| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. Oracle designates this |
| * particular file as subject to the "Classpath" exception as provided |
| * by Oracle in the LICENSE file that accompanied this code. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| */ |
| |
| package java.util; |
| |
| import java.io.IOException; |
| import java.io.ObjectInputStream; |
| import java.io.ObjectOutputStream; |
| import java.io.Serializable; |
| import java.lang.reflect.Array; |
| import java.util.function.BiConsumer; |
| import java.util.function.BiFunction; |
| import java.util.function.Consumer; |
| import java.util.function.Function; |
| import java.util.function.IntFunction; |
| import java.util.function.Predicate; |
| import java.util.function.UnaryOperator; |
| import java.util.random.RandomGenerator; |
| import java.util.stream.IntStream; |
| import java.util.stream.Stream; |
| import java.util.stream.StreamSupport; |
| import jdk.internal.access.SharedSecrets; |
| |
| import dalvik.system.VMRuntime; |
| |
| /** |
| * This class consists exclusively of static methods that operate on or return |
| * collections. It contains polymorphic algorithms that operate on |
| * collections, "wrappers", which return a new collection backed by a |
| * specified collection, and a few other odds and ends. |
| * |
| * <p>The methods of this class all throw a {@code NullPointerException} |
| * if the collections or class objects provided to them are null. |
| * |
| * <p>The documentation for the polymorphic algorithms contained in this class |
| * generally includes a brief description of the <i>implementation</i>. Such |
| * descriptions should be regarded as <i>implementation notes</i>, rather than |
| * parts of the <i>specification</i>. Implementors should feel free to |
| * substitute other algorithms, so long as the specification itself is adhered |
| * to. (For example, the algorithm used by {@code sort} does not have to be |
| * a mergesort, but it does have to be <i>stable</i>.) |
| * |
| * <p>The "destructive" algorithms contained in this class, that is, the |
| * algorithms that modify the collection on which they operate, are specified |
| * to throw {@code UnsupportedOperationException} if the collection does not |
| * support the appropriate mutation primitive(s), such as the {@code set} |
| * method. These algorithms may, but are not required to, throw this |
| * exception if an invocation would have no effect on the collection. For |
| * example, invoking the {@code sort} method on an unmodifiable list that is |
| * already sorted may or may not throw {@code UnsupportedOperationException}. |
| * |
| * <p>This class is a member of the |
| * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> |
| * Java Collections Framework</a>. |
| * |
| * @author Josh Bloch |
| * @author Neal Gafter |
| * @see Collection |
| * @see Set |
| * @see List |
| * @see Map |
| * @since 1.2 |
| */ |
| |
| public class Collections { |
| // Suppresses default constructor, ensuring non-instantiability. |
| private Collections() { |
| } |
| |
| // Algorithms |
| |
| /* |
| * Tuning parameters for algorithms - Many of the List algorithms have |
| * two implementations, one of which is appropriate for RandomAccess |
| * lists, the other for "sequential." Often, the random access variant |
| * yields better performance on small sequential access lists. The |
| * tuning parameters below determine the cutoff point for what constitutes |
| * a "small" sequential access list for each algorithm. The values below |
| * were empirically determined to work well for LinkedList. Hopefully |
| * they should be reasonable for other sequential access List |
| * implementations. Those doing performance work on this code would |
| * do well to validate the values of these parameters from time to time. |
| * (The first word of each tuning parameter name is the algorithm to which |
| * it applies.) |
| */ |
| private static final int BINARYSEARCH_THRESHOLD = 5000; |
| private static final int REVERSE_THRESHOLD = 18; |
| private static final int SHUFFLE_THRESHOLD = 5; |
| private static final int FILL_THRESHOLD = 25; |
| private static final int ROTATE_THRESHOLD = 100; |
| private static final int COPY_THRESHOLD = 10; |
| private static final int REPLACEALL_THRESHOLD = 11; |
| private static final int INDEXOFSUBLIST_THRESHOLD = 35; |
| |
| // Android-added: List.sort() vs. Collections.sort() app compat. |
| // Added a warning in the documentation. |
| // Collections.sort() calls List.sort() for apps targeting API version >= 26 |
| // (Android Oreo) but the other way around for app targeting <= 25 (Nougat). |
| /** |
| * Sorts the specified list into ascending order, according to the |
| * {@linkplain Comparable natural ordering} of its elements. |
| * All elements in the list must implement the {@link Comparable} |
| * interface. Furthermore, all elements in the list must be |
| * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} |
| * must not throw a {@code ClassCastException} for any elements |
| * {@code e1} and {@code e2} in the list). |
| * |
| * <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
| * not be reordered as a result of the sort. |
| * |
| * <p>The specified list must be modifiable, but need not be resizable. |
| * |
| * @implNote |
| * This implementation defers to the {@link List#sort(Comparator)} |
| * method using the specified list and a {@code null} comparator. |
| * Do not call this method from {@code List.sort()} since that can lead |
| * to infinite recursion. Apps targeting APIs {@code <= 25} observe |
| * backwards compatibility behavior where this method was implemented |
| * on top of {@link List#toArray()}, {@link ListIterator#next()} and |
| * {@link ListIterator#set(Object)}. |
| * |
| * @param <T> the class of the objects in the list |
| * @param list the list to be sorted. |
| * @throws ClassCastException if the list contains elements that are not |
| * <i>mutually comparable</i> (for example, strings and integers). |
| * @throws UnsupportedOperationException if the specified list's |
| * list-iterator does not support the {@code set} operation. |
| * @throws IllegalArgumentException (optional) if the implementation |
| * detects that the natural ordering of the list elements is |
| * found to violate the {@link Comparable} contract |
| * @see List#sort(Comparator) |
| */ |
| public static <T extends Comparable<? super T>> void sort(List<T> list) { |
| // Android-changed: List.sort() vs. Collections.sort() app compat. |
| // Call sort(list, null) here to be consistent with that method's |
| // (changed on Android) behavior. |
| // list.sort(null); |
| sort(list, null); |
| } |
| |
| // Android-added: List.sort() vs. Collections.sort() app compat. |
| // Added a warning in the documentation. |
| // Collections.sort() calls List.sort() for apps targeting API version >= 26 |
| // (Android Oreo) but the other way around for app targeting <= 25 (Nougat). |
| /** |
| * Sorts the specified list according to the order induced by the |
| * specified comparator. All elements in the list must be <i>mutually |
| * comparable</i> using the specified comparator (that is, |
| * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException} |
| * for any elements {@code e1} and {@code e2} in the list). |
| * |
| * <p>This sort is guaranteed to be <i>stable</i>: equal elements will |
| * not be reordered as a result of the sort. |
| * |
| * <p>The specified list must be modifiable, but need not be resizable. |
| * |
| * @implNote |
| * This implementation defers to the {@link List#sort(Comparator)} |
| * method using the specified list and comparator. |
| * Do not call this method from {@code List.sort()} since that can lead |
| * to infinite recursion. Apps targeting APIs {@code <= 25} observe |
| * backwards compatibility behavior where this method was implemented |
| * on top of {@link List#toArray()}, {@link ListIterator#next()} and |
| * {@link ListIterator#set(Object)}. |
| * |
| * @param <T> the class of the objects in the list |
| * @param list the list to be sorted. |
| * @param c the comparator to determine the order of the list. A |
| * {@code null} value indicates that the elements' <i>natural |
| * ordering</i> should be used. |
| * @throws ClassCastException if the list contains elements that are not |
| * <i>mutually comparable</i> using the specified comparator. |
| * @throws UnsupportedOperationException if the specified list's |
| * list-iterator does not support the {@code set} operation. |
| * @throws IllegalArgumentException (optional) if the comparator is |
| * found to violate the {@link Comparator} contract |
| * @see List#sort(Comparator) |
| */ |
| public static <T> void sort(List<T> list, Comparator<? super T> c) { |
| // BEGIN Android-changed: List.sort() vs. Collections.sort() app compat. |
| // list.sort(c); |
| int targetSdkVersion = VMRuntime.getRuntime().getTargetSdkVersion(); |
| if (targetSdkVersion > 25) { |
| list.sort(c); |
| } else { |
| // Compatibility behavior for API <= 25. http://b/33482884 |
| if (list.getClass() == ArrayList.class) { |
| Arrays.sort((T[]) ((ArrayList) list).elementData, 0, list.size(), c); |
| return; |
| } |
| |
| Object[] a = list.toArray(); |
| Arrays.sort(a, (Comparator) c); |
| ListIterator<T> i = list.listIterator(); |
| for (int j = 0; j < a.length; j++) { |
| i.next(); |
| i.set((T) a[j]); |
| } |
| } |
| // END Android-changed: List.sort() vs. Collections.sort() app compat. |
| } |
| |
| |
| /** |
| * Searches the specified list for the specified object using the binary |
| * search algorithm. The list must be sorted into ascending order |
| * according to the {@linkplain Comparable natural ordering} of its |
| * elements (as by the {@link #sort(List)} method) prior to making this |
| * call. If it is not sorted, the results are undefined. If the list |
| * contains multiple elements equal to the specified object, there is no |
| * guarantee which one will be found. |
| * |
| * <p>This method runs in log(n) time for a "random access" list (which |
| * provides near-constant-time positional access). If the specified list |
| * does not implement the {@link RandomAccess} interface and is large, |
| * this method will do an iterator-based binary search that performs |
| * O(n) link traversals and O(log n) element comparisons. |
| * |
| * @param <T> the class of the objects in the list |
| * @param list the list to be searched. |
| * @param key the key to be searched for. |
| * @return the index of the search key, if it is contained in the list; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the list: the index of the first |
| * element greater than the key, or {@code list.size()} if all |
| * elements in the list are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws ClassCastException if the list contains elements that are not |
| * <i>mutually comparable</i> (for example, strings and |
| * integers), or the search key is not mutually comparable |
| * with the elements of the list. |
| */ |
| public static <T> |
| int binarySearch(List<? extends Comparable<? super T>> list, T key) { |
| if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD) |
| return Collections.indexedBinarySearch(list, key); |
| else |
| return Collections.iteratorBinarySearch(list, key); |
| } |
| |
| private static <T> |
| int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key) { |
| int low = 0; |
| int high = list.size()-1; |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| Comparable<? super T> midVal = list.get(mid); |
| int cmp = midVal.compareTo(key); |
| |
| if (cmp < 0) |
| low = mid + 1; |
| else if (cmp > 0) |
| high = mid - 1; |
| else |
| return mid; // key found |
| } |
| return -(low + 1); // key not found |
| } |
| |
| private static <T> |
| int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key) |
| { |
| int low = 0; |
| int high = list.size()-1; |
| ListIterator<? extends Comparable<? super T>> i = list.listIterator(); |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| Comparable<? super T> midVal = get(i, mid); |
| int cmp = midVal.compareTo(key); |
| |
| if (cmp < 0) |
| low = mid + 1; |
| else if (cmp > 0) |
| high = mid - 1; |
| else |
| return mid; // key found |
| } |
| return -(low + 1); // key not found |
| } |
| |
| /** |
| * Gets the ith element from the given list by repositioning the specified |
| * list listIterator. |
| */ |
| private static <T> T get(ListIterator<? extends T> i, int index) { |
| T obj; |
| int pos = i.nextIndex(); |
| if (pos <= index) { |
| do { |
| obj = i.next(); |
| } while (pos++ < index); |
| } else { |
| do { |
| obj = i.previous(); |
| } while (--pos > index); |
| } |
| return obj; |
| } |
| |
| /** |
| * Searches the specified list for the specified object using the binary |
| * search algorithm. The list must be sorted into ascending order |
| * according to the specified comparator (as by the |
| * {@link #sort(List, Comparator) sort(List, Comparator)} |
| * method), prior to making this call. If it is |
| * not sorted, the results are undefined. If the list contains multiple |
| * elements equal to the specified object, there is no guarantee which one |
| * will be found. |
| * |
| * <p>This method runs in log(n) time for a "random access" list (which |
| * provides near-constant-time positional access). If the specified list |
| * does not implement the {@link RandomAccess} interface and is large, |
| * this method will do an iterator-based binary search that performs |
| * O(n) link traversals and O(log n) element comparisons. |
| * |
| * @param <T> the class of the objects in the list |
| * @param list the list to be searched. |
| * @param key the key to be searched for. |
| * @param c the comparator by which the list is ordered. |
| * A {@code null} value indicates that the elements' |
| * {@linkplain Comparable natural ordering} should be used. |
| * @return the index of the search key, if it is contained in the list; |
| * otherwise, <code>(-(<i>insertion point</i>) - 1)</code>. The |
| * <i>insertion point</i> is defined as the point at which the |
| * key would be inserted into the list: the index of the first |
| * element greater than the key, or {@code list.size()} if all |
| * elements in the list are less than the specified key. Note |
| * that this guarantees that the return value will be >= 0 if |
| * and only if the key is found. |
| * @throws ClassCastException if the list contains elements that are not |
| * <i>mutually comparable</i> using the specified comparator, |
| * or the search key is not mutually comparable with the |
| * elements of the list using this comparator. |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) { |
| if (c==null) |
| return binarySearch((List<? extends Comparable<? super T>>) list, key); |
| |
| if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD) |
| return Collections.indexedBinarySearch(list, key, c); |
| else |
| return Collections.iteratorBinarySearch(list, key, c); |
| } |
| |
| private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) { |
| int low = 0; |
| int high = l.size()-1; |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| T midVal = l.get(mid); |
| int cmp = c.compare(midVal, key); |
| |
| if (cmp < 0) |
| low = mid + 1; |
| else if (cmp > 0) |
| high = mid - 1; |
| else |
| return mid; // key found |
| } |
| return -(low + 1); // key not found |
| } |
| |
| private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) { |
| int low = 0; |
| int high = l.size()-1; |
| ListIterator<? extends T> i = l.listIterator(); |
| |
| while (low <= high) { |
| int mid = (low + high) >>> 1; |
| T midVal = get(i, mid); |
| int cmp = c.compare(midVal, key); |
| |
| if (cmp < 0) |
| low = mid + 1; |
| else if (cmp > 0) |
| high = mid - 1; |
| else |
| return mid; // key found |
| } |
| return -(low + 1); // key not found |
| } |
| |
| /** |
| * Reverses the order of the elements in the specified list.<p> |
| * |
| * This method runs in linear time. |
| * |
| * @apiNote |
| * This method mutates the specified list in-place. To obtain a |
| * reverse-ordered view of a list without mutating it, use the |
| * {@link List#reversed List.reversed} method. |
| * |
| * @param list the list whose elements are to be reversed. |
| * @throws UnsupportedOperationException if the specified list or |
| * its list-iterator does not support the {@code set} operation. |
| * @see List#reversed List.reversed |
| */ |
| @SuppressWarnings({"rawtypes", "unchecked"}) |
| public static void reverse(List<?> list) { |
| int size = list.size(); |
| if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) { |
| for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--) |
| swap(list, i, j); |
| } else { |
| // instead of using a raw type here, it's possible to capture |
| // the wildcard but it will require a call to a supplementary |
| // private method |
| ListIterator fwd = list.listIterator(); |
| ListIterator rev = list.listIterator(size); |
| for (int i=0, mid=list.size()>>1; i<mid; i++) { |
| Object tmp = fwd.next(); |
| fwd.set(rev.previous()); |
| rev.set(tmp); |
| } |
| } |
| } |
| |
| /** |
| * Randomly permutes the specified list using a default source of |
| * randomness. All permutations occur with approximately equal |
| * likelihood. |
| * |
| * <p>The hedge "approximately" is used in the foregoing description because |
| * default source of randomness is only approximately an unbiased source |
| * of independently chosen bits. If it were a perfect source of randomly |
| * chosen bits, then the algorithm would choose permutations with perfect |
| * uniformity. |
| * |
| * <p>This implementation traverses the list backwards, from the last |
| * element up to the second, repeatedly swapping a randomly selected element |
| * into the "current position". Elements are randomly selected from the |
| * portion of the list that runs from the first element to the current |
| * position, inclusive. |
| * |
| * @implSpec This method runs in linear time. If the specified list does |
| * not implement the {@link RandomAccess} interface and is large, this |
| * implementation dumps the specified list into an array before shuffling |
| * it, and dumps the shuffled array back into the list. This avoids the |
| * quadratic behavior that would result from shuffling a "sequential |
| * access" list in place. |
| * |
| * @param list the list to be shuffled. |
| * @throws UnsupportedOperationException if the specified list or |
| * its list-iterator does not support the {@code set} operation. |
| */ |
| public static void shuffle(List<?> list) { |
| Random rnd = r; |
| if (rnd == null) |
| r = rnd = new Random(); // harmless race. |
| shuffle(list, rnd); |
| } |
| |
| private static Random r; |
| |
| /** |
| * Randomly permute the specified list using the specified source of |
| * randomness.<p> |
| * |
| * This method is equivalent to {@link #shuffle(List, RandomGenerator)} |
| * and exists for backward compatibility. The {@link #shuffle(List, RandomGenerator)} |
| * method is preferred, as it is not limited to random generators |
| * that extend the {@link Random} class. |
| * |
| * @param list the list to be shuffled. |
| * @param rnd the source of randomness to use to shuffle the list. |
| * @throws UnsupportedOperationException if the specified list or its |
| * list-iterator does not support the {@code set} operation. |
| */ |
| public static void shuffle(List<?> list, Random rnd) { |
| shuffle(list, (RandomGenerator) rnd); |
| } |
| |
| /** |
| * Randomly permute the specified list using the specified source of |
| * randomness. All permutations occur with equal likelihood |
| * assuming that the source of randomness is fair.<p> |
| * |
| * This implementation traverses the list backwards, from the last element |
| * up to the second, repeatedly swapping a randomly selected element into |
| * the "current position". Elements are randomly selected from the |
| * portion of the list that runs from the first element to the current |
| * position, inclusive. |
| * |
| * @implSpec This method runs in linear time. If the specified list does |
| * not implement the {@link RandomAccess} interface and is large, this |
| * implementation dumps the specified list into an array before shuffling |
| * it, and dumps the shuffled array back into the list. This avoids the |
| * quadratic behavior that would result from shuffling a "sequential |
| * access" list in place. |
| * |
| * @param list the list to be shuffled. |
| * @param rnd the source of randomness to use to shuffle the list. |
| * @throws UnsupportedOperationException if the specified list or its |
| * list-iterator does not support the {@code set} operation. |
| * @since 21 |
| */ |
| @SuppressWarnings({"rawtypes", "unchecked"}) |
| public static void shuffle(List<?> list, RandomGenerator rnd) { |
| int size = list.size(); |
