * Compares two {@code boolean} arrays lexicographically. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements, as if by |
| * {@link Boolean#compare(boolean, boolean)}, at an index within the |
| * respective arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(boolean[], boolean[])} for the definition of a |
| * common and proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * <p>The comparison is consistent with {@link #equals(boolean[], boolean[]) equals}, |
| * more specifically the following holds for arrays {@code a} and {@code b}: |
| * <pre>{@code |
| * Arrays.equals(a, b) == (Arrays.compare(a, b) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return Boolean.compare(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @return the value {@code 0} if the first and second array are equal and |
| * contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static int compare(boolean[] a, boolean[] b) { |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int i = ArraysSupport.mismatch(a, b, |
| Math.min(a.length, b.length)); |
| if (i >= 0) { |
| return Boolean.compare(a[i], b[i]); |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code boolean} arrays lexicographically over the specified |
| * ranges. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements, as if by {@link Boolean#compare(boolean, boolean)}, at a |
| * relative index within the respective arrays that is the length of the |
| * prefix. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(boolean[], int, int, boolean[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * <p>The comparison is consistent with |
| * {@link #equals(boolean[], int, int, boolean[], int, int) equals}, more |
| * specifically the following holds for arrays {@code a} and {@code b} with |
| * specified ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively: |
| * <pre>{@code |
| * Arrays.equals(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == |
| * (Arrays.compare(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if: |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return Boolean.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int compare(boolean[] a, int aFromIndex, int aToIndex, |
| boolean[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| Math.min(aLength, bLength)); |
| if (i >= 0) { |
| return Boolean.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| } |
| |
| return aLength - bLength; |
| } |
| |
| // Compare byte |
| |
| /** |
| * Compares two {@code byte} arrays lexicographically. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements, as if by |
| * {@link Byte#compare(byte, byte)}, at an index within the respective |
| * arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(byte[], byte[])} for the definition of a common and |
| * proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * <p>The comparison is consistent with {@link #equals(byte[], byte[]) equals}, |
| * more specifically the following holds for arrays {@code a} and {@code b}: |
| * <pre>{@code |
| * Arrays.equals(a, b) == (Arrays.compare(a, b) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return Byte.compare(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @return the value {@code 0} if the first and second array are equal and |
| * contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static int compare(byte[] a, byte[] b) { |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int i = ArraysSupport.mismatch(a, b, |
| Math.min(a.length, b.length)); |
| if (i >= 0) { |
| return Byte.compare(a[i], b[i]); |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code byte} arrays lexicographically over the specified |
| * ranges. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements, as if by {@link Byte#compare(byte, byte)}, at a relative index |
| * within the respective arrays that is the length of the prefix. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(byte[], int, int, byte[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * <p>The comparison is consistent with |
| * {@link #equals(byte[], int, int, byte[], int, int) equals}, more |
| * specifically the following holds for arrays {@code a} and {@code b} with |
| * specified ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively: |
| * <pre>{@code |
| * Arrays.equals(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == |
| * (Arrays.compare(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if: |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return Byte.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int compare(byte[] a, int aFromIndex, int aToIndex, |
| byte[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| Math.min(aLength, bLength)); |
| if (i >= 0) { |
| return Byte.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| } |
| |
| return aLength - bLength; |
| } |
| |
| /** |
| * Compares two {@code byte} arrays lexicographically, numerically treating |
| * elements as unsigned. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements, as if by |
| * {@link Byte#compareUnsigned(byte, byte)}, at an index within the |
| * respective arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(byte[], byte[])} for the definition of a common |
| * and proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return Byte.compareUnsigned(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @return the value {@code 0} if the first and second array are |
| * equal and contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static int compareUnsigned(byte[] a, byte[] b) { |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int i = ArraysSupport.mismatch(a, b, |
| Math.min(a.length, b.length)); |
| if (i >= 0) { |
| return Byte.compareUnsigned(a[i], b[i]); |
| } |
| |
| return a.length - b.length; |
| } |
| |
| |
| /** |
| * Compares two {@code byte} arrays lexicographically over the specified |
| * ranges, numerically treating elements as unsigned. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements, as if by {@link Byte#compareUnsigned(byte, byte)}, at a |
| * relative index within the respective arrays that is the length of the |
| * prefix. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(byte[], int, int, byte[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * @apiNote |
| * <p>This method behaves as if: |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return Byte.compareUnsigned(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is null |
| * @since 9 |
| */ |
| public static int compareUnsigned(byte[] a, int aFromIndex, int aToIndex, |
| byte[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| Math.min(aLength, bLength)); |
| if (i >= 0) { |
| return Byte.compareUnsigned(a[aFromIndex + i], b[bFromIndex + i]); |
| } |
| |
| return aLength - bLength; |
| } |
| |
| // Compare short |
| |
| /** |
| * Compares two {@code short} arrays lexicographically. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements, as if by |
| * {@link Short#compare(short, short)}, at an index within the respective |
| * arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(short[], short[])} for the definition of a common |
| * and proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * <p>The comparison is consistent with {@link #equals(short[], short[]) equals}, |
| * more specifically the following holds for arrays {@code a} and {@code b}: |
| * <pre>{@code |
| * Arrays.equals(a, b) == (Arrays.compare(a, b) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return Short.compare(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @return the value {@code 0} if the first and second array are equal and |
| * contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static int compare(short[] a, short[] b) { |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int i = ArraysSupport.mismatch(a, b, |
| Math.min(a.length, b.length)); |
| if (i >= 0) { |
| return Short.compare(a[i], b[i]); |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code short} arrays lexicographically over the specified |
| * ranges. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements, as if by {@link Short#compare(short, short)}, at a relative |
| * index within the respective arrays that is the length of the prefix. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(short[], int, int, short[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * <p>The comparison is consistent with |
| * {@link #equals(short[], int, int, short[], int, int) equals}, more |
| * specifically the following holds for arrays {@code a} and {@code b} with |
| * specified ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively: |
| * <pre>{@code |
| * Arrays.equals(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == |
| * (Arrays.compare(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if: |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return Short.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int compare(short[] a, int aFromIndex, int aToIndex, |