| if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) { |
| for (int i=size; i>1; i--) |
| swap(list, i-1, rnd.nextInt(i)); |
| } else { |
| Object[] arr = list.toArray(); |
| |
| // Shuffle array |
| for (int i=size; i>1; i--) |
| swap(arr, i-1, rnd.nextInt(i)); |
| |
| // Dump array back into list |
| // instead of using a raw type here, it's possible to capture |
| // the wildcard but it will require a call to a supplementary |
| // private method |
| ListIterator it = list.listIterator(); |
| for (Object e : arr) { |
| it.next(); |
| it.set(e); |
| } |
| } |
| } |
| |
| /** |
| * Swaps the elements at the specified positions in the specified list. |
| * (If the specified positions are equal, invoking this method leaves |
| * the list unchanged.) |
| * |
| * @param list The list in which to swap elements. |
| * @param i the index of one element to be swapped. |
| * @param j the index of the other element to be swapped. |
| * @throws IndexOutOfBoundsException if either {@code i} or {@code j} |
| * is out of range (i < 0 || i >= list.size() |
| * || j < 0 || j >= list.size()). |
| * @since 1.4 |
| */ |
| @SuppressWarnings({"rawtypes", "unchecked"}) |
| public static void swap(List<?> list, int i, int j) { |
| // instead of using a raw type here, it's possible to capture |
| // the wildcard but it will require a call to a supplementary |
| // private method |
| final List l = list; |
| l.set(i, l.set(j, l.get(i))); |
| } |
| |
| /** |
| * Swaps the two specified elements in the specified array. |
| */ |
| private static void swap(Object[] arr, int i, int j) { |
| Object tmp = arr[i]; |
| arr[i] = arr[j]; |
| arr[j] = tmp; |
| } |
| |
| /** |
| * Replaces all of the elements of the specified list with the specified |
| * element. <p> |
| * |
| * This method runs in linear time. |
| * |
| * @param <T> the class of the objects in the list |
| * @param list the list to be filled with the specified element. |
| * @param obj The element with which to fill the specified list. |
| * @throws UnsupportedOperationException if the specified list or its |
| * list-iterator does not support the {@code set} operation. |
| */ |
| public static <T> void fill(List<? super T> list, T obj) { |
| int size = list.size(); |
| |
| if (size < FILL_THRESHOLD || list instanceof RandomAccess) { |
| for (int i=0; i<size; i++) |
| list.set(i, obj); |
| } else { |
| ListIterator<? super T> itr = list.listIterator(); |
| for (int i=0; i<size; i++) { |
| itr.next(); |
| itr.set(obj); |
| } |
| } |
| } |
| |
| /** |
| * Copies all of the elements from one list into another. After the |
| * operation, the index of each copied element in the destination list |
| * will be identical to its index in the source list. The destination |
| * list's size must be greater than or equal to the source list's size. |
| * If it is greater, the remaining elements in the destination list are |
| * unaffected. <p> |
| * |
| * This method runs in linear time. |
| * |
| * @param <T> the class of the objects in the lists |
| * @param dest The destination list. |
| * @param src The source list. |
| * @throws IndexOutOfBoundsException if the destination list is too small |
| * to contain the entire source List. |
| * @throws UnsupportedOperationException if the destination list's |
| * list-iterator does not support the {@code set} operation. |
| */ |
| public static <T> void copy(List<? super T> dest, List<? extends T> src) { |
| int srcSize = src.size(); |
| if (srcSize > dest.size()) |
| throw new IndexOutOfBoundsException("Source does not fit in dest"); |
| |
| if (srcSize < COPY_THRESHOLD || |
| (src instanceof RandomAccess && dest instanceof RandomAccess)) { |
| for (int i=0; i<srcSize; i++) |
| dest.set(i, src.get(i)); |
| } else { |
| ListIterator<? super T> di=dest.listIterator(); |
| ListIterator<? extends T> si=src.listIterator(); |
| for (int i=0; i<srcSize; i++) { |
| di.next(); |
| di.set(si.next()); |
| } |
| } |
| } |
| |
| /** |
| * Returns the minimum element of the given collection, according to the |
| * <i>natural ordering</i> of its elements. All elements in the |
| * collection must implement the {@code Comparable} interface. |
| * Furthermore, all elements in the collection must be <i>mutually |
| * comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a |
| * {@code ClassCastException} for any elements {@code e1} and |
| * {@code e2} in the collection).<p> |
| * |
| * This method iterates over the entire collection, hence it requires |
| * time proportional to the size of the collection. |
| * |
| * @param <T> the class of the objects in the collection |
| * @param coll the collection whose minimum element is to be determined. |
| * @return the minimum element of the given collection, according |
| * to the <i>natural ordering</i> of its elements. |
| * @throws ClassCastException if the collection contains elements that are |
| * not <i>mutually comparable</i> (for example, strings and |
| * integers). |
| * @throws NoSuchElementException if the collection is empty. |
| * @see Comparable |
| */ |
| public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) { |
| Iterator<? extends T> i = coll.iterator(); |
| T candidate = i.next(); |
| |
| while (i.hasNext()) { |
| T next = i.next(); |
| if (next.compareTo(candidate) < 0) |
| candidate = next; |
| } |
| return candidate; |
| } |
| |
| /** |
| * Returns the minimum element of the given collection, according to the |
| * order induced by the specified comparator. All elements in the |
| * collection must be <i>mutually comparable</i> by the specified |
| * comparator (that is, {@code comp.compare(e1, e2)} must not throw a |
| * {@code ClassCastException} for any elements {@code e1} and |
| * {@code e2} in the collection).<p> |
| * |
| * This method iterates over the entire collection, hence it requires |
| * time proportional to the size of the collection. |
| * |
| * @param <T> the class of the objects in the collection |
| * @param coll the collection whose minimum element is to be determined. |
| * @param comp the comparator with which to determine the minimum element. |
| * A {@code null} value indicates that the elements' <i>natural |
| * ordering</i> should be used. |
| * @return the minimum element of the given collection, according |
| * to the specified comparator. |
| * @throws ClassCastException if the collection contains elements that are |
| * not <i>mutually comparable</i> using the specified comparator. |
| * @throws NoSuchElementException if the collection is empty. |
| * @see Comparable |
| */ |
| @SuppressWarnings({"unchecked"}) |
| public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) { |
| if (comp==null) |
| return (T)min((Collection<Comparable<Object>>) coll); |
| |
| Iterator<? extends T> i = coll.iterator(); |
| T candidate = i.next(); |
| |
| while (i.hasNext()) { |
| T next = i.next(); |
| if (comp.compare(next, candidate) < 0) |
| candidate = next; |
| } |
| return candidate; |
| } |
| |
| /** |
| * Returns the maximum element of the given collection, according to the |
| * <i>natural ordering</i> of its elements. All elements in the |
| * collection must implement the {@code Comparable} interface. |
| * Furthermore, all elements in the collection must be <i>mutually |
| * comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a |
| * {@code ClassCastException} for any elements {@code e1} and |
| * {@code e2} in the collection).<p> |
| * |
| * This method iterates over the entire collection, hence it requires |
| * time proportional to the size of the collection. |
| * |
| * @param <T> the class of the objects in the collection |
| * @param coll the collection whose maximum element is to be determined. |
| * @return the maximum element of the given collection, according |
| * to the <i>natural ordering</i> of its elements. |
| * @throws ClassCastException if the collection contains elements that are |
| * not <i>mutually comparable</i> (for example, strings and |
| * integers). |
| * @throws NoSuchElementException if the collection is empty. |
| * @see Comparable |
| */ |
| public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) { |
| Iterator<? extends T> i = coll.iterator(); |
| T candidate = i.next(); |
| |
| while (i.hasNext()) { |
| T next = i.next(); |
| if (next.compareTo(candidate) > 0) |
| candidate = next; |
| } |
| return candidate; |
| } |
| |
| /** |
| * Returns the maximum element of the given collection, according to the |
| * order induced by the specified comparator. All elements in the |
| * collection must be <i>mutually comparable</i> by the specified |
| * comparator (that is, {@code comp.compare(e1, e2)} must not throw a |
| * {@code ClassCastException} for any elements {@code e1} and |
| * {@code e2} in the collection).<p> |
| * |
| * This method iterates over the entire collection, hence it requires |
| * time proportional to the size of the collection. |
| * |
| * @param <T> the class of the objects in the collection |
| * @param coll the collection whose maximum element is to be determined. |
| * @param comp the comparator with which to determine the maximum element. |
| * A {@code null} value indicates that the elements' <i>natural |
| * ordering</i> should be used. |
| * @return the maximum element of the given collection, according |
| * to the specified comparator. |
| * @throws ClassCastException if the collection contains elements that are |
| * not <i>mutually comparable</i> using the specified comparator. |
| * @throws NoSuchElementException if the collection is empty. |
| * @see Comparable |
| */ |
| @SuppressWarnings({"unchecked"}) |
| public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) { |
| if (comp==null) |
| return (T)max((Collection<Comparable<Object>>) coll); |
| |
| Iterator<? extends T> i = coll.iterator(); |
| T candidate = i.next(); |
| |
| while (i.hasNext()) { |
| T next = i.next(); |
| if (comp.compare(next, candidate) > 0) |
| candidate = next; |
| } |
| return candidate; |
| } |
| |
| /** |
| * Rotates the elements in the specified list by the specified distance. |
| * After calling this method, the element at index {@code i} will be |
| * the element previously at index {@code (i - distance)} mod |
| * {@code list.size()}, for all values of {@code i} between {@code 0} |
| * and {@code list.size()-1}, inclusive. (This method has no effect on |
| * the size of the list.) |
| * |
| * <p>For example, suppose {@code list} comprises{@code [t, a, n, k, s]}. |
| * After invoking {@code Collections.rotate(list, 1)} (or |
| * {@code Collections.rotate(list, -4)}), {@code list} will comprise |
| * {@code [s, t, a, n, k]}. |
| * |
| * <p>Note that this method can usefully be applied to sublists to |
| * move one or more elements within a list while preserving the |
| * order of the remaining elements. For example, the following idiom |
| * moves the element at index {@code j} forward to position |
| * {@code k} (which must be greater than or equal to {@code j}): |
| * <pre> |
| * Collections.rotate(list.subList(j, k+1), -1); |
| * </pre> |
| * To make this concrete, suppose {@code list} comprises |
| * {@code [a, b, c, d, e]}. To move the element at index {@code 1} |
| * ({@code b}) forward two positions, perform the following invocation: |
| * <pre> |
| * Collections.rotate(l.subList(1, 4), -1); |
| * </pre> |
| * The resulting list is {@code [a, c, d, b, e]}. |
| * |
| * <p>To move more than one element forward, increase the absolute value |
| * of the rotation distance. To move elements backward, use a positive |
| * shift distance. |
| * |
| * <p>If the specified list is small or implements the {@link |
| * RandomAccess} interface, this implementation exchanges the first |
| * element into the location it should go, and then repeatedly exchanges |
| * the displaced element into the location it should go until a displaced |
| * element is swapped into the first element. If necessary, the process |
| * is repeated on the second and successive elements, until the rotation |
| * is complete. If the specified list is large and doesn't implement the |
| * {@code RandomAccess} interface, this implementation breaks the |
| * list into two sublist views around index {@code -distance mod size}. |
| * Then the {@link #reverse(List)} method is invoked on each sublist view, |
| * and finally it is invoked on the entire list. For a more complete |
| * description of both algorithms, see Section 2.3 of Jon Bentley's |
| * <i>Programming Pearls</i> (Addison-Wesley, 1986). |
| * |
| * @param list the list to be rotated. |
| * @param distance the distance to rotate the list. There are no |
| * constraints on this value; it may be zero, negative, or |
| * greater than {@code list.size()}. |
| * @throws UnsupportedOperationException if the specified list or |
| * its list-iterator does not support the {@code set} operation. |
| * @since 1.4 |
| */ |
| public static void rotate(List<?> list, int distance) { |
| if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD) |
| rotate1(list, distance); |
| else |
| rotate2(list, distance); |
| } |
| |
| private static <T> void rotate1(List<T> list, int distance) { |
| int size = list.size(); |
| if (size == 0) |
| return; |
| distance = distance % size; |
| if (distance < 0) |
| distance += size; |
| if (distance == 0) |
| return; |
| |
| for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) { |
| T displaced = list.get(cycleStart); |
| int i = cycleStart; |
| do { |
| i += distance; |
| if (i >= size) |
| i -= size; |
| displaced = list.set(i, displaced); |
| nMoved ++; |
| } while (i != cycleStart); |
| } |
| } |
| |
| private static void rotate2(List<?> list, int distance) { |
| int size = list.size(); |
| if (size == 0) |
| return; |
| int mid = -distance % size; |
| if (mid < 0) |
| mid += size; |
| if (mid == 0) |
| return; |
| |
| reverse(list.subList(0, mid)); |
| reverse(list.subList(mid, size)); |
| reverse(list); |
| } |
| |
| /** |
| * Replaces all occurrences of one specified value in a list with another. |
| * More formally, replaces with {@code newVal} each element {@code e} |
| * in {@code list} such that |
| * {@code (oldVal==null ? e==null : oldVal.equals(e))}. |
| * (This method has no effect on the size of the list.) |
| * |
| * @param <T> the class of the objects in the list |
| * @param list the list in which replacement is to occur. |
| * @param oldVal the old value to be replaced. |
| * @param newVal the new value with which {@code oldVal} is to be |
| * replaced. |
| * @return {@code true} if {@code list} contained one or more elements |
| * {@code e} such that |
| * {@code (oldVal==null ? e==null : oldVal.equals(e))}. |
| * @throws UnsupportedOperationException if the specified list or |
| * its list-iterator does not support the {@code set} operation. |
| * @since 1.4 |
| */ |
| public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) { |
| boolean result = false; |
| int size = list.size(); |
| if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) { |
| if (oldVal==null) { |
| for (int i=0; i<size; i++) { |
| if (list.get(i)==null) { |
| list.set(i, newVal); |
| result = true; |
| } |
| } |
| } else { |
| for (int i=0; i<size; i++) { |
| if (oldVal.equals(list.get(i))) { |
| list.set(i, newVal); |
| result = true; |
| } |
| } |
| } |
| } else { |
| ListIterator<T> itr=list.listIterator(); |
| if (oldVal==null) { |
| for (int i=0; i<size; i++) { |
| if (itr.next()==null) { |
| itr.set(newVal); |
| result = true; |
| } |
| } |
| } else { |
| for (int i=0; i<size; i++) { |
| if (oldVal.equals(itr.next())) { |
| itr.set(newVal); |
| result = true; |
| } |
| } |
| } |
| } |
| return result; |
| } |
| |
| /** |
| * Returns the starting position of the first occurrence of the specified |
| * target list within the specified source list, or -1 if there is no |
| * such occurrence. More formally, returns the lowest index {@code i} |
| * such that {@code source.subList(i, i+target.size()).equals(target)}, |
| * or -1 if there is no such index. (Returns -1 if |
| * {@code target.size() > source.size()}) |
| * |
| * <p>This implementation uses the "brute force" technique of scanning |
| * over the source list, looking for a match with the target at each |
| * location in turn. |
| * |
| * @param source the list in which to search for the first occurrence |
| * of {@code target}. |
| * @param target the list to search for as a subList of {@code source}. |
| * @return the starting position of the first occurrence of the specified |
| * target list within the specified source list, or -1 if there |
| * is no such occurrence. |
| * @since 1.4 |
| */ |
| public static int indexOfSubList(List<?> source, List<?> target) { |
| int sourceSize = source.size(); |
| int targetSize = target.size(); |
| int maxCandidate = sourceSize - targetSize; |
| |
| if (sourceSize < INDEXOFSUBLIST_THRESHOLD || |
| (source instanceof RandomAccess&&target instanceof RandomAccess)) { |
| nextCand: |
| for (int candidate = 0; candidate <= maxCandidate; candidate++) { |
| for (int i=0, j=candidate; i<targetSize; i++, j++) |
| if (!eq(target.get(i), source.get(j))) |
| continue nextCand; // Element mismatch, try next cand |
| return candidate; // All elements of candidate matched target |
| } |
| } else { // Iterator version of above algorithm |
| ListIterator<?> si = source.listIterator(); |
| nextCand: |
| for (int candidate = 0; candidate <= maxCandidate; candidate++) { |
| ListIterator<?> ti = target.listIterator(); |
| for (int i=0; i<targetSize; i++) { |
| if (!eq(ti.next(), si.next())) { |
| // Back up source iterator to next candidate |
| for (int j=0; j<i; j++) |
| si.previous(); |
| continue nextCand; |
| } |
| } |
| return candidate; |
| } |
| } |
| return -1; // No candidate matched the target |
| } |
| |
| /** |
| * Returns the starting position of the last occurrence of the specified |
| * target list within the specified source list, or -1 if there is no such |
| * occurrence. More formally, returns the highest index {@code i} |
| * such that {@code source.subList(i, i+target.size()).equals(target)}, |
| * or -1 if there is no such index. (Returns -1 if |
| * {@code target.size() > source.size()}) |
| * |
| * <p>This implementation uses the "brute force" technique of iterating |
| * over the source list, looking for a match with the target at each |
| * location in turn. |
| * |
| * @param source the list in which to search for the last occurrence |
| * of {@code target}. |
| * @param target the list to search for as a subList of {@code source}. |
| * @return the starting position of the last occurrence of the specified |
| * target list within the specified source list, or -1 if there |
| * is no such occurrence. |
| * @since 1.4 |
| */ |
| public static int lastIndexOfSubList(List<?> source, List<?> target) { |
| int sourceSize = source.size(); |
| int targetSize = target.size(); |
| int maxCandidate = sourceSize - targetSize; |
| |
| if (sourceSize < INDEXOFSUBLIST_THRESHOLD || |
| source instanceof RandomAccess) { // Index access version |
| nextCand: |
| for (int candidate = maxCandidate; candidate >= 0; candidate--) { |
| for (int i=0, j=candidate; i<targetSize; i++, j++) |
| if (!eq(target.get(i), source.get(j))) |
| continue nextCand; // Element mismatch, try next cand |
| return candidate; // All elements of candidate matched target |
| } |
| } else { // Iterator version of above algorithm |
| if (maxCandidate < 0) |
| return -1; |
| ListIterator<?> si = source.listIterator(maxCandidate); |
| nextCand: |
| for (int candidate = maxCandidate; candidate >= 0; candidate--) { |
| ListIterator<?> ti = target.listIterator(); |
| for (int i=0; i<targetSize; i++) { |
| if (!eq(ti.next(), si.next())) { |
| if (candidate != 0) { |
| // Back up source iterator to next candidate |
| for (int j=0; j<=i+1; j++) |
| si.previous(); |
| } |
| continue nextCand; |
| } |
| } |
| return candidate; |
| } |
| } |
| return -1; // No candidate matched the target |
| } |
| |
| |
| // Unmodifiable Wrappers |
| |
| /** |
| * Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the |
| * specified collection. Query operations on the returned collection "read through" |
| * to the specified collection, and attempts to modify the returned |
| * collection, whether direct or via its iterator, result in an |
| * {@code UnsupportedOperationException}.<p> |
| * |
| * The returned collection does <i>not</i> pass the hashCode and equals |
| * operations through to the backing collection, but relies on |
| * {@code Object}'s {@code equals} and {@code hashCode} methods. This |
| * is necessary to preserve the contracts of these operations in the case |
| * that the backing collection is a set or a list.<p> |
| * |
| * The returned collection will be serializable if the specified collection |
| * is serializable. |
| * |
| * @implNote This method may return its argument if the argument is already unmodifiable. |
| * @param <T> the class of the objects in the collection |
| * @param c the collection for which an unmodifiable view is to be |
| * returned. |
| * @return an unmodifiable view of the specified collection. |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) { |
| if (c.getClass() == UnmodifiableCollection.class) { |
| return (Collection<T>) c; |
| } |
| return new UnmodifiableCollection<>(c); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class UnmodifiableCollection<E> implements Collection<E>, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = 1820017752578914078L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| final Collection<? extends E> c; |
| |
| UnmodifiableCollection(Collection<? extends E> c) { |
| if (c==null) |
| throw new NullPointerException(); |
| this.c = c; |
| } |
| |
| public int size() {return c.size();} |
| public boolean isEmpty() {return c.isEmpty();} |
| public boolean contains(Object o) {return c.contains(o);} |
| public Object[] toArray() {return c.toArray();} |
| public <T> T[] toArray(T[] a) {return c.toArray(a);} |
| public <T> T[] toArray(IntFunction<T[]> f) {return c.toArray(f);} |
| public String toString() {return c.toString();} |
| |
| public Iterator<E> iterator() { |
| return new Iterator<>() { |
| private final Iterator<? extends E> i = c.iterator(); |
| |
| public boolean hasNext() {return i.hasNext();} |
| public E next() {return i.next();} |
| public void remove() { |
| throw new UnsupportedOperationException(); |
| } |
| @Override |
| public void forEachRemaining(Consumer<? super E> action) { |
| // Use backing collection version |
| i.forEachRemaining(action); |
| } |
| }; |
| } |
| |
| public boolean add(E e) { |
| throw new UnsupportedOperationException(); |
| } |
| public boolean remove(Object o) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| public boolean containsAll(Collection<?> coll) { |
| return c.containsAll(coll); |
| } |
| public boolean addAll(Collection<? extends E> coll) { |
| throw new UnsupportedOperationException(); |
| } |
| public boolean removeAll(Collection<?> coll) { |
| throw new UnsupportedOperationException(); |
| } |
| public boolean retainAll(Collection<?> coll) { |
| throw new UnsupportedOperationException(); |
| } |
| public void clear() { |
| throw new UnsupportedOperationException(); |
| } |
| |
| // Override default methods in Collection |
| @Override |
| public void forEach(Consumer<? super E> action) { |
| c.forEach(action); |
| } |
| @Override |
| public boolean removeIf(Predicate<? super E> filter) { |
| throw new UnsupportedOperationException(); |
| } |
| @SuppressWarnings("unchecked") |
| @Override |
| public Spliterator<E> spliterator() { |
| return (Spliterator<E>)c.spliterator(); |
| } |
| @SuppressWarnings("unchecked") |
| @Override |
| public Stream<E> stream() { |
| return (Stream<E>)c.stream(); |
| } |
| @SuppressWarnings("unchecked") |
| @Override |
| public Stream<E> parallelStream() { |
| return (Stream<E>)c.parallelStream(); |
| } |
| } |
| |
| /** |
| * Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the |
| * specified {@code SequencedCollection}. Query operations on the returned collection |
| * "read through" to the specified collection, and attempts to modify the returned |
| * collection, whether direct or via its iterator, result in an |
| * {@code UnsupportedOperationException}.<p> |
| * |
| * The returned collection does <i>not</i> pass the {@code hashCode} and |
| * {@code equals} operations through to the backing collection, but relies on |
| * {@code Object}'s {@code equals} and {@code hashCode} methods. This |
| * is necessary to preserve the contracts of these operations in the case |
| * that the backing collection is a set or a list.<p> |
| * |
| * The returned collection will be serializable if the specified collection |
| * is serializable. |
| * |
| * @implNote This method may return its argument if the argument is already unmodifiable. |
| * @param <T> the class of the objects in the collection |
| * @param c the collection for which an unmodifiable view is to be |
| * returned. |
| * @return an unmodifiable view of the specified collection. |
| * @since 21 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> SequencedCollection<T> unmodifiableSequencedCollection(SequencedCollection<? extends T> c) { |
| if (c.getClass() == UnmodifiableSequencedCollection.class) { |
| return (SequencedCollection<T>) c; |
| } |
| return new UnmodifiableSequencedCollection<>(c); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class UnmodifiableSequencedCollection<E> extends UnmodifiableCollection<E> |
| implements SequencedCollection<E>, Serializable { |
| |
| @java.io.Serial |
| private static final long serialVersionUID = -6060065079711684830L; |
| |
| UnmodifiableSequencedCollection(SequencedCollection<? extends E> c) { |
| super(c); |
| } |
| |
| @SuppressWarnings("unchecked") |
| private SequencedCollection<E> sc() { |
| return (SequencedCollection<E>) c; |
| } |
| |
| // Even though this wrapper class is serializable, the reversed view is effectively |
| // not serializable because it points to the reversed collection view, which usually isn't |
| // serializable. |
| public SequencedCollection<E> reversed() { |
| return new UnmodifiableSequencedCollection<>(sc().reversed()); |
| } |
| |
| public void addFirst(E e) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| public void addLast(E e) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| public E getFirst() { |
| return sc().getFirst(); |
| } |
| |
| public E getLast() { |
| return sc().getLast(); |
| } |
| |
| public E removeFirst() { |
| throw new UnsupportedOperationException(); |
| } |
| |
| public E removeLast() { |
| throw new UnsupportedOperationException(); |
| } |
| } |
| |
| /** |
| * Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the |
| * specified set. Query operations on the returned set "read through" to the specified |
| * set, and attempts to modify the returned set, whether direct or via its |
| * iterator, result in an {@code UnsupportedOperationException}.<p> |
| * |
| * The returned set will be serializable if the specified set |
| * is serializable. |
| * |
| * @implNote This method may return its argument if the argument is already unmodifiable. |
| * @param <T> the class of the objects in the set |
| * @param s the set for which an unmodifiable view is to be returned. |
| * @return an unmodifiable view of the specified set. |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> Set<T> unmodifiableSet(Set<? extends T> s) { |
| // Not checking for subclasses because of heap pollution and information leakage. |
| if (s.getClass() == UnmodifiableSet.class) { |
| return (Set<T>) s; |
| } |
| return new UnmodifiableSet<>(s); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class UnmodifiableSet<E> extends UnmodifiableCollection<E> |
| implements Set<E>, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = -9215047833775013803L; |
| |
| UnmodifiableSet(Set<? extends E> s) {super(s);} |
| public boolean equals(Object o) {return o == this || c.equals(o);} |
| public int hashCode() {return c.hashCode();} |
| } |
| |
| /** |
| * Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the |
| * specified {@code SequencedSet}. Query operations on the returned set |
| * "read through" to the specified set, and attempts to modify the returned |
| * set, whether direct or via its iterator, result in an |
| * {@code UnsupportedOperationException}.<p> |
| * |
| * The returned set will be serializable if the specified set |
| * is serializable. |
| * |
| * @implNote This method may return its argument if the argument is already unmodifiable. |
| * @param <T> the class of the objects in the set |
| * @param s the set for which an unmodifiable view is to be returned. |
| * @return an unmodifiable view of the specified sequenced set. |
| * @since 21 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> SequencedSet<T> unmodifiableSequencedSet(SequencedSet<? extends T> s) { |
| // Not checking for subclasses because of heap pollution and information leakage. |
| if (s.getClass() == UnmodifiableSequencedSet.class) { |
| return (SequencedSet<T>) s; |
| } |
| return new UnmodifiableSequencedSet<>(s); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class UnmodifiableSequencedSet<E> extends UnmodifiableSequencedCollection<E> |
| implements SequencedSet<E>, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = -2153469532349793522L; |
| |
| UnmodifiableSequencedSet(SequencedSet<? extends E> s) {super(s);} |
| public boolean equals(Object o) {return o == this || c.equals(o);} |
| public int hashCode() {return c.hashCode();} |
| |
| @SuppressWarnings("unchecked") |
| private SequencedSet<E> ss() { |
| return (SequencedSet<E>) c; |
| } |
| |
| // Even though this wrapper class is serializable, the reversed view is effectively |
| // not serializable because it points to the reversed set view, which usually isn't |
| // serializable. |
| public SequencedSet<E> reversed() { |
| return new UnmodifiableSequencedSet<>(ss().reversed()); |
| } |
| } |
| |
| /** |
| * Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the |
| * specified sorted set. Query operations on the returned sorted set "read |
| * through" to the specified sorted set. Attempts to modify the returned |
| * sorted set, whether direct, via its iterator, or via its |
| * {@code subSet}, {@code headSet}, or {@code tailSet} views, result in |
| * an {@code UnsupportedOperationException}.<p> |
| * |
| * The returned sorted set will be serializable if the specified sorted set |
| * is serializable. |
| * |
| * @implNote This method may return its argument if the argument is already unmodifiable. |
| * @param <T> the class of the objects in the set |
| * @param s the sorted set for which an unmodifiable view is to be |
| * returned. |
| * @return an unmodifiable view of the specified sorted set. |
| */ |
| public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) { |
| // Not checking for subclasses because of heap pollution and information leakage. |
| if (s.getClass() == UnmodifiableSortedSet.class) { |
| return s; |
| } |
| return new UnmodifiableSortedSet<>(s); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class UnmodifiableSortedSet<E> |
| extends UnmodifiableSet<E> |
| implements SortedSet<E>, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = -4929149591599911165L; |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final SortedSet<E> ss; |
| |
| UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;} |
| |
| public Comparator<? super E> comparator() {return ss.comparator();} |
| |
| public SortedSet<E> subSet(E fromElement, E toElement) { |
| return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement)); |
| } |
| public SortedSet<E> headSet(E toElement) { |
| return new UnmodifiableSortedSet<>(ss.headSet(toElement)); |
| } |
| public SortedSet<E> tailSet(E fromElement) { |
| return new UnmodifiableSortedSet<>(ss.tailSet(fromElement)); |
| } |
| |
| public E first() {return ss.first();} |
| public E last() {return ss.last();} |
| } |
| |
| /** |
| * Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the |
| * specified navigable set. Query operations on the returned navigable set "read |
| * through" to the specified navigable set. Attempts to modify the returned |
| * navigable set, whether direct, via its iterator, or via its |
| * {@code subSet}, {@code headSet}, or {@code tailSet} views, result in |
| * an {@code UnsupportedOperationException}.<p> |
| * |
| * The returned navigable set will be serializable if the specified |
| * navigable set is serializable. |
| * |
| * @implNote This method may return its argument if the argument is already unmodifiable. |
| * @param <T> the class of the objects in the set |
| * @param s the navigable set for which an unmodifiable view is to be |
| * returned |
| * @return an unmodifiable view of the specified navigable set |
| * @since 1.8 |
| */ |
| public static <T> NavigableSet<T> unmodifiableNavigableSet(NavigableSet<T> s) { |
| if (s.getClass() == UnmodifiableNavigableSet.class) { |
| return s; |
| } |
| return new UnmodifiableNavigableSet<>(s); |
| } |
| |
| /** |
| * Wraps a navigable set and disables all of the mutative operations. |
| * |
| * @param <E> type of elements |
| * @serial include |
| */ |
| static class UnmodifiableNavigableSet<E> |
| extends UnmodifiableSortedSet<E> |
| implements NavigableSet<E>, Serializable { |
| |
| @java.io.Serial |
| private static final long serialVersionUID = -6027448201786391929L; |
| |
| /** |
| * A singleton empty unmodifiable navigable set used for |
| * {@link #emptyNavigableSet()}. |
| * |
| * @param <E> type of elements, if there were any, and bounds |
| */ |
| private static class EmptyNavigableSet<E> extends UnmodifiableNavigableSet<E> |
| implements Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = -6291252904449939134L; |
| |
| public EmptyNavigableSet() { |
| super(new TreeSet<>()); |
| } |
| |
| @java.io.Serial |
| private Object readResolve() { return EMPTY_NAVIGABLE_SET; } |
| } |
| |
| private static final NavigableSet<?> EMPTY_NAVIGABLE_SET = |
| new EmptyNavigableSet<>(); |
| |
| /** |
| * The instance we are protecting. |
| */ |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final NavigableSet<E> ns; |
| |
| UnmodifiableNavigableSet(NavigableSet<E> s) {super(s); ns = s;} |
| |
| public E lower(E e) { return ns.lower(e); } |
| public E floor(E e) { return ns.floor(e); } |
| public E ceiling(E e) { return ns.ceiling(e); } |
| public E higher(E e) { return ns.higher(e); } |
| public E pollFirst() { throw new UnsupportedOperationException(); } |
| public E pollLast() { throw new UnsupportedOperationException(); } |
| public NavigableSet<E> descendingSet() |
| { return new UnmodifiableNavigableSet<>(ns.descendingSet()); } |
| public Iterator<E> descendingIterator() |
| { return descendingSet().iterator(); } |
| |
| public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { |
| return new UnmodifiableNavigableSet<>( |
| ns.subSet(fromElement, fromInclusive, toElement, toInclusive)); |
| } |
| |
| public NavigableSet<E> headSet(E toElement, boolean inclusive) { |
| return new UnmodifiableNavigableSet<>( |
| ns.headSet(toElement, inclusive)); |
| } |
| |
| public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { |
| return new UnmodifiableNavigableSet<>( |
| ns.tailSet(fromElement, inclusive)); |
| } |
| } |
| |
| /** |
| * Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the |
| * specified list. Query operations on the returned list "read through" to the |
| * specified list, and attempts to modify the returned list, whether |
| * direct or via its iterator, result in an |
| * {@code UnsupportedOperationException}.<p> |
| * |
| * The returned list will be serializable if the specified list |
| * is serializable. Similarly, the returned list will implement |
| * {@link RandomAccess} if the specified list does. |
| * |
| * @implNote This method may return its argument if the argument is already unmodifiable. |
| * @param <T> the class of the objects in the list |
| * @param list the list for which an unmodifiable view is to be returned. |
| * @return an unmodifiable view of the specified list. |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> List<T> unmodifiableList(List<? extends T> list) { |
| if (list.getClass() == UnmodifiableList.class || list.getClass() == UnmodifiableRandomAccessList.class) { |
| return (List<T>) list; |
| } |
| |
| return (list instanceof RandomAccess ? |
| new UnmodifiableRandomAccessList<>(list) : |
| new UnmodifiableList<>(list)); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class UnmodifiableList<E> extends UnmodifiableCollection<E> |
| implements List<E> { |
| @java.io.Serial |
| private static final long serialVersionUID = -283967356065247728L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| final List<? extends E> list; |
| |
| UnmodifiableList(List<? extends E> list) { |
| super(list); |
| this.list = list; |
| } |
| |
| public boolean equals(Object o) {return o == this || list.equals(o);} |
| public int hashCode() {return list.hashCode();} |
| |
| public E get(int index) {return list.get(index);} |
| public E set(int index, E element) { |
| throw new UnsupportedOperationException(); |
| } |
| public void add(int index, E element) { |
| throw new UnsupportedOperationException(); |
| } |
| public E remove(int index) { |
| throw new UnsupportedOperationException(); |
| } |
| public int indexOf(Object o) {return list.indexOf(o);} |
| public int lastIndexOf(Object o) {return list.lastIndexOf(o);} |
| public boolean addAll(int index, Collection<? extends E> c) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public void replaceAll(UnaryOperator<E> operator) { |
| throw new UnsupportedOperationException(); |
| } |
| @Override |
| public void sort(Comparator<? super E> c) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| public ListIterator<E> listIterator() {return listIterator(0);} |
| |
| public ListIterator<E> listIterator(final int index) { |
| return new ListIterator<>() { |
| private final ListIterator<? extends E> i |
| = list.listIterator(index); |
| |
| public boolean hasNext() {return i.hasNext();} |
| public E next() {return i.next();} |
| public boolean hasPrevious() {return i.hasPrevious();} |
| public E previous() {return i.previous();} |
| public int nextIndex() {return i.nextIndex();} |
| public int previousIndex() {return i.previousIndex();} |
| |
| public void remove() { |
| throw new UnsupportedOperationException(); |
| } |
| public void set(E e) { |
| throw new UnsupportedOperationException(); |
| } |
| public void add(E e) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public void forEachRemaining(Consumer<? super E> action) { |
| i.forEachRemaining(action); |
| } |
| }; |
| } |
| |
| public List<E> subList(int fromIndex, int toIndex) { |
| return new UnmodifiableList<>(list.subList(fromIndex, toIndex)); |
| } |
| |
| /** |
| * UnmodifiableRandomAccessList instances are serialized as |
| * UnmodifiableList instances to allow them to be deserialized |
| * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList). |
| * This method inverts the transformation. As a beneficial |
| * side-effect, it also grafts the RandomAccess marker onto |
| * UnmodifiableList instances that were serialized in pre-1.4 JREs. |
| * |
| * Note: Unfortunately, UnmodifiableRandomAccessList instances |
| * serialized in 1.4.1 and deserialized in 1.4 will become |
| * UnmodifiableList instances, as this method was missing in 1.4. |
| */ |
| @java.io.Serial |
| private Object readResolve() { |
| return (list instanceof RandomAccess |
| ? new UnmodifiableRandomAccessList<>(list) |
| : this); |
| } |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E> |
| implements RandomAccess |
| { |
| UnmodifiableRandomAccessList(List<? extends E> list) { |
| super(list); |
| } |
| |
| public List<E> subList(int fromIndex, int toIndex) { |
| return new UnmodifiableRandomAccessList<>( |
| list.subList(fromIndex, toIndex)); |
| } |
| |
| @java.io.Serial |
| private static final long serialVersionUID = -2542308836966382001L; |
| |
| /** |
| * Allows instances to be deserialized in pre-1.4 JREs (which do |
| * not have UnmodifiableRandomAccessList). UnmodifiableList has |
| * a readResolve method that inverts this transformation upon |
| * deserialization. |
| */ |
| @java.io.Serial |
| private Object writeReplace() { |
| return new UnmodifiableList<>(list); |
| } |
| } |
| |
| /** |
| * Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the |
| * specified map. Query operations on the returned map "read through" |
| * to the specified map, and attempts to modify the returned |
| * map, whether direct or via its collection views, result in an |
| * {@code UnsupportedOperationException}.<p> |
| * |
| * The returned map will be serializable if the specified map |
| * is serializable. |
| * |
| * @implNote This method may return its argument if the argument is already unmodifiable. |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @param m the map for which an unmodifiable view is to be returned. |
| * @return an unmodifiable view of the specified map. |
| */ |
| @SuppressWarnings("unchecked") |
| public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) { |
| // Not checking for subclasses because of heap pollution and information leakage. |
| if (m.getClass() == UnmodifiableMap.class) { |
| return (Map<K,V>) m; |
| } |
| return new UnmodifiableMap<>(m); |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = -1034234728574286014L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| final Map<? extends K, ? extends V> m; |
| |
| UnmodifiableMap(Map<? extends K, ? extends V> m) { |
| if (m==null) |
| throw new NullPointerException(); |
| this.m = m; |
| } |
| |
| public int size() {return m.size();} |