| short[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| Math.min(aLength, bLength)); |
| if (i >= 0) { |
| return Short.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| } |
| |
| return aLength - bLength; |
| } |
| |
| /** |
| * Compares two {@code short} arrays lexicographically, numerically treating |
| * elements as unsigned. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements, as if by |
| * {@link Short#compareUnsigned(short, short)}, at an index within the |
| * respective arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(short[], short[])} for the definition of a common |
| * and proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return Short.compareUnsigned(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @return the value {@code 0} if the first and second array are |
| * equal and contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static int compareUnsigned(short[] a, short[] b) { |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int i = ArraysSupport.mismatch(a, b, |
| Math.min(a.length, b.length)); |
| if (i >= 0) { |
| return Short.compareUnsigned(a[i], b[i]); |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code short} arrays lexicographically over the specified |
| * ranges, numerically treating elements as unsigned. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements, as if by {@link Short#compareUnsigned(short, short)}, at a |
| * relative index within the respective arrays that is the length of the |
| * prefix. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(short[], int, int, short[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * @apiNote |
| * <p>This method behaves as if: |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return Short.compareUnsigned(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is null |
| * @since 9 |
| */ |
| public static int compareUnsigned(short[] a, int aFromIndex, int aToIndex, |
| short[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| Math.min(aLength, bLength)); |
| if (i >= 0) { |
| return Short.compareUnsigned(a[aFromIndex + i], b[bFromIndex + i]); |
| } |
| |
| return aLength - bLength; |
| } |
| |
| // Compare char |
| |
| /** |
| * Compares two {@code char} arrays lexicographically. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements, as if by |
| * {@link Character#compare(char, char)}, at an index within the respective |
| * arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(char[], char[])} for the definition of a common and |
| * proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * <p>The comparison is consistent with {@link #equals(char[], char[]) equals}, |
| * more specifically the following holds for arrays {@code a} and {@code b}: |
| * <pre>{@code |
| * Arrays.equals(a, b) == (Arrays.compare(a, b) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return Character.compare(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @return the value {@code 0} if the first and second array are equal and |
| * contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static int compare(char[] a, char[] b) { |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int i = ArraysSupport.mismatch(a, b, |
| Math.min(a.length, b.length)); |
| if (i >= 0) { |
| return Character.compare(a[i], b[i]); |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code char} arrays lexicographically over the specified |
| * ranges. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements, as if by {@link Character#compare(char, char)}, at a relative |
| * index within the respective arrays that is the length of the prefix. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(char[], int, int, char[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * <p>The comparison is consistent with |
| * {@link #equals(char[], int, int, char[], int, int) equals}, more |
| * specifically the following holds for arrays {@code a} and {@code b} with |
| * specified ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively: |
| * <pre>{@code |
| * Arrays.equals(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == |
| * (Arrays.compare(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if: |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return Character.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int compare(char[] a, int aFromIndex, int aToIndex, |
| char[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| Math.min(aLength, bLength)); |
| if (i >= 0) { |
| return Character.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| } |
| |
| return aLength - bLength; |
| } |
| |
| // Compare int |
| |
| /** |
| * Compares two {@code int} arrays lexicographically. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements, as if by |
| * {@link Integer#compare(int, int)}, at an index within the respective |
| * arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(int[], int[])} for the definition of a common and |
| * proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * <p>The comparison is consistent with {@link #equals(int[], int[]) equals}, |
| * more specifically the following holds for arrays {@code a} and {@code b}: |
| * <pre>{@code |
| * Arrays.equals(a, b) == (Arrays.compare(a, b) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return Integer.compare(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @return the value {@code 0} if the first and second array are equal and |
| * contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static int compare(int[] a, int[] b) { |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int i = ArraysSupport.mismatch(a, b, |
| Math.min(a.length, b.length)); |
| if (i >= 0) { |
| return Integer.compare(a[i], b[i]); |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code int} arrays lexicographically over the specified |
| * ranges. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements, as if by {@link Integer#compare(int, int)}, at a relative index |
| * within the respective arrays that is the length of the prefix. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(int[], int, int, int[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * <p>The comparison is consistent with |
| * {@link #equals(int[], int, int, int[], int, int) equals}, more |
| * specifically the following holds for arrays {@code a} and {@code b} with |
| * specified ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively: |
| * <pre>{@code |
| * Arrays.equals(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == |
| * (Arrays.compare(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if: |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return Integer.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int compare(int[] a, int aFromIndex, int aToIndex, |
| int[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| Math.min(aLength, bLength)); |
| if (i >= 0) { |
| return Integer.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| } |
| |
| return aLength - bLength; |
| } |
| |
| /** |
| * Compares two {@code int} arrays lexicographically, numerically treating |
| * elements as unsigned. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements, as if by |
| * {@link Integer#compareUnsigned(int, int)}, at an index within the |
| * respective arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(int[], int[])} for the definition of a common |
| * and proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return Integer.compareUnsigned(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @return the value {@code 0} if the first and second array are |
| * equal and contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static int compareUnsigned(int[] a, int[] b) { |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int i = ArraysSupport.mismatch(a, b, |
| Math.min(a.length, b.length)); |
| if (i >= 0) { |
| return Integer.compareUnsigned(a[i], b[i]); |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code int} arrays lexicographically over the specified |
| * ranges, numerically treating elements as unsigned. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements, as if by {@link Integer#compareUnsigned(int, int)}, at a |
| * relative index within the respective arrays that is the length of the |
| * prefix. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(int[], int, int, int[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * @apiNote |
| * <p>This method behaves as if: |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return Integer.compareUnsigned(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is null |
| * @since 9 |
| */ |
| public static int compareUnsigned(int[] a, int aFromIndex, int aToIndex, |
| int[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| Math.min(aLength, bLength)); |
| if (i >= 0) { |
| return Integer.compareUnsigned(a[aFromIndex + i], b[bFromIndex + i]); |
| } |
| |
| return aLength - bLength; |
| } |
| |
| // Compare long |
| |