| public boolean isEmpty() {return m.isEmpty();} |
| public boolean containsKey(Object key) {return m.containsKey(key);} |
| public boolean containsValue(Object val) {return m.containsValue(val);} |
| public V get(Object key) {return m.get(key);} |
| |
| public V put(K key, V value) { |
| throw new UnsupportedOperationException(); |
| } |
| public V remove(Object key) { |
| throw new UnsupportedOperationException(); |
| } |
| public void putAll(Map<? extends K, ? extends V> m) { |
| throw new UnsupportedOperationException(); |
| } |
| public void clear() { |
| throw new UnsupportedOperationException(); |
| } |
| |
| private transient Set<K> keySet; |
| private transient Set<Map.Entry<K,V>> entrySet; |
| private transient Collection<V> values; |
| |
| public Set<K> keySet() { |
| if (keySet==null) |
| keySet = unmodifiableSet(m.keySet()); |
| return keySet; |
| } |
| |
| public Set<Map.Entry<K,V>> entrySet() { |
| if (entrySet==null) |
| entrySet = new UnmodifiableEntrySet<>(m.entrySet()); |
| return entrySet; |
| } |
| |
| public Collection<V> values() { |
| if (values==null) |
| values = unmodifiableCollection(m.values()); |
| return values; |
| } |
| |
| public boolean equals(Object o) {return o == this || m.equals(o);} |
| public int hashCode() {return m.hashCode();} |
| public String toString() {return m.toString();} |
| |
| // Override default methods in Map |
| @Override |
| @SuppressWarnings("unchecked") |
| public V getOrDefault(Object k, V defaultValue) { |
| // Safe cast as we don't change the value |
| return ((Map<K, V>)m).getOrDefault(k, defaultValue); |
| } |
| |
| @Override |
| public void forEach(BiConsumer<? super K, ? super V> action) { |
| m.forEach(action); |
| } |
| |
| @Override |
| public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V putIfAbsent(K key, V value) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public boolean remove(Object key, Object value) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public boolean replace(K key, V oldValue, V newValue) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V replace(K key, V value) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V computeIfPresent(K key, |
| BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V compute(K key, |
| BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V merge(K key, V value, |
| BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| /** |
| * We need this class in addition to UnmodifiableSet as |
| * Map.Entries themselves permit modification of the backing Map |
| * via their setValue operation. This class is subtle: there are |
| * many possible attacks that must be thwarted. |
| * |
| * @serial include |
| */ |
| static class UnmodifiableEntrySet<K,V> |
| extends UnmodifiableSet<Map.Entry<K,V>> { |
| @java.io.Serial |
| private static final long serialVersionUID = 7854390611657943733L; |
| |
| @SuppressWarnings({"unchecked"}) |
| UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) { |
| super((Set<Map.Entry<K, V>>)s); |
| } |
| |
| static <K, V> Consumer<Map.Entry<? extends K, ? extends V>> entryConsumer( |
| Consumer<? super Entry<K, V>> action) { |
| return e -> action.accept(new UnmodifiableEntry<>(e)); |
| } |
| |
| public void forEach(Consumer<? super Entry<K, V>> action) { |
| Objects.requireNonNull(action); |
| c.forEach(entryConsumer(action)); |
| } |
| |
| static final class UnmodifiableEntrySetSpliterator<K, V> |
| implements Spliterator<Entry<K,V>> { |
| final Spliterator<Map.Entry<K, V>> s; |
| |
| UnmodifiableEntrySetSpliterator(Spliterator<Entry<K, V>> s) { |
| this.s = s; |
| } |
| |
| @Override |
| public boolean tryAdvance(Consumer<? super Entry<K, V>> action) { |
| Objects.requireNonNull(action); |
| return s.tryAdvance(entryConsumer(action)); |
| } |
| |
| @Override |
| public void forEachRemaining(Consumer<? super Entry<K, V>> action) { |
| Objects.requireNonNull(action); |
| s.forEachRemaining(entryConsumer(action)); |
| } |
| |
| @Override |
| public Spliterator<Entry<K, V>> trySplit() { |
| Spliterator<Entry<K, V>> split = s.trySplit(); |
| return split == null |
| ? null |
| : new UnmodifiableEntrySetSpliterator<>(split); |
| } |
| |
| @Override |
| public long estimateSize() { |
| return s.estimateSize(); |
| } |
| |
| @Override |
| public long getExactSizeIfKnown() { |
| return s.getExactSizeIfKnown(); |
| } |
| |
| @Override |
| public int characteristics() { |
| return s.characteristics(); |
| } |
| |
| @Override |
| public boolean hasCharacteristics(int characteristics) { |
| return s.hasCharacteristics(characteristics); |
| } |
| |
| @Override |
| public Comparator<? super Entry<K, V>> getComparator() { |
| return s.getComparator(); |
| } |
| } |
| |
| @SuppressWarnings("unchecked") |
| public Spliterator<Entry<K,V>> spliterator() { |
| return new UnmodifiableEntrySetSpliterator<>( |
| (Spliterator<Map.Entry<K, V>>) c.spliterator()); |
| } |
| |
| @Override |
| public Stream<Entry<K,V>> stream() { |
| return StreamSupport.stream(spliterator(), false); |
| } |
| |
| @Override |
| public Stream<Entry<K,V>> parallelStream() { |
| return StreamSupport.stream(spliterator(), true); |
| } |
| |
| public Iterator<Map.Entry<K,V>> iterator() { |
| return new Iterator<>() { |
| private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator(); |
| |
| public boolean hasNext() { |
| return i.hasNext(); |
| } |
| public Map.Entry<K,V> next() { |
| return new UnmodifiableEntry<>(i.next()); |
| } |
| public void remove() { |
| throw new UnsupportedOperationException(); |
| } |
| // Seems like an oversight. http://b/110351017 |
| public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) { |
| Objects.requireNonNull(action); |
| i.forEachRemaining(entryConsumer(action)); |
| } |
| }; |
| } |
| |
| @SuppressWarnings("unchecked") |
| public Object[] toArray() { |
| Object[] a = c.toArray(); |
| for (int i=0; i<a.length; i++) |
| a[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)a[i]); |
| return a; |
| } |
| |
| @SuppressWarnings("unchecked") |
| public <T> T[] toArray(T[] a) { |
| // We don't pass a to c.toArray, to avoid window of |
| // vulnerability wherein an unscrupulous multithreaded client |
| // could get his hands on raw (unwrapped) Entries from c. |
| Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0)); |
| |
| for (int i=0; i<arr.length; i++) |
| arr[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)arr[i]); |
| |
| if (arr.length > a.length) |
| return (T[])arr; |
| |
| System.arraycopy(arr, 0, a, 0, arr.length); |
| if (a.length > arr.length) |
| a[arr.length] = null; |
| return a; |
| } |
| |
| /** |
| * This method is overridden to protect the backing set against |
| * an object with a nefarious equals function that senses |
| * that the equality-candidate is Map.Entry and calls its |
| * setValue method. |
| */ |
| public boolean contains(Object o) { |
| if (!(o instanceof Map.Entry)) |
| return false; |
| return c.contains( |
| new UnmodifiableEntry<>((Map.Entry<?,?>) o)); |
| } |
| |
| /** |
| * The next two methods are overridden to protect against |
| * an unscrupulous List whose contains(Object o) method senses |
| * when o is a Map.Entry, and calls o.setValue. |
| */ |
| public boolean containsAll(Collection<?> coll) { |
| for (Object e : coll) { |
| if (!contains(e)) // Invokes safe contains() above |
| return false; |
| } |
| return true; |
| } |
| public boolean equals(Object o) { |
| if (o == this) |
| return true; |
| |
| // Android-changed: (b/247094511) instanceof pattern variable is not yet supported. |
| /* |
| return o instanceof Set<?> s |
| && s.size() == c.size() |
| && containsAll(s); // Invokes safe containsAll() above |
| */ |
| if (!(o instanceof Set)) |
| return false; |
| Set<?> s = (Set<?>) o; |
| if (s.size() != c.size()) |
| return false; |
| return containsAll(s); // Invokes safe containsAll() above |
| } |
| |
| /** |
| * This "wrapper class" serves two purposes: it prevents |
| * the client from modifying the backing Map, by short-circuiting |
| * the setValue method, and it protects the backing Map against |
| * an ill-behaved Map.Entry that attempts to modify another |
| * Map Entry when asked to perform an equality check. |
| */ |
| private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> { |
| private Map.Entry<? extends K, ? extends V> e; |
| |
| UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) |
| {this.e = Objects.requireNonNull(e);} |
| |
| public K getKey() {return e.getKey();} |
| public V getValue() {return e.getValue();} |
| public V setValue(V value) { |
| throw new UnsupportedOperationException(); |
| } |
| public int hashCode() {return e.hashCode();} |
| public boolean equals(Object o) { |
| if (this == o) |
| return true; |
| // Android-changed: (b/247094511) instanceof pattern variable is not yet |
| // supported. |
| /* |
| return o instanceof Map.Entry<?, ?> t |
| && eq(e.getKey(), t.getKey()) |
| && eq(e.getValue(), t.getValue()); |
| */ |
| if (!(o instanceof Map.Entry)) |
| return false; |
| Map.Entry<?,?> t = (Map.Entry<?,?>)o; |
| return eq(e.getKey(), t.getKey()) && |
| eq(e.getValue(), t.getValue()); |
| } |
| public String toString() {return e.toString();} |
| } |
| } |
| } |
| |
| /** |
| * Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the |
| * specified {@code SequencedMap}. Query operations on the returned map |
| * "read through" to the specified map, and attempts to modify the returned |
| * map, whether direct or via its collection views, result in an |
| * {@code UnsupportedOperationException}.<p> |
| * |
| * The returned map will be serializable if the specified map |
| * is serializable. |
| * |
| * @implNote This method may return its argument if the argument is already unmodifiable. |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @param m the map for which an unmodifiable view is to be returned. |
| * @return an unmodifiable view of the specified map. |
| * @since 21 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <K,V> SequencedMap<K,V> unmodifiableSequencedMap(SequencedMap<? extends K, ? extends V> m) { |
| // Not checking for subclasses because of heap pollution and information leakage. |
| if (m.getClass() == UnmodifiableSequencedMap.class) { |
| return (SequencedMap<K,V>) m; |
| } |
| return new UnmodifiableSequencedMap<>(m); |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class UnmodifiableSequencedMap<K,V> extends UnmodifiableMap<K,V> implements SequencedMap<K,V>, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = -8171676257373950636L; |
| |
| UnmodifiableSequencedMap(Map<? extends K, ? extends V> m) { |
| super(m); |
| } |
| |
| @SuppressWarnings("unchecked") |
| private SequencedMap<K, V> sm() { |
| return (SequencedMap<K, V>) m; |
| } |
| |
| // Even though this wrapper class is serializable, the reversed view is effectively |
| // not serializable because it points to the reversed map view, which usually isn't |
| // serializable. |
| public SequencedMap<K, V> reversed() { |
| return new UnmodifiableSequencedMap<>(sm().reversed()); |
| } |
| |
| public Entry<K, V> pollFirstEntry() { |
| throw new UnsupportedOperationException(); |
| } |
| |
| public Entry<K, V> pollLastEntry() { |
| throw new UnsupportedOperationException(); |
| } |
| |
| public V putFirst(K k, V v) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| public V putLast(K k, V v) { |
| throw new UnsupportedOperationException(); |
| } |
| } |
| |
| /** |
| * Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the |
| * specified sorted map. Query operations on the returned sorted map "read through" |
| * to the specified sorted map. Attempts to modify the returned |
| * sorted map, whether direct, via its collection views, or via its |
| * {@code subMap}, {@code headMap}, or {@code tailMap} views, result in |
| * an {@code UnsupportedOperationException}.<p> |
| * |
| * The returned sorted map will be serializable if the specified sorted map |
| * is serializable. |
| * |
| * @implNote This method may return its argument if the argument is already unmodifiable. |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @param m the sorted map for which an unmodifiable view is to be |
| * returned. |
| * @return an unmodifiable view of the specified sorted map. |
| */ |
| @SuppressWarnings("unchecked") |
| public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) { |
| // Not checking for subclasses because of heap pollution and information leakage. |
| if (m.getClass() == UnmodifiableSortedMap.class) { |
| return (SortedMap<K,V>) m; |
| } |
| return new UnmodifiableSortedMap<>(m); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class UnmodifiableSortedMap<K,V> |
| extends UnmodifiableMap<K,V> |
| implements SortedMap<K,V>, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = -8806743815996713206L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final SortedMap<K, ? extends V> sm; |
| |
| UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m; } |
| public Comparator<? super K> comparator() { return sm.comparator(); } |
| public SortedMap<K,V> subMap(K fromKey, K toKey) |
| { return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey)); } |
| public SortedMap<K,V> headMap(K toKey) |
| { return new UnmodifiableSortedMap<>(sm.headMap(toKey)); } |
| public SortedMap<K,V> tailMap(K fromKey) |
| { return new UnmodifiableSortedMap<>(sm.tailMap(fromKey)); } |
| public K firstKey() { return sm.firstKey(); } |
| public K lastKey() { return sm.lastKey(); } |
| } |
| |
| /** |
| * Returns an <a href="Collection.html#unmodview">unmodifiable view</a> of the |
| * specified navigable map. Query operations on the returned navigable map "read |
| * through" to the specified navigable map. Attempts to modify the returned |
| * navigable map, whether direct, via its collection views, or via its |
| * {@code subMap}, {@code headMap}, or {@code tailMap} views, result in |
| * an {@code UnsupportedOperationException}.<p> |
| * |
| * The returned navigable map will be serializable if the specified |
| * navigable map is serializable. |
| * |
| * @implNote This method may return its argument if the argument is already unmodifiable. |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @param m the navigable map for which an unmodifiable view is to be |
| * returned |
| * @return an unmodifiable view of the specified navigable map |
| * @since 1.8 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <K,V> NavigableMap<K,V> unmodifiableNavigableMap(NavigableMap<K, ? extends V> m) { |
| if (m.getClass() == UnmodifiableNavigableMap.class) { |
| return (NavigableMap<K,V>) m; |
| } |
| return new UnmodifiableNavigableMap<>(m); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class UnmodifiableNavigableMap<K,V> |
| extends UnmodifiableSortedMap<K,V> |
| implements NavigableMap<K,V>, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = -4858195264774772197L; |
| |
| /** |
| * A class for the {@link #EMPTY_NAVIGABLE_MAP} which needs readResolve |
| * to preserve singleton property. |
| * |
| * @param <K> type of keys, if there were any, and of bounds |
| * @param <V> type of values, if there were any |
| */ |
| private static class EmptyNavigableMap<K,V> extends UnmodifiableNavigableMap<K,V> |
| implements Serializable { |
| |
| @java.io.Serial |
| private static final long serialVersionUID = -2239321462712562324L; |
| |
| EmptyNavigableMap() { super(new TreeMap<>()); } |
| |
| @Override |
| public NavigableSet<K> navigableKeySet() |
| { return emptyNavigableSet(); } |
| |
| @java.io.Serial |
| private Object readResolve() { return EMPTY_NAVIGABLE_MAP; } |
| } |
| |
| /** |
| * Singleton for {@link #emptyNavigableMap()} which is also immutable. |
| */ |
| private static final EmptyNavigableMap<?,?> EMPTY_NAVIGABLE_MAP = |
| new EmptyNavigableMap<>(); |
| |
| /** |
| * The instance we wrap and protect. |
| */ |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final NavigableMap<K, ? extends V> nm; |
| |
| UnmodifiableNavigableMap(NavigableMap<K, ? extends V> m) |
| {super(m); nm = m;} |
| |
| public K lowerKey(K key) { return nm.lowerKey(key); } |
| public K floorKey(K key) { return nm.floorKey(key); } |
| public K ceilingKey(K key) { return nm.ceilingKey(key); } |
| public K higherKey(K key) { return nm.higherKey(key); } |
| |
| @SuppressWarnings("unchecked") |
| public Entry<K, V> lowerEntry(K key) { |
| Entry<K,V> lower = (Entry<K, V>) nm.lowerEntry(key); |
| return (null != lower) |
| ? new UnmodifiableEntrySet.UnmodifiableEntry<>(lower) |
| : null; |
| } |
| |
| @SuppressWarnings("unchecked") |
| public Entry<K, V> floorEntry(K key) { |
| Entry<K,V> floor = (Entry<K, V>) nm.floorEntry(key); |
| return (null != floor) |
| ? new UnmodifiableEntrySet.UnmodifiableEntry<>(floor) |
| : null; |
| } |
| |
| @SuppressWarnings("unchecked") |
| public Entry<K, V> ceilingEntry(K key) { |
| Entry<K,V> ceiling = (Entry<K, V>) nm.ceilingEntry(key); |
| return (null != ceiling) |
| ? new UnmodifiableEntrySet.UnmodifiableEntry<>(ceiling) |
| : null; |
| } |
| |
| |
| @SuppressWarnings("unchecked") |
| public Entry<K, V> higherEntry(K key) { |
| Entry<K,V> higher = (Entry<K, V>) nm.higherEntry(key); |
| return (null != higher) |
| ? new UnmodifiableEntrySet.UnmodifiableEntry<>(higher) |
| : null; |
| } |
| |
| @SuppressWarnings("unchecked") |
| public Entry<K, V> firstEntry() { |
| Entry<K,V> first = (Entry<K, V>) nm.firstEntry(); |
| return (null != first) |
| ? new UnmodifiableEntrySet.UnmodifiableEntry<>(first) |
| : null; |
| } |
| |
| @SuppressWarnings("unchecked") |
| public Entry<K, V> lastEntry() { |
| Entry<K,V> last = (Entry<K, V>) nm.lastEntry(); |
| return (null != last) |
| ? new UnmodifiableEntrySet.UnmodifiableEntry<>(last) |
| : null; |
| } |
| |
| public Entry<K, V> pollFirstEntry() |
| { throw new UnsupportedOperationException(); } |
| public Entry<K, V> pollLastEntry() |
| { throw new UnsupportedOperationException(); } |
| public NavigableMap<K, V> descendingMap() |
| { return unmodifiableNavigableMap(nm.descendingMap()); } |
| public NavigableSet<K> navigableKeySet() |
| { return unmodifiableNavigableSet(nm.navigableKeySet()); } |
| public NavigableSet<K> descendingKeySet() |
| { return unmodifiableNavigableSet(nm.descendingKeySet()); } |
| |
| public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { |
| return unmodifiableNavigableMap( |
| nm.subMap(fromKey, fromInclusive, toKey, toInclusive)); |
| } |
| |
| public NavigableMap<K, V> headMap(K toKey, boolean inclusive) |
| { return unmodifiableNavigableMap(nm.headMap(toKey, inclusive)); } |
| public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) |
| { return unmodifiableNavigableMap(nm.tailMap(fromKey, inclusive)); } |
| } |
| |
| // Synch Wrappers |
| |
| /** |
| * Returns a synchronized (thread-safe) collection backed by the specified |
| * collection. In order to guarantee serial access, it is critical that |
| * <strong>all</strong> access to the backing collection is accomplished |
| * through the returned collection.<p> |
| * |
| * It is imperative that the user manually synchronize on the returned |
| * collection when traversing it via {@link Iterator}, {@link Spliterator} |
| * or {@link Stream}: |
| * <pre> |
| * Collection c = Collections.synchronizedCollection(myCollection); |
| * ... |
| * synchronized (c) { |
| * Iterator i = c.iterator(); // Must be in the synchronized block |
| * while (i.hasNext()) |
| * foo(i.next()); |
| * } |
| * </pre> |
| * Failure to follow this advice may result in non-deterministic behavior. |
| * |
| * <p>The returned collection does <i>not</i> pass the {@code hashCode} |
| * and {@code equals} operations through to the backing collection, but |
| * relies on {@code Object}'s equals and hashCode methods. This is |
| * necessary to preserve the contracts of these operations in the case |
| * that the backing collection is a set or a list.<p> |
| * |
| * The returned collection will be serializable if the specified collection |
| * is serializable. |
| * |
| * @param <T> the class of the objects in the collection |
| * @param c the collection to be "wrapped" in a synchronized collection. |
| * @return a synchronized view of the specified collection. |
| */ |
| public static <T> Collection<T> synchronizedCollection(Collection<T> c) { |
| return new SynchronizedCollection<>(c); |
| } |
| |
| static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) { |
| return new SynchronizedCollection<>(c, mutex); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class SynchronizedCollection<E> implements Collection<E>, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = 3053995032091335093L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| final Collection<E> c; // Backing Collection |
| @SuppressWarnings("serial") // Conditionally serializable |
| final Object mutex; // Object on which to synchronize |
| |
| SynchronizedCollection(Collection<E> c) { |
| this.c = Objects.requireNonNull(c); |
| mutex = this; |
| } |
| |
| SynchronizedCollection(Collection<E> c, Object mutex) { |
| this.c = Objects.requireNonNull(c); |
| this.mutex = Objects.requireNonNull(mutex); |
| } |
| |
| public int size() { |
| synchronized (mutex) {return c.size();} |
| } |
| public boolean isEmpty() { |
| synchronized (mutex) {return c.isEmpty();} |
| } |
| public boolean contains(Object o) { |
| synchronized (mutex) {return c.contains(o);} |
| } |
| public Object[] toArray() { |
| synchronized (mutex) {return c.toArray();} |
| } |
| public <T> T[] toArray(T[] a) { |
| synchronized (mutex) {return c.toArray(a);} |
| } |
| public <T> T[] toArray(IntFunction<T[]> f) { |
| synchronized (mutex) {return c.toArray(f);} |
| } |
| |
| public Iterator<E> iterator() { |
| return c.iterator(); // Must be manually synched by user! |
| } |
| |
| public boolean add(E e) { |
| synchronized (mutex) {return c.add(e);} |
| } |
| public boolean remove(Object o) { |
| synchronized (mutex) {return c.remove(o);} |
| } |
| |
| public boolean containsAll(Collection<?> coll) { |
| synchronized (mutex) {return c.containsAll(coll);} |
| } |
| public boolean addAll(Collection<? extends E> coll) { |
| synchronized (mutex) {return c.addAll(coll);} |
| } |
| public boolean removeAll(Collection<?> coll) { |
| synchronized (mutex) {return c.removeAll(coll);} |
| } |
| public boolean retainAll(Collection<?> coll) { |
| synchronized (mutex) {return c.retainAll(coll);} |
| } |
| public void clear() { |
| synchronized (mutex) {c.clear();} |
| } |
| public String toString() { |
| synchronized (mutex) {return c.toString();} |
| } |
| // Override default methods in Collection |
| @Override |
| public void forEach(Consumer<? super E> consumer) { |
| synchronized (mutex) {c.forEach(consumer);} |
| } |
| @Override |
| public boolean removeIf(Predicate<? super E> filter) { |
| synchronized (mutex) {return c.removeIf(filter);} |
| } |
| @Override |
| public Spliterator<E> spliterator() { |
| return c.spliterator(); // Must be manually synched by user! |
| } |
| @Override |
| public Stream<E> stream() { |
| return c.stream(); // Must be manually synched by user! |
| } |
| @Override |
| public Stream<E> parallelStream() { |
| return c.parallelStream(); // Must be manually synched by user! |
| } |
| @java.io.Serial |
| private void writeObject(ObjectOutputStream s) throws IOException { |
| synchronized (mutex) {s.defaultWriteObject();} |
| } |
| } |
| |
| /** |
| * Returns a synchronized (thread-safe) set backed by the specified |
| * set. In order to guarantee serial access, it is critical that |
| * <strong>all</strong> access to the backing set is accomplished |
| * through the returned set.<p> |
| * |
| * It is imperative that the user manually synchronize on the returned |
| * collection when traversing it via {@link Iterator}, {@link Spliterator} |
| * or {@link Stream}: |
| * <pre> |
| * Set s = Collections.synchronizedSet(new HashSet()); |
| * ... |
| * synchronized (s) { |
| * Iterator i = s.iterator(); // Must be in the synchronized block |
| * while (i.hasNext()) |
| * foo(i.next()); |
| * } |
| * </pre> |
| * Failure to follow this advice may result in non-deterministic behavior. |
| * |
| * <p>The returned set will be serializable if the specified set is |
| * serializable. |
| * |
| * @param <T> the class of the objects in the set |
| * @param s the set to be "wrapped" in a synchronized set. |
| * @return a synchronized view of the specified set. |
| */ |
| public static <T> Set<T> synchronizedSet(Set<T> s) { |
| return new SynchronizedSet<>(s); |
| } |
| |
| static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) { |
| return new SynchronizedSet<>(s, mutex); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class SynchronizedSet<E> |
| extends SynchronizedCollection<E> |
| implements Set<E> { |
| @java.io.Serial |
| private static final long serialVersionUID = 487447009682186044L; |
| |
| SynchronizedSet(Set<E> s) { |
| super(s); |
| } |
| SynchronizedSet(Set<E> s, Object mutex) { |
| super(s, mutex); |
| } |
| |
| public boolean equals(Object o) { |
| if (this == o) |
| return true; |
| synchronized (mutex) {return c.equals(o);} |
| } |
| public int hashCode() { |
| synchronized (mutex) {return c.hashCode();} |
| } |
| } |
| |
| /** |
| * Returns a synchronized (thread-safe) sorted set backed by the specified |
| * sorted set. In order to guarantee serial access, it is critical that |
| * <strong>all</strong> access to the backing sorted set is accomplished |
| * through the returned sorted set (or its views).<p> |
| * |
| * It is imperative that the user manually synchronize on the returned |
| * sorted set when traversing it or any of its {@code subSet}, |
| * {@code headSet}, or {@code tailSet} views via {@link Iterator}, |
| * {@link Spliterator} or {@link Stream}: |
| * <pre> |
| * SortedSet s = Collections.synchronizedSortedSet(new TreeSet()); |
| * ... |
| * synchronized (s) { |
| * Iterator i = s.iterator(); // Must be in the synchronized block |
| * while (i.hasNext()) |
| * foo(i.next()); |
| * } |
| * </pre> |
| * or: |
| * <pre> |
| * SortedSet s = Collections.synchronizedSortedSet(new TreeSet()); |
| * SortedSet s2 = s.headSet(foo); |
| * ... |
| * synchronized (s) { // Note: s, not s2!!! |
| * Iterator i = s2.iterator(); // Must be in the synchronized block |
| * while (i.hasNext()) |
| * foo(i.next()); |
| * } |
| * </pre> |
| * Failure to follow this advice may result in non-deterministic behavior. |
| * |
| * <p>The returned sorted set will be serializable if the specified |
| * sorted set is serializable. |
| * |
| * @param <T> the class of the objects in the set |
| * @param s the sorted set to be "wrapped" in a synchronized sorted set. |
| * @return a synchronized view of the specified sorted set. |
| */ |
| public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) { |
| return new SynchronizedSortedSet<>(s); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class SynchronizedSortedSet<E> |
| extends SynchronizedSet<E> |
| implements SortedSet<E> |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 8695801310862127406L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final SortedSet<E> ss; |
| |
| SynchronizedSortedSet(SortedSet<E> s) { |
| super(s); |
| ss = s; |
| } |
| SynchronizedSortedSet(SortedSet<E> s, Object mutex) { |
| super(s, mutex); |
| ss = s; |
| } |
| |
| public Comparator<? super E> comparator() { |
| synchronized (mutex) {return ss.comparator();} |
| } |
| |
| public SortedSet<E> subSet(E fromElement, E toElement) { |
| synchronized (mutex) { |
| return new SynchronizedSortedSet<>( |
| ss.subSet(fromElement, toElement), mutex); |
| } |
| } |
| public SortedSet<E> headSet(E toElement) { |
| synchronized (mutex) { |
| return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex); |
| } |
| } |
| public SortedSet<E> tailSet(E fromElement) { |
| synchronized (mutex) { |
| return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex); |
| } |
| } |
| |
| public E first() { |
| synchronized (mutex) {return ss.first();} |
| } |
| public E last() { |
| synchronized (mutex) {return ss.last();} |
| } |
| } |
| |
| /** |
| * Returns a synchronized (thread-safe) navigable set backed by the |
| * specified navigable set. In order to guarantee serial access, it is |
| * critical that <strong>all</strong> access to the backing navigable set is |
| * accomplished through the returned navigable set (or its views).<p> |
| * |
| * It is imperative that the user manually synchronize on the returned |
| * navigable set when traversing it, or any of its {@code subSet}, |
| * {@code headSet}, or {@code tailSet} views, via {@link Iterator}, |
| * {@link Spliterator} or {@link Stream}: |
| * <pre> |
| * NavigableSet s = Collections.synchronizedNavigableSet(new TreeSet()); |
| * ... |
| * synchronized (s) { |
| * Iterator i = s.iterator(); // Must be in the synchronized block |
| * while (i.hasNext()) |
| * foo(i.next()); |
| * } |
| * </pre> |
| * or: |
| * <pre> |
| * NavigableSet s = Collections.synchronizedNavigableSet(new TreeSet()); |
| * NavigableSet s2 = s.headSet(foo, true); |
| * ... |
| * synchronized (s) { // Note: s, not s2!!! |
| * Iterator i = s2.iterator(); // Must be in the synchronized block |
| * while (i.hasNext()) |
| * foo(i.next()); |
| * } |
| * </pre> |
| * Failure to follow this advice may result in non-deterministic behavior. |
| * |
| * <p>The returned navigable set will be serializable if the specified |
| * navigable set is serializable. |
| * |
| * @param <T> the class of the objects in the set |
| * @param s the navigable set to be "wrapped" in a synchronized navigable |
| * set |
| * @return a synchronized view of the specified navigable set |
| * @since 1.8 |
| */ |
| public static <T> NavigableSet<T> synchronizedNavigableSet(NavigableSet<T> s) { |
| return new SynchronizedNavigableSet<>(s); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class SynchronizedNavigableSet<E> |
| extends SynchronizedSortedSet<E> |
| implements NavigableSet<E> |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = -5505529816273629798L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final NavigableSet<E> ns; |
| |
| SynchronizedNavigableSet(NavigableSet<E> s) { |
| super(s); |
| ns = s; |
| } |
| |
| SynchronizedNavigableSet(NavigableSet<E> s, Object mutex) { |
| super(s, mutex); |
| ns = s; |
| } |
| public E lower(E e) { synchronized (mutex) {return ns.lower(e);} } |
| public E floor(E e) { synchronized (mutex) {return ns.floor(e);} } |
| public E ceiling(E e) { synchronized (mutex) {return ns.ceiling(e);} } |
| public E higher(E e) { synchronized (mutex) {return ns.higher(e);} } |
| public E pollFirst() { synchronized (mutex) {return ns.pollFirst();} } |
| public E pollLast() { synchronized (mutex) {return ns.pollLast();} } |
| |
| public NavigableSet<E> descendingSet() { |
| synchronized (mutex) { |
| return new SynchronizedNavigableSet<>(ns.descendingSet(), mutex); |
| } |
| } |
| |
| public Iterator<E> descendingIterator() |
| { synchronized (mutex) { return descendingSet().iterator(); } } |
| |
| public NavigableSet<E> subSet(E fromElement, E toElement) { |
| synchronized (mutex) { |
| return new SynchronizedNavigableSet<>(ns.subSet(fromElement, true, toElement, false), mutex); |
| } |
| } |
| public NavigableSet<E> headSet(E toElement) { |
| synchronized (mutex) { |
| return new SynchronizedNavigableSet<>(ns.headSet(toElement, false), mutex); |
| } |
| } |
| public NavigableSet<E> tailSet(E fromElement) { |
| synchronized (mutex) { |
| return new SynchronizedNavigableSet<>(ns.tailSet(fromElement, true), mutex); |
| } |
| } |
| |
| public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { |
| synchronized (mutex) { |
| return new SynchronizedNavigableSet<>(ns.subSet(fromElement, fromInclusive, toElement, toInclusive), mutex); |
| } |
| } |
| |
| public NavigableSet<E> headSet(E toElement, boolean inclusive) { |
| synchronized (mutex) { |
| return new SynchronizedNavigableSet<>(ns.headSet(toElement, inclusive), mutex); |
| } |
| } |
| |
| public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { |
| synchronized (mutex) { |
| return new SynchronizedNavigableSet<>(ns.tailSet(fromElement, inclusive), mutex); |
| } |
| } |
| } |
| |
| /** |
| * Returns a synchronized (thread-safe) list backed by the specified |
| * list. In order to guarantee serial access, it is critical that |
| * <strong>all</strong> access to the backing list is accomplished |
| * through the returned list.<p> |
| * |
| * It is imperative that the user manually synchronize on the returned |
| * list when traversing it via {@link Iterator}, {@link Spliterator} |
| * or {@link Stream}: |
| * <pre> |
| * List list = Collections.synchronizedList(new ArrayList()); |
| * ... |
| * synchronized (list) { |
| * Iterator i = list.iterator(); // Must be in synchronized block |
| * while (i.hasNext()) |
| * foo(i.next()); |
| * } |
| * </pre> |
| * Failure to follow this advice may result in non-deterministic behavior. |
| * |
| * <p>The returned list will be serializable if the specified list is |
| * serializable. |
| * |
| * @param <T> the class of the objects in the list |
| * @param list the list to be "wrapped" in a synchronized list. |
| * @return a synchronized view of the specified list. |
| */ |
| public static <T> List<T> synchronizedList(List<T> list) { |
| return (list instanceof RandomAccess ? |
| new SynchronizedRandomAccessList<>(list) : |
| new SynchronizedList<>(list)); |
| } |
| |
| static <T> List<T> synchronizedList(List<T> list, Object mutex) { |
| return (list instanceof RandomAccess ? |
| new SynchronizedRandomAccessList<>(list, mutex) : |
| new SynchronizedList<>(list, mutex)); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class SynchronizedList<E> |
| extends SynchronizedCollection<E> |
| implements List<E> { |
| @java.io.Serial |
| private static final long serialVersionUID = -7754090372962971524L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| final List<E> list; |
| |
| SynchronizedList(List<E> list) { |
| super(list); |
| this.list = list; |
| } |
| SynchronizedList(List<E> list, Object mutex) { |
| super(list, mutex); |
| this.list = list; |
| } |
| |
| public boolean equals(Object o) { |
| if (this == o) |
| return true; |
| synchronized (mutex) {return list.equals(o);} |
| } |
| public int hashCode() { |
| synchronized (mutex) {return list.hashCode();} |
| } |
| |
| public E get(int index) { |
| synchronized (mutex) {return list.get(index);} |
| } |
| public E set(int index, E element) { |
| synchronized (mutex) {return list.set(index, element);} |
| } |
| public void add(int index, E element) { |
| synchronized (mutex) {list.add(index, element);} |
| } |
| public E remove(int index) { |
| synchronized (mutex) {return list.remove(index);} |
| } |
| |
| public int indexOf(Object o) { |
| synchronized (mutex) {return list.indexOf(o);} |
| } |
| public int lastIndexOf(Object o) { |
| synchronized (mutex) {return list.lastIndexOf(o);} |
| } |
| |
| public boolean addAll(int index, Collection<? extends E> c) { |
| synchronized (mutex) {return list.addAll(index, c);} |
| } |
| |
| public ListIterator<E> listIterator() { |
| return list.listIterator(); // Must be manually synched by user |
| } |
| |
| public ListIterator<E> listIterator(int index) { |
| return list.listIterator(index); // Must be manually synched by user |
| } |
| |
| public List<E> subList(int fromIndex, int toIndex) { |
| synchronized (mutex) { |
| return new SynchronizedList<>(list.subList(fromIndex, toIndex), |
| mutex); |
| } |
| } |
| |
| @Override |
| public void replaceAll(UnaryOperator<E> operator) { |
| synchronized (mutex) {list.replaceAll(operator);} |
| } |
| @Override |
| public void sort(Comparator<? super E> c) { |
| synchronized (mutex) {list.sort(c);} |
| } |
| |
| /** |
| * SynchronizedRandomAccessList instances are serialized as |
| * SynchronizedList instances to allow them to be deserialized |
| * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList). |
| * This method inverts the transformation. As a beneficial |
| * side-effect, it also grafts the RandomAccess marker onto |
| * SynchronizedList instances that were serialized in pre-1.4 JREs. |
| * |
| * Note: Unfortunately, SynchronizedRandomAccessList instances |
| * serialized in 1.4.1 and deserialized in 1.4 will become |
| * SynchronizedList instances, as this method was missing in 1.4. |
| */ |
| @java.io.Serial |
| private Object readResolve() { |
| return (list instanceof RandomAccess |
| ? new SynchronizedRandomAccessList<>(list) |
| : this); |
| } |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class SynchronizedRandomAccessList<E> |
| extends SynchronizedList<E> |
| implements RandomAccess { |
| |
| SynchronizedRandomAccessList(List<E> list) { |
| super(list); |
| } |
| |
| SynchronizedRandomAccessList(List<E> list, Object mutex) { |
| super(list, mutex); |
| } |
| |
| public List<E> subList(int fromIndex, int toIndex) { |
| synchronized (mutex) { |
| return new SynchronizedRandomAccessList<>( |
| list.subList(fromIndex, toIndex), mutex); |
| } |
| } |
| |
| @java.io.Serial |
| private static final long serialVersionUID = 1530674583602358482L; |
| |
| /** |
| * Allows instances to be deserialized in pre-1.4 JREs (which do |
| * not have SynchronizedRandomAccessList). SynchronizedList has |
| * a readResolve method that inverts this transformation upon |
| * deserialization. |
| */ |
| @java.io.Serial |
| private Object writeReplace() { |
| return new SynchronizedList<>(list); |
| } |
| } |
| |
| /** |
| * Returns a synchronized (thread-safe) map backed by the specified |
| * map. In order to guarantee serial access, it is critical that |
| * <strong>all</strong> access to the backing map is accomplished |
| * through the returned map.<p> |
| * |
| * It is imperative that the user manually synchronize on the returned |
| * map when traversing any of its collection views via {@link Iterator}, |
| * {@link Spliterator} or {@link Stream}: |
| * <pre> |
| * Map m = Collections.synchronizedMap(new HashMap()); |
| * ... |
| * Set s = m.keySet(); // Needn't be in synchronized block |
| * ... |
| * synchronized (m) { // Synchronizing on m, not s! |
| * Iterator i = s.iterator(); // Must be in synchronized block |
| * while (i.hasNext()) |
| * foo(i.next()); |
| * } |
| * </pre> |
| * Failure to follow this advice may result in non-deterministic behavior. |
| * |
| * <p>The returned map will be serializable if the specified map is |
| * serializable. |
| * |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @param m the map to be "wrapped" in a synchronized map. |
| * @return a synchronized view of the specified map. |
| */ |
| public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) { |
| return new SynchronizedMap<>(m); |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class SynchronizedMap<K,V> |
| implements Map<K,V>, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = 1978198479659022715L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final Map<K,V> m; // Backing Map |
| @SuppressWarnings("serial") // Conditionally serializable |
| final Object mutex; // Object on which to synchronize |
| |
| SynchronizedMap(Map<K,V> m) { |
| this.m = Objects.requireNonNull(m); |
| mutex = this; |
| } |
| |
| SynchronizedMap(Map<K,V> m, Object mutex) { |
| this.m = m; |
| this.mutex = mutex; |
| } |
| |
| public int size() { |
| synchronized (mutex) {return m.size();} |
| } |
| public boolean isEmpty() { |
| synchronized (mutex) {return m.isEmpty();} |
| } |
| public boolean containsKey(Object key) { |
| synchronized (mutex) {return m.containsKey(key);} |
| } |
| public boolean containsValue(Object value) { |
| synchronized (mutex) {return m.containsValue(value);} |
| } |
| public V get(Object key) { |
| synchronized (mutex) {return m.get(key);} |
| } |
| |
| public V put(K key, V value) { |
| synchronized (mutex) {return m.put(key, value);} |
| } |
| public V remove(Object key) { |
| synchronized (mutex) {return m.remove(key);} |
| } |
| public void putAll(Map<? extends K, ? extends V> map) { |
| synchronized (mutex) {m.putAll(map);} |
| } |
| public void clear() { |
| synchronized (mutex) {m.clear();} |
| } |
| |
| private transient Set<K> keySet; |
| private transient Set<Map.Entry<K,V>> entrySet; |
| private transient Collection<V> values; |
| |
| public Set<K> keySet() { |
| synchronized (mutex) { |
| if (keySet==null) |
| keySet = new SynchronizedSet<>(m.keySet(), mutex); |
| return keySet; |
| } |
| } |
| |
| public Set<Map.Entry<K,V>> entrySet() { |
| synchronized (mutex) { |
| if (entrySet==null) |
| entrySet = new SynchronizedSet<>(m.entrySet(), mutex); |
| return entrySet; |
| } |
| } |
| |
| public Collection<V> values() { |
| synchronized (mutex) { |
| if (values==null) |
| values = new SynchronizedCollection<>(m.values(), mutex); |
| return values; |
| } |
| } |
| |
| public boolean equals(Object o) { |
| if (this == o) |
| return true; |
| synchronized (mutex) {return m.equals(o);} |
| } |
| public int hashCode() { |
| synchronized (mutex) {return m.hashCode();} |
| } |
| public String toString() { |
| synchronized (mutex) {return m.toString();} |
| } |
| |
| // Override default methods in Map |
| @Override |
| public V getOrDefault(Object k, V defaultValue) { |
| synchronized (mutex) {return m.getOrDefault(k, defaultValue);} |
| } |
| @Override |
| public void forEach(BiConsumer<? super K, ? super V> action) { |
| synchronized (mutex) {m.forEach(action);} |
| } |
| @Override |
| public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
| synchronized (mutex) {m.replaceAll(function);} |
| } |
| @Override |
| public V putIfAbsent(K key, V value) { |
| synchronized (mutex) {return m.putIfAbsent(key, value);} |
| } |
| @Override |
| public boolean remove(Object key, Object value) { |
| synchronized (mutex) {return m.remove(key, value);} |