| /** |
| * Compares two {@code long} arrays lexicographically. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements, as if by |
| * {@link Long#compare(long, long)}, at an index within the respective |
| * arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(long[], long[])} for the definition of a common and |
| * proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * <p>The comparison is consistent with {@link #equals(long[], long[]) equals}, |
| * more specifically the following holds for arrays {@code a} and {@code b}: |
| * <pre>{@code |
| * Arrays.equals(a, b) == (Arrays.compare(a, b) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return Long.compare(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @return the value {@code 0} if the first and second array are equal and |
| * contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static int compare(long[] a, long[] b) { |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int i = ArraysSupport.mismatch(a, b, |
| Math.min(a.length, b.length)); |
| if (i >= 0) { |
| return Long.compare(a[i], b[i]); |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code long} arrays lexicographically over the specified |
| * ranges. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements, as if by {@link Long#compare(long, long)}, at a relative index |
| * within the respective arrays that is the length of the prefix. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(long[], int, int, long[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * <p>The comparison is consistent with |
| * {@link #equals(long[], int, int, long[], int, int) equals}, more |
| * specifically the following holds for arrays {@code a} and {@code b} with |
| * specified ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively: |
| * <pre>{@code |
| * Arrays.equals(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == |
| * (Arrays.compare(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if: |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return Long.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int compare(long[] a, int aFromIndex, int aToIndex, |
| long[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| Math.min(aLength, bLength)); |
| if (i >= 0) { |
| return Long.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| } |
| |
| return aLength - bLength; |
| } |
| |
| /** |
| * Compares two {@code long} arrays lexicographically, numerically treating |
| * elements as unsigned. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements, as if by |
| * {@link Long#compareUnsigned(long, long)}, at an index within the |
| * respective arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(long[], long[])} for the definition of a common |
| * and proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return Long.compareUnsigned(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @return the value {@code 0} if the first and second array are |
| * equal and contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static int compareUnsigned(long[] a, long[] b) { |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int i = ArraysSupport.mismatch(a, b, |
| Math.min(a.length, b.length)); |
| if (i >= 0) { |
| return Long.compareUnsigned(a[i], b[i]); |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code long} arrays lexicographically over the specified |
| * ranges, numerically treating elements as unsigned. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements, as if by {@link Long#compareUnsigned(long, long)}, at a |
| * relative index within the respective arrays that is the length of the |
| * prefix. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(long[], int, int, long[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * @apiNote |
| * <p>This method behaves as if: |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return Long.compareUnsigned(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is null |
| * @since 9 |
| */ |
| public static int compareUnsigned(long[] a, int aFromIndex, int aToIndex, |
| long[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| Math.min(aLength, bLength)); |
| if (i >= 0) { |
| return Long.compareUnsigned(a[aFromIndex + i], b[bFromIndex + i]); |
| } |
| |
| return aLength - bLength; |
| } |
| |
| // Compare float |
| |
| /** |
| * Compares two {@code float} arrays lexicographically. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements, as if by |
| * {@link Float#compare(float, float)}, at an index within the respective |
| * arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(float[], float[])} for the definition of a common |
| * and proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * <p>The comparison is consistent with {@link #equals(float[], float[]) equals}, |
| * more specifically the following holds for arrays {@code a} and {@code b}: |
| * <pre>{@code |
| * Arrays.equals(a, b) == (Arrays.compare(a, b) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return Float.compare(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @return the value {@code 0} if the first and second array are equal and |
| * contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static int compare(float[] a, float[] b) { |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int i = ArraysSupport.mismatch(a, b, |
| Math.min(a.length, b.length)); |
| if (i >= 0) { |
| return Float.compare(a[i], b[i]); |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code float} arrays lexicographically over the specified |
| * ranges. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements, as if by {@link Float#compare(float, float)}, at a relative |
| * index within the respective arrays that is the length of the prefix. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(float[], int, int, float[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * <p>The comparison is consistent with |
| * {@link #equals(float[], int, int, float[], int, int) equals}, more |
| * specifically the following holds for arrays {@code a} and {@code b} with |
| * specified ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively: |
| * <pre>{@code |
| * Arrays.equals(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == |
| * (Arrays.compare(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if: |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return Float.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int compare(float[] a, int aFromIndex, int aToIndex, |
| float[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| Math.min(aLength, bLength)); |
| if (i >= 0) { |
| return Float.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| } |
| |
| return aLength - bLength; |
| } |
| |
| // Compare double |
| |
| /** |
| * Compares two {@code double} arrays lexicographically. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements, as if by |
| * {@link Double#compare(double, double)}, at an index within the respective |
| * arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(double[], double[])} for the definition of a common |
| * and proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * <p>The comparison is consistent with {@link #equals(double[], double[]) equals}, |
| * more specifically the following holds for arrays {@code a} and {@code b}: |
| * <pre>{@code |
| * Arrays.equals(a, b) == (Arrays.compare(a, b) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return Double.compare(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @return the value {@code 0} if the first and second array are equal and |
| * contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static int compare(double[] a, double[] b) { |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int i = ArraysSupport.mismatch(a, b, |
| Math.min(a.length, b.length)); |
| if (i >= 0) { |
| return Double.compare(a[i], b[i]); |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code double} arrays lexicographically over the specified |
| * ranges. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements, as if by {@link Double#compare(double, double)}, at a relative |
| * index within the respective arrays that is the length of the prefix. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(double[], int, int, double[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * <p>The comparison is consistent with |
| * {@link #equals(double[], int, int, double[], int, int) equals}, more |
| * specifically the following holds for arrays {@code a} and {@code b} with |
| * specified ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively: |
| * <pre>{@code |
| * Arrays.equals(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == |
| * (Arrays.compare(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if: |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return Double.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int compare(double[] a, int aFromIndex, int aToIndex, |