| } |
| @Override |
| public boolean replace(K key, V oldValue, V newValue) { |
| synchronized (mutex) {return m.replace(key, oldValue, newValue);} |
| } |
| @Override |
| public V replace(K key, V value) { |
| synchronized (mutex) {return m.replace(key, value);} |
| } |
| @Override |
| public V computeIfAbsent(K key, |
| Function<? super K, ? extends V> mappingFunction) { |
| synchronized (mutex) {return m.computeIfAbsent(key, mappingFunction);} |
| } |
| @Override |
| public V computeIfPresent(K key, |
| BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
| synchronized (mutex) {return m.computeIfPresent(key, remappingFunction);} |
| } |
| @Override |
| public V compute(K key, |
| BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
| synchronized (mutex) {return m.compute(key, remappingFunction);} |
| } |
| @Override |
| public V merge(K key, V value, |
| BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
| synchronized (mutex) {return m.merge(key, value, remappingFunction);} |
| } |
| |
| @java.io.Serial |
| private void writeObject(ObjectOutputStream s) throws IOException { |
| synchronized (mutex) {s.defaultWriteObject();} |
| } |
| } |
| |
| /** |
| * Returns a synchronized (thread-safe) sorted map backed by the specified |
| * sorted map. In order to guarantee serial access, it is critical that |
| * <strong>all</strong> access to the backing sorted map is accomplished |
| * through the returned sorted map (or its views).<p> |
| * |
| * It is imperative that the user manually synchronize on the returned |
| * sorted map when traversing any of its collection views, or the |
| * collections views of any of its {@code subMap}, {@code headMap} or |
| * {@code tailMap} views, via {@link Iterator}, {@link Spliterator} or |
| * {@link Stream}: |
| * <pre> |
| * SortedMap m = Collections.synchronizedSortedMap(new TreeMap()); |
| * ... |
| * Set s = m.keySet(); // Needn't be in synchronized block |
| * ... |
| * synchronized (m) { // Synchronizing on m, not s! |
| * Iterator i = s.iterator(); // Must be in synchronized block |
| * while (i.hasNext()) |
| * foo(i.next()); |
| * } |
| * </pre> |
| * or: |
| * <pre> |
| * SortedMap m = Collections.synchronizedSortedMap(new TreeMap()); |
| * SortedMap m2 = m.subMap(foo, bar); |
| * ... |
| * Set s2 = m2.keySet(); // Needn't be in synchronized block |
| * ... |
| * synchronized (m) { // Synchronizing on m, not m2 or s2! |
| * Iterator i = s2.iterator(); // Must be in synchronized block |
| * while (i.hasNext()) |
| * foo(i.next()); |
| * } |
| * </pre> |
| * Failure to follow this advice may result in non-deterministic behavior. |
| * |
| * <p>The returned sorted map will be serializable if the specified |
| * sorted map is serializable. |
| * |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @param m the sorted map to be "wrapped" in a synchronized sorted map. |
| * @return a synchronized view of the specified sorted map. |
| */ |
| public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) { |
| return new SynchronizedSortedMap<>(m); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class SynchronizedSortedMap<K,V> |
| extends SynchronizedMap<K,V> |
| implements SortedMap<K,V> |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = -8798146769416483793L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final SortedMap<K,V> sm; |
| |
| SynchronizedSortedMap(SortedMap<K,V> m) { |
| super(m); |
| sm = m; |
| } |
| SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) { |
| super(m, mutex); |
| sm = m; |
| } |
| |
| public Comparator<? super K> comparator() { |
| synchronized (mutex) {return sm.comparator();} |
| } |
| |
| public SortedMap<K,V> subMap(K fromKey, K toKey) { |
| synchronized (mutex) { |
| return new SynchronizedSortedMap<>( |
| sm.subMap(fromKey, toKey), mutex); |
| } |
| } |
| public SortedMap<K,V> headMap(K toKey) { |
| synchronized (mutex) { |
| return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex); |
| } |
| } |
| public SortedMap<K,V> tailMap(K fromKey) { |
| synchronized (mutex) { |
| return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex); |
| } |
| } |
| |
| public K firstKey() { |
| synchronized (mutex) {return sm.firstKey();} |
| } |
| public K lastKey() { |
| synchronized (mutex) {return sm.lastKey();} |
| } |
| } |
| |
| /** |
| * Returns a synchronized (thread-safe) navigable map backed by the |
| * specified navigable map. In order to guarantee serial access, it is |
| * critical that <strong>all</strong> access to the backing navigable map is |
| * accomplished through the returned navigable map (or its views).<p> |
| * |
| * It is imperative that the user manually synchronize on the returned |
| * navigable map when traversing any of its collection views, or the |
| * collections views of any of its {@code subMap}, {@code headMap} or |
| * {@code tailMap} views, via {@link Iterator}, {@link Spliterator} or |
| * {@link Stream}: |
| * <pre> |
| * NavigableMap m = Collections.synchronizedNavigableMap(new TreeMap()); |
| * ... |
| * Set s = m.keySet(); // Needn't be in synchronized block |
| * ... |
| * synchronized (m) { // Synchronizing on m, not s! |
| * Iterator i = s.iterator(); // Must be in synchronized block |
| * while (i.hasNext()) |
| * foo(i.next()); |
| * } |
| * </pre> |
| * or: |
| * <pre> |
| * NavigableMap m = Collections.synchronizedNavigableMap(new TreeMap()); |
| * NavigableMap m2 = m.subMap(foo, true, bar, false); |
| * ... |
| * Set s2 = m2.keySet(); // Needn't be in synchronized block |
| * ... |
| * synchronized (m) { // Synchronizing on m, not m2 or s2! |
| * Iterator i = s2.iterator(); // Must be in synchronized block |
| * while (i.hasNext()) |
| * foo(i.next()); |
| * } |
| * </pre> |
| * Failure to follow this advice may result in non-deterministic behavior. |
| * |
| * <p>The returned navigable map will be serializable if the specified |
| * navigable map is serializable. |
| * |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @param m the navigable map to be "wrapped" in a synchronized navigable |
| * map |
| * @return a synchronized view of the specified navigable map. |
| * @since 1.8 |
| */ |
| public static <K,V> NavigableMap<K,V> synchronizedNavigableMap(NavigableMap<K,V> m) { |
| return new SynchronizedNavigableMap<>(m); |
| } |
| |
| /** |
| * A synchronized NavigableMap. |
| * |
| * @serial include |
| */ |
| static class SynchronizedNavigableMap<K,V> |
| extends SynchronizedSortedMap<K,V> |
| implements NavigableMap<K,V> |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 699392247599746807L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final NavigableMap<K,V> nm; |
| |
| SynchronizedNavigableMap(NavigableMap<K,V> m) { |
| super(m); |
| nm = m; |
| } |
| SynchronizedNavigableMap(NavigableMap<K,V> m, Object mutex) { |
| super(m, mutex); |
| nm = m; |
| } |
| |
| public Entry<K, V> lowerEntry(K key) |
| { synchronized (mutex) { return nm.lowerEntry(key); } } |
| public K lowerKey(K key) |
| { synchronized (mutex) { return nm.lowerKey(key); } } |
| public Entry<K, V> floorEntry(K key) |
| { synchronized (mutex) { return nm.floorEntry(key); } } |
| public K floorKey(K key) |
| { synchronized (mutex) { return nm.floorKey(key); } } |
| public Entry<K, V> ceilingEntry(K key) |
| { synchronized (mutex) { return nm.ceilingEntry(key); } } |
| public K ceilingKey(K key) |
| { synchronized (mutex) { return nm.ceilingKey(key); } } |
| public Entry<K, V> higherEntry(K key) |
| { synchronized (mutex) { return nm.higherEntry(key); } } |
| public K higherKey(K key) |
| { synchronized (mutex) { return nm.higherKey(key); } } |
| public Entry<K, V> firstEntry() |
| { synchronized (mutex) { return nm.firstEntry(); } } |
| public Entry<K, V> lastEntry() |
| { synchronized (mutex) { return nm.lastEntry(); } } |
| public Entry<K, V> pollFirstEntry() |
| { synchronized (mutex) { return nm.pollFirstEntry(); } } |
| public Entry<K, V> pollLastEntry() |
| { synchronized (mutex) { return nm.pollLastEntry(); } } |
| |
| public NavigableMap<K, V> descendingMap() { |
| synchronized (mutex) { |
| return |
| new SynchronizedNavigableMap<>(nm.descendingMap(), mutex); |
| } |
| } |
| |
| public NavigableSet<K> keySet() { |
| return navigableKeySet(); |
| } |
| |
| public NavigableSet<K> navigableKeySet() { |
| synchronized (mutex) { |
| return new SynchronizedNavigableSet<>(nm.navigableKeySet(), mutex); |
| } |
| } |
| |
| public NavigableSet<K> descendingKeySet() { |
| synchronized (mutex) { |
| return new SynchronizedNavigableSet<>(nm.descendingKeySet(), mutex); |
| } |
| } |
| |
| |
| public SortedMap<K,V> subMap(K fromKey, K toKey) { |
| synchronized (mutex) { |
| return new SynchronizedNavigableMap<>( |
| nm.subMap(fromKey, true, toKey, false), mutex); |
| } |
| } |
| public SortedMap<K,V> headMap(K toKey) { |
| synchronized (mutex) { |
| return new SynchronizedNavigableMap<>(nm.headMap(toKey, false), mutex); |
| } |
| } |
| public SortedMap<K,V> tailMap(K fromKey) { |
| synchronized (mutex) { |
| return new SynchronizedNavigableMap<>(nm.tailMap(fromKey, true),mutex); |
| } |
| } |
| |
| public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { |
| synchronized (mutex) { |
| return new SynchronizedNavigableMap<>( |
| nm.subMap(fromKey, fromInclusive, toKey, toInclusive), mutex); |
| } |
| } |
| |
| public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { |
| synchronized (mutex) { |
| return new SynchronizedNavigableMap<>( |
| nm.headMap(toKey, inclusive), mutex); |
| } |
| } |
| |
| public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { |
| synchronized (mutex) { |
| return new SynchronizedNavigableMap<>( |
| nm.tailMap(fromKey, inclusive), mutex); |
| } |
| } |
| } |
| |
| // Dynamically typesafe collection wrappers |
| |
| /** |
| * Returns a dynamically typesafe view of the specified collection. |
| * Any attempt to insert an element of the wrong type will result in an |
| * immediate {@link ClassCastException}. Assuming a collection |
| * contains no incorrectly typed elements prior to the time a |
| * dynamically typesafe view is generated, and that all subsequent |
| * access to the collection takes place through the view, it is |
| * <i>guaranteed</i> that the collection cannot contain an incorrectly |
| * typed element. |
| * |
| * <p>The generics mechanism in the language provides compile-time |
| * (static) type checking, but it is possible to defeat this mechanism |
| * with unchecked casts. Usually this is not a problem, as the compiler |
| * issues warnings on all such unchecked operations. There are, however, |
| * times when static type checking alone is not sufficient. For example, |
| * suppose a collection is passed to a third-party library and it is |
| * imperative that the library code not corrupt the collection by |
| * inserting an element of the wrong type. |
| * |
| * <p>Another use of dynamically typesafe views is debugging. Suppose a |
| * program fails with a {@code ClassCastException}, indicating that an |
| * incorrectly typed element was put into a parameterized collection. |
| * Unfortunately, the exception can occur at any time after the erroneous |
| * element is inserted, so it typically provides little or no information |
| * as to the real source of the problem. If the problem is reproducible, |
| * one can quickly determine its source by temporarily modifying the |
| * program to wrap the collection with a dynamically typesafe view. |
| * For example, this declaration: |
| * <pre> {@code |
| * Collection<String> c = new HashSet<>(); |
| * }</pre> |
| * may be replaced temporarily by this one: |
| * <pre> {@code |
| * Collection<String> c = Collections.checkedCollection( |
| * new HashSet<>(), String.class); |
| * }</pre> |
| * Running the program again will cause it to fail at the point where |
| * an incorrectly typed element is inserted into the collection, clearly |
| * identifying the source of the problem. Once the problem is fixed, the |
| * modified declaration may be reverted back to the original. |
| * |
| * <p>The returned collection does <i>not</i> pass the hashCode and equals |
| * operations through to the backing collection, but relies on |
| * {@code Object}'s {@code equals} and {@code hashCode} methods. This |
| * is necessary to preserve the contracts of these operations in the case |
| * that the backing collection is a set or a list. |
| * |
| * <p>The returned collection will be serializable if the specified |
| * collection is serializable. |
| * |
| * <p>Since {@code null} is considered to be a value of any reference |
| * type, the returned collection permits insertion of null elements |
| * whenever the backing collection does. |
| * |
| * @param <E> the class of the objects in the collection |
| * @param c the collection for which a dynamically typesafe view is to be |
| * returned |
| * @param type the type of element that {@code c} is permitted to hold |
| * @return a dynamically typesafe view of the specified collection |
| * @since 1.5 |
| */ |
| public static <E> Collection<E> checkedCollection(Collection<E> c, |
| Class<E> type) { |
| return new CheckedCollection<>(c, type); |
| } |
| |
| @SuppressWarnings("unchecked") |
| static <T> T[] zeroLengthArray(Class<T> type) { |
| return (T[]) Array.newInstance(type, 0); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class CheckedCollection<E> implements Collection<E>, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = 1578914078182001775L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| final Collection<E> c; |
| @SuppressWarnings("serial") // Conditionally serializable |
| final Class<E> type; |
| |
| @SuppressWarnings("unchecked") |
| E typeCheck(Object o) { |
| if (o != null && !type.isInstance(o)) |
| throw new ClassCastException(badElementMsg(o)); |
| return (E) o; |
| } |
| |
| private String badElementMsg(Object o) { |
| return "Attempt to insert " + o.getClass() + |
| " element into collection with element type " + type; |
| } |
| |
| CheckedCollection(Collection<E> c, Class<E> type) { |
| this.c = Objects.requireNonNull(c, "c"); |
| this.type = Objects.requireNonNull(type, "type"); |
| } |
| |
| public int size() { return c.size(); } |
| public boolean isEmpty() { return c.isEmpty(); } |
| public boolean contains(Object o) { return c.contains(o); } |
| public Object[] toArray() { return c.toArray(); } |
| public <T> T[] toArray(T[] a) { return c.toArray(a); } |
| public <T> T[] toArray(IntFunction<T[]> f) { return c.toArray(f); } |
| public String toString() { return c.toString(); } |
| public boolean remove(Object o) { return c.remove(o); } |
| public void clear() { c.clear(); } |
| |
| public boolean containsAll(Collection<?> coll) { |
| return c.containsAll(coll); |
| } |
| public boolean removeAll(Collection<?> coll) { |
| return c.removeAll(coll); |
| } |
| public boolean retainAll(Collection<?> coll) { |
| return c.retainAll(coll); |
| } |
| |
| public Iterator<E> iterator() { |
| // JDK-6363904 - unwrapped iterator could be typecast to |
| // ListIterator with unsafe set() |
| final Iterator<E> it = c.iterator(); |
| return new Iterator<>() { |
| public boolean hasNext() { return it.hasNext(); } |
| public E next() { return it.next(); } |
| public void remove() { it.remove(); } |
| public void forEachRemaining(Consumer<? super E> action) { |
| it.forEachRemaining(action); |
| } |
| }; |
| } |
| |
| public boolean add(E e) { return c.add(typeCheck(e)); } |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private E[] zeroLengthElementArray; // Lazily initialized |
| |
| private E[] zeroLengthElementArray() { |
| return zeroLengthElementArray != null ? zeroLengthElementArray : |
| (zeroLengthElementArray = zeroLengthArray(type)); |
| } |
| |
| @SuppressWarnings("unchecked") |
| Collection<E> checkedCopyOf(Collection<? extends E> coll) { |
| Object[] a; |
| try { |
| E[] z = zeroLengthElementArray(); |
| a = coll.toArray(z); |
| // Defend against coll violating the toArray contract |
| if (a.getClass() != z.getClass()) |
| a = Arrays.copyOf(a, a.length, z.getClass()); |
| } catch (ArrayStoreException ignore) { |
| // To get better and consistent diagnostics, |
| // we call typeCheck explicitly on each element. |
| // We call clone() to defend against coll retaining a |
| // reference to the returned array and storing a bad |
| // element into it after it has been type checked. |
| a = coll.toArray().clone(); |
| for (Object o : a) |
| typeCheck(o); |
| } |
| // A slight abuse of the type system, but safe here. |
| return (Collection<E>) Arrays.asList(a); |
| } |
| |
| public boolean addAll(Collection<? extends E> coll) { |
| // Doing things this way insulates us from concurrent changes |
| // in the contents of coll and provides all-or-nothing |
| // semantics (which we wouldn't get if we type-checked each |
| // element as we added it) |
| return c.addAll(checkedCopyOf(coll)); |
| } |
| |
| // Override default methods in Collection |
| @Override |
| public void forEach(Consumer<? super E> action) {c.forEach(action);} |
| @Override |
| public boolean removeIf(Predicate<? super E> filter) { |
| return c.removeIf(filter); |
| } |
| @Override |
| public Spliterator<E> spliterator() {return c.spliterator();} |
| @Override |
| public Stream<E> stream() {return c.stream();} |
| @Override |
| public Stream<E> parallelStream() {return c.parallelStream();} |
| } |
| |
| /** |
| * Returns a dynamically typesafe view of the specified queue. |
| * Any attempt to insert an element of the wrong type will result in |
| * an immediate {@link ClassCastException}. Assuming a queue contains |
| * no incorrectly typed elements prior to the time a dynamically typesafe |
| * view is generated, and that all subsequent access to the queue |
| * takes place through the view, it is <i>guaranteed</i> that the |
| * queue cannot contain an incorrectly typed element. |
| * |
| * <p>A discussion of the use of dynamically typesafe views may be |
| * found in the documentation for the {@link #checkedCollection |
| * checkedCollection} method. |
| * |
| * <p>The returned queue will be serializable if the specified queue |
| * is serializable. |
| * |
| * <p>Since {@code null} is considered to be a value of any reference |
| * type, the returned queue permits insertion of {@code null} elements |
| * whenever the backing queue does. |
| * |
| * @param <E> the class of the objects in the queue |
| * @param queue the queue for which a dynamically typesafe view is to be |
| * returned |
| * @param type the type of element that {@code queue} is permitted to hold |
| * @return a dynamically typesafe view of the specified queue |
| * @since 1.8 |
| */ |
| public static <E> Queue<E> checkedQueue(Queue<E> queue, Class<E> type) { |
| return new CheckedQueue<>(queue, type); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class CheckedQueue<E> |
| extends CheckedCollection<E> |
| implements Queue<E>, Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 1433151992604707767L; |
| @SuppressWarnings("serial") // Conditionally serializable |
| final Queue<E> queue; |
| |
| CheckedQueue(Queue<E> queue, Class<E> elementType) { |
| super(queue, elementType); |
| this.queue = queue; |
| } |
| |
| public E element() {return queue.element();} |
| public boolean equals(Object o) {return o == this || c.equals(o);} |
| public int hashCode() {return c.hashCode();} |
| public E peek() {return queue.peek();} |
| public E poll() {return queue.poll();} |
| public E remove() {return queue.remove();} |
| public boolean offer(E e) {return queue.offer(typeCheck(e));} |
| } |
| |
| /** |
| * Returns a dynamically typesafe view of the specified set. |
| * Any attempt to insert an element of the wrong type will result in |
| * an immediate {@link ClassCastException}. Assuming a set contains |
| * no incorrectly typed elements prior to the time a dynamically typesafe |
| * view is generated, and that all subsequent access to the set |
| * takes place through the view, it is <i>guaranteed</i> that the |
| * set cannot contain an incorrectly typed element. |
| * |
| * <p>A discussion of the use of dynamically typesafe views may be |
| * found in the documentation for the {@link #checkedCollection |
| * checkedCollection} method. |
| * |
| * <p>The returned set will be serializable if the specified set is |
| * serializable. |
| * |
| * <p>Since {@code null} is considered to be a value of any reference |
| * type, the returned set permits insertion of null elements whenever |
| * the backing set does. |
| * |
| * @param <E> the class of the objects in the set |
| * @param s the set for which a dynamically typesafe view is to be |
| * returned |
| * @param type the type of element that {@code s} is permitted to hold |
| * @return a dynamically typesafe view of the specified set |
| * @since 1.5 |
| */ |
| public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) { |