| double[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| Math.min(aLength, bLength)); |
| if (i >= 0) { |
| return Double.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| } |
| |
| return aLength - bLength; |
| } |
| |
| // Compare objects |
| |
| /** |
| * Compares two {@code Object} arrays, within comparable elements, |
| * lexicographically. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing two elements of type {@code T} at |
| * an index {@code i} within the respective arrays that is the prefix |
| * length, as if by: |
| * <pre>{@code |
| * Comparator.nullsFirst(Comparator.<T>naturalOrder()). |
| * compare(a[i], b[i]) |
| * }</pre> |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(Object[], Object[])} for the definition of a common |
| * and proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * A {@code null} array element is considered lexicographically less than a |
| * non-{@code null} array element. Two {@code null} array elements are |
| * considered equal. |
| * |
| * <p>The comparison is consistent with {@link #equals(Object[], Object[]) equals}, |
| * more specifically the following holds for arrays {@code a} and {@code b}: |
| * <pre>{@code |
| * Arrays.equals(a, b) == (Arrays.compare(a, b) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references |
| * and elements): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return a[i].compareTo(b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @param <T> the type of comparable array elements |
| * @return the value {@code 0} if the first and second array are equal and |
| * contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @since 9 |
| */ |
| public static <T extends Comparable<? super T>> int compare(T[] a, T[] b) { |
| if (a == b) |
| return 0; |
| // A null array is less than a non-null array |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int length = Math.min(a.length, b.length); |
| for (int i = 0; i < length; i++) { |
| T oa = a[i]; |
| T ob = b[i]; |
| if (oa != ob) { |
| // A null element is less than a non-null element |
| if (oa == null || ob == null) |
| return oa == null ? -1 : 1; |
| int v = oa.compareTo(ob); |
| if (v != 0) { |
| return v; |
| } |
| } |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code Object} arrays lexicographically over the specified |
| * ranges. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing two |
| * elements of type {@code T} at a relative index {@code i} within the |
| * respective arrays that is the prefix length, as if by: |
| * <pre>{@code |
| * Comparator.nullsFirst(Comparator.<T>naturalOrder()). |
| * compare(a[aFromIndex + i, b[bFromIndex + i]) |
| * }</pre> |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(Object[], int, int, Object[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * <p>The comparison is consistent with |
| * {@link #equals(Object[], int, int, Object[], int, int) equals}, more |
| * specifically the following holds for arrays {@code a} and {@code b} with |
| * specified ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively: |
| * <pre>{@code |
| * Arrays.equals(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == |
| * (Arrays.compare(a, aFromIndex, aToIndex, b, bFromIndex, bToIndex) == 0) |
| * }</pre> |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array elements): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return a[aFromIndex + i].compareTo(b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @param <T> the type of comparable array elements |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static <T extends Comparable<? super T>> int compare( |
| T[] a, int aFromIndex, int aToIndex, |
| T[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int length = Math.min(aLength, bLength); |
| for (int i = 0; i < length; i++) { |
| T oa = a[aFromIndex++]; |
| T ob = b[bFromIndex++]; |
| if (oa != ob) { |
| if (oa == null || ob == null) |
| return oa == null ? -1 : 1; |
| int v = oa.compareTo(ob); |
| if (v != 0) { |
| return v; |
| } |
| } |
| } |
| |
| return aLength - bLength; |
| } |
| |
| /** |
| * Compares two {@code Object} arrays lexicographically using a specified |
| * comparator. |
| * |
| * <p>If the two arrays share a common prefix then the lexicographic |
| * comparison is the result of comparing with the specified comparator two |
| * elements at an index within the respective arrays that is the prefix |
| * length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two array lengths. |
| * (See {@link #mismatch(Object[], Object[])} for the definition of a common |
| * and proper prefix.) |
| * |
| * <p>A {@code null} array reference is considered lexicographically less |
| * than a non-{@code null} array reference. Two {@code null} array |
| * references are considered equal. |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array references): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, b, cmp); |
| * if (i >= 0 && i < Math.min(a.length, b.length)) |
| * return cmp.compare(a[i], b[i]); |
| * return a.length - b.length; |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param b the second array to compare |
| * @param cmp the comparator to compare array elements |
| * @param <T> the type of array elements |
| * @return the value {@code 0} if the first and second array are equal and |
| * contain the same elements in the same order; |
| * a value less than {@code 0} if the first array is |
| * lexicographically less than the second array; and |
| * a value greater than {@code 0} if the first array is |
| * lexicographically greater than the second array |
| * @throws NullPointerException if the comparator is {@code null} |
| * @since 9 |
| */ |
| public static <T> int compare(T[] a, T[] b, |
| Comparator<? super T> cmp) { |
| Objects.requireNonNull(cmp); |
| if (a == b) |
| return 0; |
| if (a == null || b == null) |
| return a == null ? -1 : 1; |
| |
| int length = Math.min(a.length, b.length); |
| for (int i = 0; i < length; i++) { |
| T oa = a[i]; |
| T ob = b[i]; |
| if (oa != ob) { |
| // Null-value comparison is deferred to the comparator |
| int v = cmp.compare(oa, ob); |
| if (v != 0) { |
| return v; |
| } |
| } |
| } |
| |
| return a.length - b.length; |
| } |
| |
| /** |
| * Compares two {@code Object} arrays lexicographically over the specified |
| * ranges. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the lexicographic comparison is the result of comparing with the |
| * specified comparator two elements at a relative index within the |
| * respective arrays that is the prefix length. |
| * Otherwise, one array is a proper prefix of the other and, lexicographic |
| * comparison is the result of comparing the two range lengths. |
| * (See {@link #mismatch(Object[], int, int, Object[], int, int)} for the |
| * definition of a common and proper prefix.) |
| * |
| * @apiNote |
| * <p>This method behaves as if (for non-{@code null} array elements): |
| * <pre>{@code |
| * int i = Arrays.mismatch(a, aFromIndex, aToIndex, |
| * b, bFromIndex, bToIndex, cmp); |
| * if (i >= 0 && i < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * return cmp.compare(a[aFromIndex + i], b[bFromIndex + i]); |
| * return (aToIndex - aFromIndex) - (bToIndex - bFromIndex); |
| * }</pre> |
| * |
| * @param a the first array to compare |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be compared |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be compared |
| * @param b the second array to compare |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be compared |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be compared |
| * @param cmp the comparator to compare array elements |
| * @param <T> the type of array elements |
| * @return the value {@code 0} if, over the specified ranges, the first and |
| * second array are equal and contain the same elements in the same |
| * order; |
| * a value less than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically less than the second array; and |
| * a value greater than {@code 0} if, over the specified ranges, the |
| * first array is lexicographically greater than the second array |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array or the comparator is {@code null} |
| * @since 9 |
| */ |
| public static <T> int compare( |
| T[] a, int aFromIndex, int aToIndex, |
| T[] b, int bFromIndex, int bToIndex, |
| Comparator<? super T> cmp) { |
| Objects.requireNonNull(cmp); |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int length = Math.min(aLength, bLength); |
| for (int i = 0; i < length; i++) { |
| T oa = a[aFromIndex++]; |
| T ob = b[bFromIndex++]; |
| if (oa != ob) { |
| // Null-value comparison is deferred to the comparator |
| int v = cmp.compare(oa, ob); |
| if (v != 0) { |
| return v; |
| } |
| } |
| } |
| |
| return aLength - bLength; |
| } |
| |
| |
| // Mismatch methods |
| |
| // Mismatch boolean |
| |
| /** |
| * Finds and returns the index of the first mismatch between two |
| * {@code boolean} arrays, otherwise return -1 if no mismatch is found. The |
| * index will be in the range of 0 (inclusive) up to the length (inclusive) |
| * of the smaller array. |
| * |
| * <p>If the two arrays share a common prefix then the returned index is the |
| * length of the common prefix and it follows that there is a mismatch |
| * between the two elements at that index within the respective arrays. |
| * If one array is a proper prefix of the other then the returned index is |
| * the length of the smaller array and it follows that the index is only |
| * valid for the larger array. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(a.length, b.length) && |
| * Arrays.equals(a, 0, pl, b, 0, pl) && |
| * a[pl] != b[pl] |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * a.length != b.length && |
| * Arrays.equals(a, 0, Math.min(a.length, b.length), |
| * b, 0, Math.min(a.length, b.length)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param b the second array to be tested for a mismatch |
| * @return the index of the first mismatch between the two arrays, |
| * otherwise {@code -1}. |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(boolean[] a, boolean[] b) { |
| int length = Math.min(a.length, b.length); // Check null array refs |
| if (a == b) |
| return -1; |
| |
| int i = ArraysSupport.mismatch(a, b, length); |
| return (i < 0 && a.length != b.length) ? length : i; |
| } |
| |
| /** |
| * Finds and returns the relative index of the first mismatch between two |
| * {@code boolean} arrays over the specified ranges, otherwise return -1 if |
| * no mismatch is found. The index will be in the range of 0 (inclusive) up |
| * to the length (inclusive) of the smaller range. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the returned relative index is the length of the common prefix and |
| * it follows that there is a mismatch between the two elements at that |
| * relative index within the respective arrays. |
| * If one array is a proper prefix of the other, over the specified ranges, |
| * then the returned relative index is the length of the smaller range and |
| * it follows that the relative index is only valid for the array with the |
| * larger range. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex) && |
| * Arrays.equals(a, aFromIndex, aFromIndex + pl, b, bFromIndex, bFromIndex + pl) && |
| * a[aFromIndex + pl] != b[bFromIndex + pl] |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * (aToIndex - aFromIndex) != (bToIndex - bFromIndex) && |
| * Arrays.equals(a, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex), |
| * b, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for a mismatch |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return the relative index of the first mismatch between the two arrays |
| * over the specified ranges, otherwise {@code -1}. |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(boolean[] a, int aFromIndex, int aToIndex, |
| boolean[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int length = Math.min(aLength, bLength); |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| length); |
| return (i < 0 && aLength != bLength) ? length : i; |
| } |
| |
| // Mismatch byte |
| |
| /** |
| * Finds and returns the index of the first mismatch between two {@code byte} |
| * arrays, otherwise return -1 if no mismatch is found. The index will be |
| * in the range of 0 (inclusive) up to the length (inclusive) of the smaller |
| * array. |
| * |
| * <p>If the two arrays share a common prefix then the returned index is the |
| * length of the common prefix and it follows that there is a mismatch |
| * between the two elements at that index within the respective arrays. |
| * If one array is a proper prefix of the other then the returned index is |
| * the length of the smaller array and it follows that the index is only |
| * valid for the larger array. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(a.length, b.length) && |
| * Arrays.equals(a, 0, pl, b, 0, pl) && |
| * a[pl] != b[pl] |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * a.length != b.length && |
| * Arrays.equals(a, 0, Math.min(a.length, b.length), |
| * b, 0, Math.min(a.length, b.length)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param b the second array to be tested for a mismatch |
| * @return the index of the first mismatch between the two arrays, |
| * otherwise {@code -1}. |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(byte[] a, byte[] b) { |
| int length = Math.min(a.length, b.length); // Check null array refs |
| if (a == b) |
| return -1; |
| |
| int i = ArraysSupport.mismatch(a, b, length); |
| return (i < 0 && a.length != b.length) ? length : i; |
| } |
| |
| /** |
| * Finds and returns the relative index of the first mismatch between two |
| * {@code byte} arrays over the specified ranges, otherwise return -1 if no |
| * mismatch is found. The index will be in the range of 0 (inclusive) up to |
| * the length (inclusive) of the smaller range. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the returned relative index is the length of the common prefix and |
| * it follows that there is a mismatch between the two elements at that |
| * relative index within the respective arrays. |
| * If one array is a proper prefix of the other, over the specified ranges, |
| * then the returned relative index is the length of the smaller range and |
| * it follows that the relative index is only valid for the array with the |
| * larger range. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex) && |
| * Arrays.equals(a, aFromIndex, aFromIndex + pl, b, bFromIndex, bFromIndex + pl) && |
| * a[aFromIndex + pl] != b[bFromIndex + pl] |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * (aToIndex - aFromIndex) != (bToIndex - bFromIndex) && |
| * Arrays.equals(a, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex), |
| * b, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for a mismatch |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return the relative index of the first mismatch between the two arrays |
| * over the specified ranges, otherwise {@code -1}. |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(byte[] a, int aFromIndex, int aToIndex, |
| byte[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int length = Math.min(aLength, bLength); |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| length); |
| return (i < 0 && aLength != bLength) ? length : i; |
| } |
| |
| // Mismatch char |
| |
| /** |
| * Finds and returns the index of the first mismatch between two {@code char} |
| * arrays, otherwise return -1 if no mismatch is found. The index will be |
| * in the range of 0 (inclusive) up to the length (inclusive) of the smaller |
| * array. |
| * |
| * <p>If the two arrays share a common prefix then the returned index is the |
| * length of the common prefix and it follows that there is a mismatch |
| * between the two elements at that index within the respective arrays. |
| * If one array is a proper prefix of the other then the returned index is |
| * the length of the smaller array and it follows that the index is only |
| * valid for the larger array. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(a.length, b.length) && |
| * Arrays.equals(a, 0, pl, b, 0, pl) && |
| * a[pl] != b[pl] |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * a.length != b.length && |
| * Arrays.equals(a, 0, Math.min(a.length, b.length), |
| * b, 0, Math.min(a.length, b.length)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param b the second array to be tested for a mismatch |
| * @return the index of the first mismatch between the two arrays, |
| * otherwise {@code -1}. |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(char[] a, char[] b) { |
| int length = Math.min(a.length, b.length); // Check null array refs |
| if (a == b) |
| return -1; |
| |
| int i = ArraysSupport.mismatch(a, b, length); |
| return (i < 0 && a.length != b.length) ? length : i; |
| } |
| |
| /** |
| * Finds and returns the relative index of the first mismatch between two |
| * {@code char} arrays over the specified ranges, otherwise return -1 if no |
| * mismatch is found. The index will be in the range of 0 (inclusive) up to |
| * the length (inclusive) of the smaller range. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the returned relative index is the length of the common prefix and |
| * it follows that there is a mismatch between the two elements at that |
| * relative index within the respective arrays. |
| * If one array is a proper prefix of the other, over the specified ranges, |
| * then the returned relative index is the length of the smaller range and |
| * it follows that the relative index is only valid for the array with the |
| * larger range. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex) && |
| * Arrays.equals(a, aFromIndex, aFromIndex + pl, b, bFromIndex, bFromIndex + pl) && |