| return new CheckedSet<>(s, type); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class CheckedSet<E> extends CheckedCollection<E> |
| implements Set<E>, Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 4694047833775013803L; |
| |
| CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); } |
| |
| public boolean equals(Object o) { return o == this || c.equals(o); } |
| public int hashCode() { return c.hashCode(); } |
| } |
| |
| /** |
| * Returns a dynamically typesafe view of the specified sorted set. |
| * Any attempt to insert an element of the wrong type will result in an |
| * immediate {@link ClassCastException}. Assuming a sorted set |
| * contains no incorrectly typed elements prior to the time a |
| * dynamically typesafe view is generated, and that all subsequent |
| * access to the sorted set takes place through the view, it is |
| * <i>guaranteed</i> that the sorted set cannot contain an incorrectly |
| * typed element. |
| * |
| * <p>A discussion of the use of dynamically typesafe views may be |
| * found in the documentation for the {@link #checkedCollection |
| * checkedCollection} method. |
| * |
| * <p>The returned sorted set will be serializable if the specified sorted |
| * set is serializable. |
| * |
| * <p>Since {@code null} is considered to be a value of any reference |
| * type, the returned sorted set permits insertion of null elements |
| * whenever the backing sorted set does. |
| * |
| * @param <E> the class of the objects in the set |
| * @param s the sorted set for which a dynamically typesafe view is to be |
| * returned |
| * @param type the type of element that {@code s} is permitted to hold |
| * @return a dynamically typesafe view of the specified sorted set |
| * @since 1.5 |
| */ |
| public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s, |
| Class<E> type) { |
| return new CheckedSortedSet<>(s, type); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class CheckedSortedSet<E> extends CheckedSet<E> |
| implements SortedSet<E>, Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 1599911165492914959L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final SortedSet<E> ss; |
| |
| CheckedSortedSet(SortedSet<E> s, Class<E> type) { |
| super(s, type); |
| ss = s; |
| } |
| |
| public Comparator<? super E> comparator() { return ss.comparator(); } |
| public E first() { return ss.first(); } |
| public E last() { return ss.last(); } |
| |
| public SortedSet<E> subSet(E fromElement, E toElement) { |
| return checkedSortedSet(ss.subSet(fromElement,toElement), type); |
| } |
| public SortedSet<E> headSet(E toElement) { |
| return checkedSortedSet(ss.headSet(toElement), type); |
| } |
| public SortedSet<E> tailSet(E fromElement) { |
| return checkedSortedSet(ss.tailSet(fromElement), type); |
| } |
| } |
| |
| /** |
| * Returns a dynamically typesafe view of the specified navigable set. |
| * Any attempt to insert an element of the wrong type will result in an |
| * immediate {@link ClassCastException}. Assuming a navigable set |
| * contains no incorrectly typed elements prior to the time a |
| * dynamically typesafe view is generated, and that all subsequent |
| * access to the navigable set takes place through the view, it is |
| * <em>guaranteed</em> that the navigable set cannot contain an incorrectly |
| * typed element. |
| * |
| * <p>A discussion of the use of dynamically typesafe views may be |
| * found in the documentation for the {@link #checkedCollection |
| * checkedCollection} method. |
| * |
| * <p>The returned navigable set will be serializable if the specified |
| * navigable set is serializable. |
| * |
| * <p>Since {@code null} is considered to be a value of any reference |
| * type, the returned navigable set permits insertion of null elements |
| * whenever the backing sorted set does. |
| * |
| * @param <E> the class of the objects in the set |
| * @param s the navigable set for which a dynamically typesafe view is to be |
| * returned |
| * @param type the type of element that {@code s} is permitted to hold |
| * @return a dynamically typesafe view of the specified navigable set |
| * @since 1.8 |
| */ |
| public static <E> NavigableSet<E> checkedNavigableSet(NavigableSet<E> s, |
| Class<E> type) { |
| return new CheckedNavigableSet<>(s, type); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class CheckedNavigableSet<E> extends CheckedSortedSet<E> |
| implements NavigableSet<E>, Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = -5429120189805438922L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final NavigableSet<E> ns; |
| |
| CheckedNavigableSet(NavigableSet<E> s, Class<E> type) { |
| super(s, type); |
| ns = s; |
| } |
| |
| public E lower(E e) { return ns.lower(e); } |
| public E floor(E e) { return ns.floor(e); } |
| public E ceiling(E e) { return ns.ceiling(e); } |
| public E higher(E e) { return ns.higher(e); } |
| public E pollFirst() { return ns.pollFirst(); } |
| public E pollLast() {return ns.pollLast(); } |
| public NavigableSet<E> descendingSet() |
| { return checkedNavigableSet(ns.descendingSet(), type); } |
| public Iterator<E> descendingIterator() |
| {return checkedNavigableSet(ns.descendingSet(), type).iterator(); } |
| |
| public NavigableSet<E> subSet(E fromElement, E toElement) { |
| return checkedNavigableSet(ns.subSet(fromElement, true, toElement, false), type); |
| } |
| public NavigableSet<E> headSet(E toElement) { |
| return checkedNavigableSet(ns.headSet(toElement, false), type); |
| } |
| public NavigableSet<E> tailSet(E fromElement) { |
| return checkedNavigableSet(ns.tailSet(fromElement, true), type); |
| } |
| |
| public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { |
| return checkedNavigableSet(ns.subSet(fromElement, fromInclusive, toElement, toInclusive), type); |
| } |
| |
| public NavigableSet<E> headSet(E toElement, boolean inclusive) { |
| return checkedNavigableSet(ns.headSet(toElement, inclusive), type); |
| } |
| |
| public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { |
| return checkedNavigableSet(ns.tailSet(fromElement, inclusive), type); |
| } |
| } |
| |
| /** |
| * Returns a dynamically typesafe view of the specified list. |
| * Any attempt to insert an element of the wrong type will result in |
| * an immediate {@link ClassCastException}. Assuming a list contains |
| * no incorrectly typed elements prior to the time a dynamically typesafe |
| * view is generated, and that all subsequent access to the list |
| * takes place through the view, it is <i>guaranteed</i> that the |
| * list cannot contain an incorrectly typed element. |
| * |
| * <p>A discussion of the use of dynamically typesafe views may be |
| * found in the documentation for the {@link #checkedCollection |
| * checkedCollection} method. |
| * |
| * <p>The returned list will be serializable if the specified list |
| * is serializable. |
| * |
| * <p>Since {@code null} is considered to be a value of any reference |
| * type, the returned list permits insertion of null elements whenever |
| * the backing list does. |
| * |
| * @param <E> the class of the objects in the list |
| * @param list the list for which a dynamically typesafe view is to be |
| * returned |
| * @param type the type of element that {@code list} is permitted to hold |
| * @return a dynamically typesafe view of the specified list |
| * @since 1.5 |
| */ |
| public static <E> List<E> checkedList(List<E> list, Class<E> type) { |
| return (list instanceof RandomAccess ? |
| new CheckedRandomAccessList<>(list, type) : |
| new CheckedList<>(list, type)); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class CheckedList<E> |
| extends CheckedCollection<E> |
| implements List<E> |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 65247728283967356L; |
| @SuppressWarnings("serial") // Conditionally serializable |
| final List<E> list; |
| |
| CheckedList(List<E> list, Class<E> type) { |
| super(list, type); |
| this.list = list; |
| } |
| |
| public boolean equals(Object o) { return o == this || list.equals(o); } |
| public int hashCode() { return list.hashCode(); } |
| public E get(int index) { return list.get(index); } |
| public E remove(int index) { return list.remove(index); } |
| public int indexOf(Object o) { return list.indexOf(o); } |
| public int lastIndexOf(Object o) { return list.lastIndexOf(o); } |
| |
| public E set(int index, E element) { |
| return list.set(index, typeCheck(element)); |
| } |
| |
| public void add(int index, E element) { |
| list.add(index, typeCheck(element)); |
| } |
| |
| public boolean addAll(int index, Collection<? extends E> c) { |
| return list.addAll(index, checkedCopyOf(c)); |
| } |
| public ListIterator<E> listIterator() { return listIterator(0); } |
| |
| public ListIterator<E> listIterator(final int index) { |
| final ListIterator<E> i = list.listIterator(index); |
| |
| return new ListIterator<>() { |
| public boolean hasNext() { return i.hasNext(); } |
| public E next() { return i.next(); } |
| public boolean hasPrevious() { return i.hasPrevious(); } |
| public E previous() { return i.previous(); } |
| public int nextIndex() { return i.nextIndex(); } |
| public int previousIndex() { return i.previousIndex(); } |
| public void remove() { i.remove(); } |
| |
| public void set(E e) { |
| i.set(typeCheck(e)); |
| } |
| |
| public void add(E e) { |
| i.add(typeCheck(e)); |
| } |
| |
| @Override |
| public void forEachRemaining(Consumer<? super E> action) { |
| i.forEachRemaining(action); |
| } |
| }; |
| } |
| |
| public List<E> subList(int fromIndex, int toIndex) { |
| return new CheckedList<>(list.subList(fromIndex, toIndex), type); |
| } |
| |
| /** |
| * {@inheritDoc} |
| * |
| * @throws ClassCastException if the class of an element returned by the |
| * operator prevents it from being added to this collection. The |
| * exception may be thrown after some elements of the list have |
| * already been replaced. |
| */ |
| @Override |
| public void replaceAll(UnaryOperator<E> operator) { |
| Objects.requireNonNull(operator); |
| list.replaceAll(e -> typeCheck(operator.apply(e))); |
| } |
| |
| @Override |
| public void sort(Comparator<? super E> c) { |
| list.sort(c); |
| } |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class CheckedRandomAccessList<E> extends CheckedList<E> |
| implements RandomAccess |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 1638200125423088369L; |
| |
| CheckedRandomAccessList(List<E> list, Class<E> type) { |
| super(list, type); |
| } |
| |
| public List<E> subList(int fromIndex, int toIndex) { |
| return new CheckedRandomAccessList<>( |
| list.subList(fromIndex, toIndex), type); |
| } |
| } |
| |
| /** |
| * Returns a dynamically typesafe view of the specified map. |
| * Any attempt to insert a mapping whose key or value have the wrong |
| * type will result in an immediate {@link ClassCastException}. |
| * Similarly, any attempt to modify the value currently associated with |
| * a key will result in an immediate {@link ClassCastException}, |
| * whether the modification is attempted directly through the map |
| * itself, or through a {@link Map.Entry} instance obtained from the |
| * map's {@link Map#entrySet() entry set} view. |
| * |
| * <p>Assuming a map contains no incorrectly typed keys or values |
| * prior to the time a dynamically typesafe view is generated, and |
| * that all subsequent access to the map takes place through the view |
| * (or one of its collection views), it is <i>guaranteed</i> that the |
| * map cannot contain an incorrectly typed key or value. |
| * |
| * <p>A discussion of the use of dynamically typesafe views may be |
| * found in the documentation for the {@link #checkedCollection |
| * checkedCollection} method. |
| * |
| * <p>The returned map will be serializable if the specified map is |
| * serializable. |
| * |
| * <p>Since {@code null} is considered to be a value of any reference |
| * type, the returned map permits insertion of null keys or values |
| * whenever the backing map does. |
| * |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @param m the map for which a dynamically typesafe view is to be |
| * returned |
| * @param keyType the type of key that {@code m} is permitted to hold |
| * @param valueType the type of value that {@code m} is permitted to hold |
| * @return a dynamically typesafe view of the specified map |
| * @since 1.5 |
| */ |
| public static <K, V> Map<K, V> checkedMap(Map<K, V> m, |
| Class<K> keyType, |
| Class<V> valueType) { |
| return new CheckedMap<>(m, keyType, valueType); |
| } |
| |
| |
| /** |
| * @serial include |
| */ |
| private static class CheckedMap<K,V> |
| implements Map<K,V>, Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 5742860141034234728L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final Map<K, V> m; |
| @SuppressWarnings("serial") // Conditionally serializable |
| final Class<K> keyType; |
| @SuppressWarnings("serial") // Conditionally serializable |
| final Class<V> valueType; |
| |
| private void typeCheck(Object key, Object value) { |
| if (key != null && !keyType.isInstance(key)) |
| throw new ClassCastException(badKeyMsg(key)); |
| |
| if (value != null && !valueType.isInstance(value)) |
| throw new ClassCastException(badValueMsg(value)); |
| } |
| |
| private BiFunction<? super K, ? super V, ? extends V> typeCheck( |
| BiFunction<? super K, ? super V, ? extends V> func) { |
| Objects.requireNonNull(func); |
| return (k, v) -> { |
| V newValue = func.apply(k, v); |
| typeCheck(k, newValue); |
| return newValue; |
| }; |
| } |
| |
| private String badKeyMsg(Object key) { |
| return "Attempt to insert " + key.getClass() + |
| " key into map with key type " + keyType; |
| } |
| |
| private String badValueMsg(Object value) { |
| return "Attempt to insert " + value.getClass() + |
| " value into map with value type " + valueType; |
| } |
| |
| CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) { |
| this.m = Objects.requireNonNull(m); |
| this.keyType = Objects.requireNonNull(keyType); |
| this.valueType = Objects.requireNonNull(valueType); |
| } |
| |
| public int size() { return m.size(); } |
| public boolean isEmpty() { return m.isEmpty(); } |
| public boolean containsKey(Object key) { return m.containsKey(key); } |
| public boolean containsValue(Object v) { return m.containsValue(v); } |
| public V get(Object key) { return m.get(key); } |
| public V remove(Object key) { return m.remove(key); } |
| public void clear() { m.clear(); } |
| public Set<K> keySet() { return m.keySet(); } |
| public Collection<V> values() { return m.values(); } |
| public boolean equals(Object o) { return o == this || m.equals(o); } |
| public int hashCode() { return m.hashCode(); } |
| public String toString() { return m.toString(); } |
| |
| public V put(K key, V value) { |
| typeCheck(key, value); |
| return m.put(key, value); |
| } |
| |
| @SuppressWarnings("unchecked") |
| public void putAll(Map<? extends K, ? extends V> t) { |
| // Satisfy the following goals: |
| // - good diagnostics in case of type mismatch |
| // - all-or-nothing semantics |
| // - protection from malicious t |
| // - correct behavior if t is a concurrent map |
| Object[] entries = t.entrySet().toArray(); |
| List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length); |
| for (Object o : entries) { |
| Map.Entry<?,?> e = (Map.Entry<?,?>) o; |
| Object k = e.getKey(); |
| Object v = e.getValue(); |
| typeCheck(k, v); |
| checked.add( |
| new AbstractMap.SimpleImmutableEntry<>((K)k, (V)v)); |
| } |
| for (Map.Entry<K,V> e : checked) |
| m.put(e.getKey(), e.getValue()); |
| } |
| |
| private transient Set<Map.Entry<K,V>> entrySet; |
| |
| public Set<Map.Entry<K,V>> entrySet() { |
| if (entrySet==null) |
| entrySet = new CheckedEntrySet<>(m.entrySet(), valueType); |
| return entrySet; |
| } |
| |
| // Override default methods in Map |
| @Override |
| public void forEach(BiConsumer<? super K, ? super V> action) { |
| m.forEach(action); |
| } |
| |
| @Override |
| public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
| m.replaceAll(typeCheck(function)); |
| } |
| |
| @Override |
| public V putIfAbsent(K key, V value) { |
| typeCheck(key, value); |
| return m.putIfAbsent(key, value); |
| } |
| |
| @Override |
| public boolean remove(Object key, Object value) { |
| return m.remove(key, value); |
| } |
| |
| @Override |
| public boolean replace(K key, V oldValue, V newValue) { |
| typeCheck(key, newValue); |
| return m.replace(key, oldValue, newValue); |
| } |
| |
| @Override |
| public V replace(K key, V value) { |
| typeCheck(key, value); |
| return m.replace(key, value); |
| } |
| |
| @Override |
| public V computeIfAbsent(K key, |
| Function<? super K, ? extends V> mappingFunction) { |
| Objects.requireNonNull(mappingFunction); |
| return m.computeIfAbsent(key, k -> { |
| V value = mappingFunction.apply(k); |
| typeCheck(k, value); |
| return value; |
| }); |
| } |
| |
| @Override |
| public V computeIfPresent(K key, |
| BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
| return m.computeIfPresent(key, typeCheck(remappingFunction)); |
| } |
| |
| @Override |
| public V compute(K key, |
| BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
| return m.compute(key, typeCheck(remappingFunction)); |
| } |
| |
| @Override |
| public V merge(K key, V value, |
| BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
| Objects.requireNonNull(remappingFunction); |
| return m.merge(key, value, (v1, v2) -> { |
| V newValue = remappingFunction.apply(v1, v2); |
| typeCheck(null, newValue); |
| return newValue; |
| }); |
| } |
| |
| /** |
| * We need this class in addition to CheckedSet as Map.Entry permits |
| * modification of the backing Map via the setValue operation. This |
| * class is subtle: there are many possible attacks that must be |
| * thwarted. |
| * |
| * @serial exclude |
| */ |
| static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> { |
| private final Set<Map.Entry<K,V>> s; |
| private final Class<V> valueType; |
| |
| CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) { |
| this.s = s; |
| this.valueType = valueType; |
| } |
| |
| public int size() { return s.size(); } |
| public boolean isEmpty() { return s.isEmpty(); } |
| public String toString() { return s.toString(); } |
| public int hashCode() { return s.hashCode(); } |
| public void clear() { s.clear(); } |
| |
| public boolean add(Map.Entry<K, V> e) { |
| throw new UnsupportedOperationException(); |
| } |
| public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| public Iterator<Map.Entry<K,V>> iterator() { |
| final Iterator<Map.Entry<K, V>> i = s.iterator(); |
| |
| return new Iterator<>() { |
| public boolean hasNext() { return i.hasNext(); } |
| public void remove() { i.remove(); } |
| |
| public Map.Entry<K,V> next() { |
| return checkedEntry(i.next(), valueType); |
| } |
| public void forEachRemaining(Consumer<? super Entry<K, V>> action) { |
| Objects.requireNonNull(action); |
| i.forEachRemaining( |
| e -> action.accept(checkedEntry(e, valueType))); |
| } |
| }; |
| } |
| |
| // Android-changed: Ignore IsInstanceOfClass warning. b/73288967, b/73344263. |
| // @SuppressWarnings("unchecked") |
| @SuppressWarnings({ "unchecked", "IsInstanceOfClass" }) |
| public Object[] toArray() { |
| Object[] source = s.toArray(); |
| |
| /* |
| * Ensure that we don't get an ArrayStoreException even if |
| * s.toArray returns an array of something other than Object |
| */ |
| Object[] dest = (source.getClass() == Object[].class) |
| ? source |
| : new Object[source.length]; |
| |
| for (int i = 0; i < source.length; i++) |
| dest[i] = checkedEntry((Map.Entry<K,V>)source[i], |
| valueType); |
| return dest; |
| } |
| |
| @SuppressWarnings("unchecked") |
| public <T> T[] toArray(T[] a) { |
| // We don't pass a to s.toArray, to avoid window of |
| // vulnerability wherein an unscrupulous multithreaded client |
| // could get his hands on raw (unwrapped) Entries from s. |
| T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0)); |
| |
| for (int i=0; i<arr.length; i++) |
| arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i], |
| valueType); |
| if (arr.length > a.length) |
| return arr; |
| |
| System.arraycopy(arr, 0, a, 0, arr.length); |
| if (a.length > arr.length) |
| a[arr.length] = null; |
| return a; |
| } |
| |
| /** |
| * This method is overridden to protect the backing set against |
| * an object with a nefarious equals function that senses |
| * that the equality-candidate is Map.Entry and calls its |
| * setValue method. |
| */ |
| public boolean contains(Object o) { |
| // Android-changed: (b/247094511) instanceof pattern variable is not yet supported. |
| /* |
| return o instanceof Map.Entry<?, ?> e |
| && s.contains((e instanceof CheckedEntry) ? e : checkedEntry(e, valueType)); |
| */ |
| if (!(o instanceof Map.Entry)) |
| return false; |
| Map.Entry<?,?> e = (Map.Entry<?,?>) o; |
| return s.contains( |
| (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType)); |