| * a[aFromIndex + pl] != b[bFromIndex + pl] |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * (aToIndex - aFromIndex) != (bToIndex - bFromIndex) && |
| * Arrays.equals(a, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex), |
| * b, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for a mismatch |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return the relative index of the first mismatch between the two arrays |
| * over the specified ranges, otherwise {@code -1}. |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(char[] a, int aFromIndex, int aToIndex, |
| char[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int length = Math.min(aLength, bLength); |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| length); |
| return (i < 0 && aLength != bLength) ? length : i; |
| } |
| |
| // Mismatch short |
| |
| /** |
| * Finds and returns the index of the first mismatch between two {@code short} |
| * arrays, otherwise return -1 if no mismatch is found. The index will be |
| * in the range of 0 (inclusive) up to the length (inclusive) of the smaller |
| * array. |
| * |
| * <p>If the two arrays share a common prefix then the returned index is the |
| * length of the common prefix and it follows that there is a mismatch |
| * between the two elements at that index within the respective arrays. |
| * If one array is a proper prefix of the other then the returned index is |
| * the length of the smaller array and it follows that the index is only |
| * valid for the larger array. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(a.length, b.length) && |
| * Arrays.equals(a, 0, pl, b, 0, pl) && |
| * a[pl] != b[pl] |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * a.length != b.length && |
| * Arrays.equals(a, 0, Math.min(a.length, b.length), |
| * b, 0, Math.min(a.length, b.length)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param b the second array to be tested for a mismatch |
| * @return the index of the first mismatch between the two arrays, |
| * otherwise {@code -1}. |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(short[] a, short[] b) { |
| int length = Math.min(a.length, b.length); // Check null array refs |
| if (a == b) |
| return -1; |
| |
| int i = ArraysSupport.mismatch(a, b, length); |
| return (i < 0 && a.length != b.length) ? length : i; |
| } |
| |
| /** |
| * Finds and returns the relative index of the first mismatch between two |
| * {@code short} arrays over the specified ranges, otherwise return -1 if no |
| * mismatch is found. The index will be in the range of 0 (inclusive) up to |
| * the length (inclusive) of the smaller range. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the returned relative index is the length of the common prefix and |
| * it follows that there is a mismatch between the two elements at that |
| * relative index within the respective arrays. |
| * If one array is a proper prefix of the other, over the specified ranges, |
| * then the returned relative index is the length of the smaller range and |
| * it follows that the relative index is only valid for the array with the |
| * larger range. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex) && |
| * Arrays.equals(a, aFromIndex, aFromIndex + pl, b, bFromIndex, bFromIndex + pl) && |
| * a[aFromIndex + pl] != b[bFromIndex + pl] |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * (aToIndex - aFromIndex) != (bToIndex - bFromIndex) && |
| * Arrays.equals(a, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex), |
| * b, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for a mismatch |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return the relative index of the first mismatch between the two arrays |
| * over the specified ranges, otherwise {@code -1}. |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(short[] a, int aFromIndex, int aToIndex, |
| short[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int length = Math.min(aLength, bLength); |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| length); |
| return (i < 0 && aLength != bLength) ? length : i; |
| } |
| |
| // Mismatch int |
| |
| /** |
| * Finds and returns the index of the first mismatch between two {@code int} |
| * arrays, otherwise return -1 if no mismatch is found. The index will be |
| * in the range of 0 (inclusive) up to the length (inclusive) of the smaller |
| * array. |
| * |
| * <p>If the two arrays share a common prefix then the returned index is the |
| * length of the common prefix and it follows that there is a mismatch |
| * between the two elements at that index within the respective arrays. |
| * If one array is a proper prefix of the other then the returned index is |
| * the length of the smaller array and it follows that the index is only |
| * valid for the larger array. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(a.length, b.length) && |
| * Arrays.equals(a, 0, pl, b, 0, pl) && |
| * a[pl] != b[pl] |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * a.length != b.length && |
| * Arrays.equals(a, 0, Math.min(a.length, b.length), |
| * b, 0, Math.min(a.length, b.length)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param b the second array to be tested for a mismatch |
| * @return the index of the first mismatch between the two arrays, |
| * otherwise {@code -1}. |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(int[] a, int[] b) { |
| int length = Math.min(a.length, b.length); // Check null array refs |
| if (a == b) |
| return -1; |
| |
| int i = ArraysSupport.mismatch(a, b, length); |
| return (i < 0 && a.length != b.length) ? length : i; |
| } |
| |
| /** |
| * Finds and returns the relative index of the first mismatch between two |
| * {@code int} arrays over the specified ranges, otherwise return -1 if no |
| * mismatch is found. The index will be in the range of 0 (inclusive) up to |
| * the length (inclusive) of the smaller range. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the returned relative index is the length of the common prefix and |
| * it follows that there is a mismatch between the two elements at that |
| * relative index within the respective arrays. |
| * If one array is a proper prefix of the other, over the specified ranges, |
| * then the returned relative index is the length of the smaller range and |
| * it follows that the relative index is only valid for the array with the |
| * larger range. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex) && |
| * Arrays.equals(a, aFromIndex, aFromIndex + pl, b, bFromIndex, bFromIndex + pl) && |
| * a[aFromIndex + pl] != b[bFromIndex + pl] |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * (aToIndex - aFromIndex) != (bToIndex - bFromIndex) && |
| * Arrays.equals(a, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex), |
| * b, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for a mismatch |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return the relative index of the first mismatch between the two arrays |
| * over the specified ranges, otherwise {@code -1}. |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(int[] a, int aFromIndex, int aToIndex, |
| int[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int length = Math.min(aLength, bLength); |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| length); |
| return (i < 0 && aLength != bLength) ? length : i; |
| } |
| |
| // Mismatch long |
| |
| /** |
| * Finds and returns the index of the first mismatch between two {@code long} |
| * arrays, otherwise return -1 if no mismatch is found. The index will be |
| * in the range of 0 (inclusive) up to the length (inclusive) of the smaller |
| * array. |
| * |
| * <p>If the two arrays share a common prefix then the returned index is the |
| * length of the common prefix and it follows that there is a mismatch |
| * between the two elements at that index within the respective arrays. |
| * If one array is a proper prefix of the other then the returned index is |
| * the length of the smaller array and it follows that the index is only |
| * valid for the larger array. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(a.length, b.length) && |
| * Arrays.equals(a, 0, pl, b, 0, pl) && |
| * a[pl] != b[pl] |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * a.length != b.length && |
| * Arrays.equals(a, 0, Math.min(a.length, b.length), |
| * b, 0, Math.min(a.length, b.length)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param b the second array to be tested for a mismatch |
| * @return the index of the first mismatch between the two arrays, |
| * otherwise {@code -1}. |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(long[] a, long[] b) { |
| int length = Math.min(a.length, b.length); // Check null array refs |
| if (a == b) |
| return -1; |
| |
| int i = ArraysSupport.mismatch(a, b, length); |
| return (i < 0 && a.length != b.length) ? length : i; |
| } |
| |
| /** |
| * Finds and returns the relative index of the first mismatch between two |
| * {@code long} arrays over the specified ranges, otherwise return -1 if no |
| * mismatch is found. The index will be in the range of 0 (inclusive) up to |
| * the length (inclusive) of the smaller range. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the returned relative index is the length of the common prefix and |
| * it follows that there is a mismatch between the two elements at that |
| * relative index within the respective arrays. |
| * If one array is a proper prefix of the other, over the specified ranges, |
| * then the returned relative index is the length of the smaller range and |
| * it follows that the relative index is only valid for the array with the |
| * larger range. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex) && |
| * Arrays.equals(a, aFromIndex, aFromIndex + pl, b, bFromIndex, bFromIndex + pl) && |
| * a[aFromIndex + pl] != b[bFromIndex + pl] |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * (aToIndex - aFromIndex) != (bToIndex - bFromIndex) && |
| * Arrays.equals(a, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex), |
| * b, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for a mismatch |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return the relative index of the first mismatch between the two arrays |
| * over the specified ranges, otherwise {@code -1}. |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(long[] a, int aFromIndex, int aToIndex, |
| long[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int length = Math.min(aLength, bLength); |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| length); |
| return (i < 0 && aLength != bLength) ? length : i; |
| } |
| |
| // Mismatch float |
| |
| /** |
| * Finds and returns the index of the first mismatch between two {@code float} |
| * arrays, otherwise return -1 if no mismatch is found. The index will be |
| * in the range of 0 (inclusive) up to the length (inclusive) of the smaller |
| * array. |
| * |
| * <p>If the two arrays share a common prefix then the returned index is the |
| * length of the common prefix and it follows that there is a mismatch |
| * between the two elements at that index within the respective arrays. |
| * If one array is a proper prefix of the other then the returned index is |
| * the length of the smaller array and it follows that the index is only |
| * valid for the larger array. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(a.length, b.length) && |
| * Arrays.equals(a, 0, pl, b, 0, pl) && |
| * Float.compare(a[pl], b[pl]) != 0 |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * a.length != b.length && |
| * Arrays.equals(a, 0, Math.min(a.length, b.length), |
| * b, 0, Math.min(a.length, b.length)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param b the second array to be tested for a mismatch |
| * @return the index of the first mismatch between the two arrays, |
| * otherwise {@code -1}. |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(float[] a, float[] b) { |
| int length = Math.min(a.length, b.length); // Check null array refs |
| if (a == b) |
| return -1; |
| |
| int i = ArraysSupport.mismatch(a, b, length); |
| return (i < 0 && a.length != b.length) ? length : i; |
| } |
| |
| /** |
| * Finds and returns the relative index of the first mismatch between two |
| * {@code float} arrays over the specified ranges, otherwise return -1 if no |
| * mismatch is found. The index will be in the range of 0 (inclusive) up to |
| * the length (inclusive) of the smaller range. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the returned relative index is the length of the common prefix and |
| * it follows that there is a mismatch between the two elements at that |
| * relative index within the respective arrays. |
| * If one array is a proper prefix of the other, over the specified ranges, |
| * then the returned relative index is the length of the smaller range and |
| * it follows that the relative index is only valid for the array with the |
| * larger range. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex) && |
| * Arrays.equals(a, aFromIndex, aFromIndex + pl, b, bFromIndex, bFromIndex + pl) && |
| * Float.compare(a[aFromIndex + pl], b[bFromIndex + pl]) != 0 |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * (aToIndex - aFromIndex) != (bToIndex - bFromIndex) && |
| * Arrays.equals(a, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex), |
| * b, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for a mismatch |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return the relative index of the first mismatch between the two arrays |
| * over the specified ranges, otherwise {@code -1}. |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(float[] a, int aFromIndex, int aToIndex, |
| float[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int length = Math.min(aLength, bLength); |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| length); |
| return (i < 0 && aLength != bLength) ? length : i; |
| } |
| |
| // Mismatch double |
| |
| /** |
| * Finds and returns the index of the first mismatch between two |
| * {@code double} arrays, otherwise return -1 if no mismatch is found. The |
| * index will be in the range of 0 (inclusive) up to the length (inclusive) |
| * of the smaller array. |
| * |
| * <p>If the two arrays share a common prefix then the returned index is the |
| * length of the common prefix and it follows that there is a mismatch |
| * between the two elements at that index within the respective arrays. |
| * If one array is a proper prefix of the other then the returned index is |
| * the length of the smaller array and it follows that the index is only |
| * valid for the larger array. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(a.length, b.length) && |
| * Arrays.equals(a, 0, pl, b, 0, pl) && |
| * Double.compare(a[pl], b[pl]) != 0 |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * a.length != b.length && |
| * Arrays.equals(a, 0, Math.min(a.length, b.length), |
| * b, 0, Math.min(a.length, b.length)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param b the second array to be tested for a mismatch |
| * @return the index of the first mismatch between the two arrays, |
| * otherwise {@code -1}. |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(double[] a, double[] b) { |
| int length = Math.min(a.length, b.length); // Check null array refs |
| if (a == b) |
| return -1; |
| |
| int i = ArraysSupport.mismatch(a, b, length); |
| return (i < 0 && a.length != b.length) ? length : i; |
| } |
| |
| /** |
| * Finds and returns the relative index of the first mismatch between two |
| * {@code double} arrays over the specified ranges, otherwise return -1 if |
| * no mismatch is found. The index will be in the range of 0 (inclusive) up |
| * to the length (inclusive) of the smaller range. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the returned relative index is the length of the common prefix and |
| * it follows that there is a mismatch between the two elements at that |
| * relative index within the respective arrays. |
| * If one array is a proper prefix of the other, over the specified ranges, |
| * then the returned relative index is the length of the smaller range and |
| * it follows that the relative index is only valid for the array with the |
| * larger range. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex) && |
| * Arrays.equals(a, aFromIndex, aFromIndex + pl, b, bFromIndex, bFromIndex + pl) && |
| * Double.compare(a[aFromIndex + pl], b[bFromIndex + pl]) != 0 |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * (aToIndex - aFromIndex) != (bToIndex - bFromIndex) && |
| * Arrays.equals(a, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex), |
| * b, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for a mismatch |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return the relative index of the first mismatch between the two arrays |
| * over the specified ranges, otherwise {@code -1}. |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(double[] a, int aFromIndex, int aToIndex, |
| double[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int length = Math.min(aLength, bLength); |
| int i = ArraysSupport.mismatch(a, aFromIndex, |
| b, bFromIndex, |
| length); |
| return (i < 0 && aLength != bLength) ? length : i; |
| } |
| |
| // Mismatch objects |
| |
| /** |
| * Finds and returns the index of the first mismatch between two |
| * {@code Object} arrays, otherwise return -1 if no mismatch is found. The |
| * index will be in the range of 0 (inclusive) up to the length (inclusive) |
| * of the smaller array. |
| * |
| * <p>If the two arrays share a common prefix then the returned index is the |
| * length of the common prefix and it follows that there is a mismatch |
| * between the two elements at that index within the respective arrays. |
| * If one array is a proper prefix of the other then the returned index is |
| * the length of the smaller array and it follows that the index is only |
| * valid for the larger array. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(a.length, b.length) && |
| * Arrays.equals(a, 0, pl, b, 0, pl) && |
| * !Objects.equals(a[pl], b[pl]) |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * a.length != b.length && |
| * Arrays.equals(a, 0, Math.min(a.length, b.length), |
| * b, 0, Math.min(a.length, b.length)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param b the second array to be tested for a mismatch |
| * @return the index of the first mismatch between the two arrays, |
| * otherwise {@code -1}. |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch(Object[] a, Object[] b) { |
| int length = Math.min(a.length, b.length); // Check null array refs |
| if (a == b) |
| return -1; |
| |
| for (int i = 0; i < length; i++) { |
| if (!Objects.equals(a[i], b[i])) |
| return i; |
| } |
| |
| return a.length != b.length ? length : -1; |
| } |
| |
| /** |
| * Finds and returns the relative index of the first mismatch between two |
| * {@code Object} arrays over the specified ranges, otherwise return -1 if |
| * no mismatch is found. The index will be in the range of 0 (inclusive) up |
| * to the length (inclusive) of the smaller range. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the returned relative index is the length of the common prefix and |
| * it follows that there is a mismatch between the two elements at that |
| * relative index within the respective arrays. |
| * If one array is a proper prefix of the other, over the specified ranges, |
| * then the returned relative index is the length of the smaller range and |
| * it follows that the relative index is only valid for the array with the |
| * larger range. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex) && |
| * Arrays.equals(a, aFromIndex, aFromIndex + pl, b, bFromIndex, bFromIndex + pl) && |
| * !Objects.equals(a[aFromIndex + pl], b[bFromIndex + pl]) |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * (aToIndex - aFromIndex) != (bToIndex - bFromIndex) && |
| * Arrays.equals(a, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex), |
| * b, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex)) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for a mismatch |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @return the relative index of the first mismatch between the two arrays |
| * over the specified ranges, otherwise {@code -1}. |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array is {@code null} |
| * @since 9 |
| */ |
| public static int mismatch( |
| Object[] a, int aFromIndex, int aToIndex, |
| Object[] b, int bFromIndex, int bToIndex) { |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int length = Math.min(aLength, bLength); |
| for (int i = 0; i < length; i++) { |
| if (!Objects.equals(a[aFromIndex++], b[bFromIndex++])) |
| return i; |
| } |
| |
| return aLength != bLength ? length : -1; |
| } |
| |
| /** |
| * Finds and returns the index of the first mismatch between two |
| * {@code Object} arrays, otherwise return -1 if no mismatch is found. |
| * The index will be in the range of 0 (inclusive) up to the length |
| * (inclusive) of the smaller array. |
| * |
| * <p>The specified comparator is used to determine if two array elements |
| * from the each array are not equal. |
| * |
| * <p>If the two arrays share a common prefix then the returned index is the |
| * length of the common prefix and it follows that there is a mismatch |
| * between the two elements at that index within the respective arrays. |
| * If one array is a proper prefix of the other then the returned index is |
| * the length of the smaller array and it follows that the index is only |
| * valid for the larger array. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(a.length, b.length) && |
| * Arrays.equals(a, 0, pl, b, 0, pl, cmp) |
| * cmp.compare(a[pl], b[pl]) != 0 |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b}, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * a.length != b.length && |
| * Arrays.equals(a, 0, Math.min(a.length, b.length), |
| * b, 0, Math.min(a.length, b.length), |
| * cmp) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param b the second array to be tested for a mismatch |
| * @param cmp the comparator to compare array elements |
| * @param <T> the type of array elements |
| * @return the index of the first mismatch between the two arrays, |
| * otherwise {@code -1}. |
| * @throws NullPointerException |
| * if either array or the comparator is {@code null} |
| * @since 9 |
| */ |
| public static <T> int mismatch(T[] a, T[] b, Comparator<? super T> cmp) { |
| Objects.requireNonNull(cmp); |
| int length = Math.min(a.length, b.length); // Check null array refs |
| if (a == b) |
| return -1; |
| |
| for (int i = 0; i < length; i++) { |
| T oa = a[i]; |
| T ob = b[i]; |
| if (oa != ob) { |
| // Null-value comparison is deferred to the comparator |
| int v = cmp.compare(oa, ob); |
| if (v != 0) { |
| return i; |
| } |
| } |
| } |
| |
| return a.length != b.length ? length : -1; |
| } |
| |
| /** |
| * Finds and returns the relative index of the first mismatch between two |
| * {@code Object} arrays over the specified ranges, otherwise return -1 if |
| * no mismatch is found. The index will be in the range of 0 (inclusive) up |
| * to the length (inclusive) of the smaller range. |
| * |
| * <p>If the two arrays, over the specified ranges, share a common prefix |
| * then the returned relative index is the length of the common prefix and |
| * it follows that there is a mismatch between the two elements at that |
| * relative index within the respective arrays. |
| * If one array is a proper prefix of the other, over the specified ranges, |
| * then the returned relative index is the length of the smaller range and |
| * it follows that the relative index is only valid for the array with the |
| * larger range. |
| * Otherwise, there is no mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a common |
| * prefix of length {@code pl} if the following expression is true: |
| * <pre>{@code |
| * pl >= 0 && |
| * pl < Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex) && |
| * Arrays.equals(a, aFromIndex, aFromIndex + pl, b, bFromIndex, bFromIndex + pl, cmp) && |
| * cmp.compare(a[aFromIndex + pl], b[bFromIndex + pl]) != 0 |
| * }</pre> |
| * Note that a common prefix length of {@code 0} indicates that the first |
| * elements from each array mismatch. |
| * |
| * <p>Two non-{@code null} arrays, {@code a} and {@code b} with specified |
| * ranges [{@code aFromIndex}, {@code atoIndex}) and |
| * [{@code bFromIndex}, {@code btoIndex}) respectively, share a proper |
| * prefix if the following expression is true: |
| * <pre>{@code |
| * (aToIndex - aFromIndex) != (bToIndex - bFromIndex) && |
| * Arrays.equals(a, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex), |
| * b, 0, Math.min(aToIndex - aFromIndex, bToIndex - bFromIndex), |
| * cmp) |
| * }</pre> |
| * |
| * @param a the first array to be tested for a mismatch |
| * @param aFromIndex the index (inclusive) of the first element in the |
| * first array to be tested |
| * @param aToIndex the index (exclusive) of the last element in the |
| * first array to be tested |
| * @param b the second array to be tested for a mismatch |
| * @param bFromIndex the index (inclusive) of the first element in the |
| * second array to be tested |
| * @param bToIndex the index (exclusive) of the last element in the |
| * second array to be tested |
| * @param cmp the comparator to compare array elements |
| * @param <T> the type of array elements |
| * @return the relative index of the first mismatch between the two arrays |
| * over the specified ranges, otherwise {@code -1}. |
| * @throws IllegalArgumentException |
| * if {@code aFromIndex > aToIndex} or |
| * if {@code bFromIndex > bToIndex} |
| * @throws ArrayIndexOutOfBoundsException |
| * if {@code aFromIndex < 0 or aToIndex > a.length} or |
| * if {@code bFromIndex < 0 or bToIndex > b.length} |
| * @throws NullPointerException |
| * if either array or the comparator is {@code null} |
| * @since 9 |
| */ |
| public static <T> int mismatch( |
| T[] a, int aFromIndex, int aToIndex, |
| T[] b, int bFromIndex, int bToIndex, |
| Comparator<? super T> cmp) { |
| Objects.requireNonNull(cmp); |
| rangeCheck(a.length, aFromIndex, aToIndex); |
| rangeCheck(b.length, bFromIndex, bToIndex); |
| |
| int aLength = aToIndex - aFromIndex; |
| int bLength = bToIndex - bFromIndex; |
| int length = Math.min(aLength, bLength); |
| for (int i = 0; i < length; i++) { |
| T oa = a[aFromIndex++]; |
| T ob = b[bFromIndex++]; |
| if (oa != ob) { |
| // Null-value comparison is deferred to the comparator |
| int v = cmp.compare(oa, ob); |
| if (v != 0) { |
| return i; |
| } |
| } |
| } |
| |
| return aLength != bLength ? length : -1; |
| } |
| } |