| } |
| |
| /** |
| * The bulk collection methods are overridden to protect |
| * against an unscrupulous collection whose contains(Object o) |
| * method senses when o is a Map.Entry, and calls o.setValue. |
| */ |
| public boolean containsAll(Collection<?> c) { |
| for (Object o : c) |
| if (!contains(o)) // Invokes safe contains() above |
| return false; |
| return true; |
| } |
| |
| public boolean remove(Object o) { |
| if (!(o instanceof Map.Entry)) |
| return false; |
| return s.remove(new AbstractMap.SimpleImmutableEntry |
| <>((Map.Entry<?,?>)o)); |
| } |
| |
| public boolean removeAll(Collection<?> c) { |
| return batchRemove(c, false); |
| } |
| public boolean retainAll(Collection<?> c) { |
| return batchRemove(c, true); |
| } |
| private boolean batchRemove(Collection<?> c, boolean complement) { |
| Objects.requireNonNull(c); |
| boolean modified = false; |
| Iterator<Map.Entry<K,V>> it = iterator(); |
| while (it.hasNext()) { |
| if (c.contains(it.next()) != complement) { |
| it.remove(); |
| modified = true; |
| } |
| } |
| return modified; |
| } |
| |
| public boolean equals(Object o) { |
| if (o == this) |
| return true; |
| // Android-changed: (b/247094511) instanceof pattern variable is not yet supported |
| /* |
| return o instanceof Set<?> that |
| && that.size() == s.size() |
| && containsAll(that); // Invokes safe containsAll() above |
| */ |
| if (!(o instanceof Set)) |
| return false; |
| Set<?> that = (Set<?>) o; |
| return that.size() == s.size() |
| && containsAll(that); // Invokes safe containsAll() above |
| } |
| |
| static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e, |
| Class<T> valueType) { |
| return new CheckedEntry<>(e, valueType); |
| } |
| |
| /** |
| * This "wrapper class" serves two purposes: it prevents |
| * the client from modifying the backing Map, by short-circuiting |
| * the setValue method, and it protects the backing Map against |
| * an ill-behaved Map.Entry that attempts to modify another |
| * Map.Entry when asked to perform an equality check. |
| */ |
| private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> { |
| private final Map.Entry<K, V> e; |
| private final Class<T> valueType; |
| |
| CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) { |
| this.e = Objects.requireNonNull(e); |
| this.valueType = Objects.requireNonNull(valueType); |
| } |
| |
| public K getKey() { return e.getKey(); } |
| public V getValue() { return e.getValue(); } |
| public int hashCode() { return e.hashCode(); } |
| public String toString() { return e.toString(); } |
| |
| public V setValue(V value) { |
| if (value != null && !valueType.isInstance(value)) |
| throw new ClassCastException(badValueMsg(value)); |
| return e.setValue(value); |
| } |
| |
| private String badValueMsg(Object value) { |
| return "Attempt to insert " + value.getClass() + |
| " value into map with value type " + valueType; |
| } |
| |
| public boolean equals(Object o) { |
| if (o == this) |
| return true; |
| if (!(o instanceof Map.Entry)) |
| return false; |
| return e.equals(new AbstractMap.SimpleImmutableEntry |
| <>((Map.Entry<?,?>)o)); |
| } |
| } |
| } |
| } |
| |
| /** |
| * Returns a dynamically typesafe view of the specified sorted map. |
| * Any attempt to insert a mapping whose key or value have the wrong |
| * type will result in an immediate {@link ClassCastException}. |
| * Similarly, any attempt to modify the value currently associated with |
| * a key will result in an immediate {@link ClassCastException}, |
| * whether the modification is attempted directly through the map |
| * itself, or through a {@link Map.Entry} instance obtained from the |
| * map's {@link Map#entrySet() entry set} view. |
| * |
| * <p>Assuming a map contains no incorrectly typed keys or values |
| * prior to the time a dynamically typesafe view is generated, and |
| * that all subsequent access to the map takes place through the view |
| * (or one of its collection views), it is <i>guaranteed</i> that the |
| * map cannot contain an incorrectly typed key or value. |
| * |
| * <p>A discussion of the use of dynamically typesafe views may be |
| * found in the documentation for the {@link #checkedCollection |
| * checkedCollection} method. |
| * |
| * <p>The returned map will be serializable if the specified map is |
| * serializable. |
| * |
| * <p>Since {@code null} is considered to be a value of any reference |
| * type, the returned map permits insertion of null keys or values |
| * whenever the backing map does. |
| * |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @param m the map for which a dynamically typesafe view is to be |
| * returned |
| * @param keyType the type of key that {@code m} is permitted to hold |
| * @param valueType the type of value that {@code m} is permitted to hold |
| * @return a dynamically typesafe view of the specified map |
| * @since 1.5 |
| */ |
| public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m, |
| Class<K> keyType, |
| Class<V> valueType) { |
| return new CheckedSortedMap<>(m, keyType, valueType); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class CheckedSortedMap<K,V> extends CheckedMap<K,V> |
| implements SortedMap<K,V>, Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 1599671320688067438L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final SortedMap<K, V> sm; |
| |
| CheckedSortedMap(SortedMap<K, V> m, |
| Class<K> keyType, Class<V> valueType) { |
| super(m, keyType, valueType); |
| sm = m; |
| } |
| |
| public Comparator<? super K> comparator() { return sm.comparator(); } |
| public K firstKey() { return sm.firstKey(); } |
| public K lastKey() { return sm.lastKey(); } |
| |
| public SortedMap<K,V> subMap(K fromKey, K toKey) { |
| return checkedSortedMap(sm.subMap(fromKey, toKey), |
| keyType, valueType); |
| } |
| public SortedMap<K,V> headMap(K toKey) { |
| return checkedSortedMap(sm.headMap(toKey), keyType, valueType); |
| } |
| public SortedMap<K,V> tailMap(K fromKey) { |
| return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType); |
| } |
| } |
| |
| /** |
| * Returns a dynamically typesafe view of the specified navigable map. |
| * Any attempt to insert a mapping whose key or value have the wrong |
| * type will result in an immediate {@link ClassCastException}. |
| * Similarly, any attempt to modify the value currently associated with |
| * a key will result in an immediate {@link ClassCastException}, |
| * whether the modification is attempted directly through the map |
| * itself, or through a {@link Map.Entry} instance obtained from the |
| * map's {@link Map#entrySet() entry set} view. |
| * |
| * <p>Assuming a map contains no incorrectly typed keys or values |
| * prior to the time a dynamically typesafe view is generated, and |
| * that all subsequent access to the map takes place through the view |
| * (or one of its collection views), it is <em>guaranteed</em> that the |
| * map cannot contain an incorrectly typed key or value. |
| * |
| * <p>A discussion of the use of dynamically typesafe views may be |
| * found in the documentation for the {@link #checkedCollection |
| * checkedCollection} method. |
| * |
| * <p>The returned map will be serializable if the specified map is |
| * serializable. |
| * |
| * <p>Since {@code null} is considered to be a value of any reference |
| * type, the returned map permits insertion of null keys or values |
| * whenever the backing map does. |
| * |
| * @param <K> type of map keys |
| * @param <V> type of map values |
| * @param m the map for which a dynamically typesafe view is to be |
| * returned |
| * @param keyType the type of key that {@code m} is permitted to hold |
| * @param valueType the type of value that {@code m} is permitted to hold |
| * @return a dynamically typesafe view of the specified map |
| * @since 1.8 |
| */ |
| public static <K,V> NavigableMap<K,V> checkedNavigableMap(NavigableMap<K, V> m, |
| Class<K> keyType, |
| Class<V> valueType) { |
| return new CheckedNavigableMap<>(m, keyType, valueType); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class CheckedNavigableMap<K,V> extends CheckedSortedMap<K,V> |
| implements NavigableMap<K,V>, Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = -4852462692372534096L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final NavigableMap<K, V> nm; |
| |
| CheckedNavigableMap(NavigableMap<K, V> m, |
| Class<K> keyType, Class<V> valueType) { |
| super(m, keyType, valueType); |
| nm = m; |
| } |
| |
| public Comparator<? super K> comparator() { return nm.comparator(); } |
| public K firstKey() { return nm.firstKey(); } |
| public K lastKey() { return nm.lastKey(); } |
| |
| public Entry<K, V> lowerEntry(K key) { |
| Entry<K,V> lower = nm.lowerEntry(key); |
| return (null != lower) |
| ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(lower, valueType) |
| : null; |
| } |
| |
| public K lowerKey(K key) { return nm.lowerKey(key); } |
| |
| public Entry<K, V> floorEntry(K key) { |
| Entry<K,V> floor = nm.floorEntry(key); |
| return (null != floor) |
| ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(floor, valueType) |
| : null; |
| } |
| |
| public K floorKey(K key) { return nm.floorKey(key); } |
| |
| public Entry<K, V> ceilingEntry(K key) { |
| Entry<K,V> ceiling = nm.ceilingEntry(key); |
| return (null != ceiling) |
| ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(ceiling, valueType) |
| : null; |
| } |
| |
| public K ceilingKey(K key) { return nm.ceilingKey(key); } |
| |
| public Entry<K, V> higherEntry(K key) { |
| Entry<K,V> higher = nm.higherEntry(key); |
| return (null != higher) |
| ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(higher, valueType) |
| : null; |
| } |
| |
| public K higherKey(K key) { return nm.higherKey(key); } |
| |
| public Entry<K, V> firstEntry() { |
| Entry<K,V> first = nm.firstEntry(); |
| return (null != first) |
| ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(first, valueType) |
| : null; |
| } |
| |
| public Entry<K, V> lastEntry() { |
| Entry<K,V> last = nm.lastEntry(); |
| return (null != last) |
| ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(last, valueType) |
| : null; |
| } |
| |
| public Entry<K, V> pollFirstEntry() { |
| Entry<K,V> entry = nm.pollFirstEntry(); |
| return (null == entry) |
| ? null |
| : new CheckedMap.CheckedEntrySet.CheckedEntry<>(entry, valueType); |
| } |
| |
| public Entry<K, V> pollLastEntry() { |
| Entry<K,V> entry = nm.pollLastEntry(); |
| return (null == entry) |
| ? null |
| : new CheckedMap.CheckedEntrySet.CheckedEntry<>(entry, valueType); |
| } |
| |
| public NavigableMap<K, V> descendingMap() { |
| return checkedNavigableMap(nm.descendingMap(), keyType, valueType); |
| } |
| |
| public NavigableSet<K> keySet() { |
| return navigableKeySet(); |
| } |
| |
| public NavigableSet<K> navigableKeySet() { |
| return checkedNavigableSet(nm.navigableKeySet(), keyType); |
| } |
| |
| public NavigableSet<K> descendingKeySet() { |
| return checkedNavigableSet(nm.descendingKeySet(), keyType); |
| } |
| |
| @Override |
| public NavigableMap<K,V> subMap(K fromKey, K toKey) { |
| return checkedNavigableMap(nm.subMap(fromKey, true, toKey, false), |
| keyType, valueType); |
| } |
| |
| @Override |
| public NavigableMap<K,V> headMap(K toKey) { |
| return checkedNavigableMap(nm.headMap(toKey, false), keyType, valueType); |
| } |
| |
| @Override |
| public NavigableMap<K,V> tailMap(K fromKey) { |
| return checkedNavigableMap(nm.tailMap(fromKey, true), keyType, valueType); |
| } |
| |
| public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { |
| return checkedNavigableMap(nm.subMap(fromKey, fromInclusive, toKey, toInclusive), keyType, valueType); |
| } |
| |
| public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { |
| return checkedNavigableMap(nm.headMap(toKey, inclusive), keyType, valueType); |
| } |
| |
| public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { |
| return checkedNavigableMap(nm.tailMap(fromKey, inclusive), keyType, valueType); |
| } |
| } |
| |
| // Empty collections |
| |
| /** |
| * Returns an iterator that has no elements. More precisely, |
| * |
| * <ul> |
| * <li>{@link Iterator#hasNext hasNext} always returns {@code |
| * false}.</li> |
| * <li>{@link Iterator#next next} always throws {@link |
| * NoSuchElementException}.</li> |
| * <li>{@link Iterator#remove remove} always throws {@link |
| * IllegalStateException}.</li> |
| * </ul> |
| * |
| * <p>Implementations of this method are permitted, but not |
| * required, to return the same object from multiple invocations. |
| * |
| * @param <T> type of elements, if there were any, in the iterator |
| * @return an empty iterator |
| * @since 1.7 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> Iterator<T> emptyIterator() { |
| return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR; |
| } |
| |
| private static class EmptyIterator<E> implements Iterator<E> { |
| static final EmptyIterator<Object> EMPTY_ITERATOR |
| = new EmptyIterator<>(); |
| |
| public boolean hasNext() { return false; } |
| public E next() { throw new NoSuchElementException(); } |
| public void remove() { throw new IllegalStateException(); } |
| @Override |
| public void forEachRemaining(Consumer<? super E> action) { |
| Objects.requireNonNull(action); |
| } |
| } |
| |
| /** |
| * Returns a list iterator that has no elements. More precisely, |
| * |
| * <ul> |
| * <li>{@link Iterator#hasNext hasNext} and {@link |
| * ListIterator#hasPrevious hasPrevious} always return {@code |
| * false}.</li> |
| * <li>{@link Iterator#next next} and {@link ListIterator#previous |
| * previous} always throw {@link NoSuchElementException}.</li> |
| * <li>{@link Iterator#remove remove} and {@link ListIterator#set |
| * set} always throw {@link IllegalStateException}.</li> |
| * <li>{@link ListIterator#add add} always throws {@link |
| * UnsupportedOperationException}.</li> |
| * <li>{@link ListIterator#nextIndex nextIndex} always returns |
| * {@code 0}.</li> |
| * <li>{@link ListIterator#previousIndex previousIndex} always |
| * returns {@code -1}.</li> |
| * </ul> |
| * |
| * <p>Implementations of this method are permitted, but not |
| * required, to return the same object from multiple invocations. |
| * |
| * @param <T> type of elements, if there were any, in the iterator |
| * @return an empty list iterator |
| * @since 1.7 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> ListIterator<T> emptyListIterator() { |
| return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR; |
| } |
| |
| private static class EmptyListIterator<E> |
| extends EmptyIterator<E> |
| implements ListIterator<E> |
| { |
| static final EmptyListIterator<Object> EMPTY_ITERATOR |
| = new EmptyListIterator<>(); |
| |
| public boolean hasPrevious() { return false; } |
| public E previous() { throw new NoSuchElementException(); } |
| public int nextIndex() { return 0; } |
| public int previousIndex() { return -1; } |
| public void set(E e) { throw new IllegalStateException(); } |
| public void add(E e) { throw new UnsupportedOperationException(); } |
| } |
| |
| /** |
| * Returns an enumeration that has no elements. More precisely, |
| * |
| * <ul> |
| * <li>{@link Enumeration#hasMoreElements hasMoreElements} always |
| * returns {@code false}.</li> |
| * <li> {@link Enumeration#nextElement nextElement} always throws |
| * {@link NoSuchElementException}.</li> |
| * </ul> |
| * |
| * <p>Implementations of this method are permitted, but not |
| * required, to return the same object from multiple invocations. |
| * |
| * @param <T> the class of the objects in the enumeration |
| * @return an empty enumeration |
| * @since 1.7 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> Enumeration<T> emptyEnumeration() { |
| return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION; |
| } |
| |
| private static class EmptyEnumeration<E> implements Enumeration<E> { |
| static final EmptyEnumeration<Object> EMPTY_ENUMERATION |
| = new EmptyEnumeration<>(); |
| |
| public boolean hasMoreElements() { return false; } |
| public E nextElement() { throw new NoSuchElementException(); } |
| public Iterator<E> asIterator() { return emptyIterator(); } |
| } |
| |
| /** |
| * The empty set (immutable). This set is serializable. |
| * |
| * @see #emptySet() |
| */ |
| @SuppressWarnings("rawtypes") |
| public static final Set EMPTY_SET = new EmptySet<>(); |
| |
| /** |
| * Returns an empty set (immutable). This set is serializable. |
| * Unlike the like-named field, this method is parameterized. |
| * |
| * <p>This example illustrates the type-safe way to obtain an empty set: |
| * <pre> |
| * Set<String> s = Collections.emptySet(); |
| * </pre> |
| * @implNote Implementations of this method need not create a separate |
| * {@code Set} object for each call. Using this method is likely to have |
| * comparable cost to using the like-named field. (Unlike this method, the |
| * field does not provide type safety.) |
| * |
| * @param <T> the class of the objects in the set |
| * @return the empty set |
| * |
| * @see #EMPTY_SET |
| * @since 1.5 |
| */ |
| @SuppressWarnings("unchecked") |
| public static final <T> Set<T> emptySet() { |
| return (Set<T>) EMPTY_SET; |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class EmptySet<E> |
| extends AbstractSet<E> |
| implements Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 1582296315990362920L; |
| |
| public Iterator<E> iterator() { return emptyIterator(); } |
| |
| public int size() {return 0;} |
| public boolean isEmpty() {return true;} |
| public void clear() {} |
| |
| public boolean contains(Object obj) {return false;} |
| public boolean containsAll(Collection<?> c) { return c.isEmpty(); } |
| |
| public Object[] toArray() { return new Object[0]; } |
| |
| public <T> T[] toArray(T[] a) { |
| if (a.length > 0) |
| a[0] = null; |
| return a; |
| } |
| |
| // Override default methods in Collection |
| @Override |
| public void forEach(Consumer<? super E> action) { |
| Objects.requireNonNull(action); |
| } |
| @Override |
| public boolean removeIf(Predicate<? super E> filter) { |
| Objects.requireNonNull(filter); |
| return false; |
| } |
| @Override |
| public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); } |
| |
| // Preserves singleton property |
| @java.io.Serial |
| private Object readResolve() { |
| return EMPTY_SET; |
| } |
| |
| @Override |
| public int hashCode() { |
| return 0; |
| } |
| } |
| |
| /** |
| * Returns an empty sorted set (immutable). This set is serializable. |
| * |
| * <p>This example illustrates the type-safe way to obtain an empty |
| * sorted set: |
| * <pre> {@code |
| * SortedSet<String> s = Collections.emptySortedSet(); |
| * }</pre> |
| * |
| * @implNote Implementations of this method need not create a separate |
| * {@code SortedSet} object for each call. |
| * |
| * @param <E> type of elements, if there were any, in the set |
| * @return the empty sorted set |
| * @since 1.8 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <E> SortedSet<E> emptySortedSet() { |
| return (SortedSet<E>) UnmodifiableNavigableSet.EMPTY_NAVIGABLE_SET; |
| } |
| |
| /** |
| * Returns an empty navigable set (immutable). This set is serializable. |
| * |
| * <p>This example illustrates the type-safe way to obtain an empty |
| * navigable set: |
| * <pre> {@code |
| * NavigableSet<String> s = Collections.emptyNavigableSet(); |
| * }</pre> |
| * |
| * @implNote Implementations of this method need not |
| * create a separate {@code NavigableSet} object for each call. |
| * |
| * @param <E> type of elements, if there were any, in the set |
| * @return the empty navigable set |
| * @since 1.8 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <E> NavigableSet<E> emptyNavigableSet() { |
| return (NavigableSet<E>) UnmodifiableNavigableSet.EMPTY_NAVIGABLE_SET; |
| } |
| |
| /** |
| * The empty list (immutable). This list is serializable. |
| * |
| * @see #emptyList() |
| */ |
| @SuppressWarnings("rawtypes") |
| public static final List EMPTY_LIST = new EmptyList<>(); |
| |
| /** |
| * Returns an empty list (immutable). This list is serializable. |
| * |
| * <p>This example illustrates the type-safe way to obtain an empty list: |
| * <pre> |
| * List<String> s = Collections.emptyList(); |
| * </pre> |
| * |
| * @implNote |
| * Implementations of this method need not create a separate {@code List} |
| * object for each call. Using this method is likely to have comparable |
| * cost to using the like-named field. (Unlike this method, the field does |
| * not provide type safety.) |
| * |
| * @param <T> type of elements, if there were any, in the list |
| * @return an empty immutable list |
| * |
| * @see #EMPTY_LIST |
| * @since 1.5 |
| */ |
| @SuppressWarnings("unchecked") |
| public static final <T> List<T> emptyList() { |
| return (List<T>) EMPTY_LIST; |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class EmptyList<E> |
| extends AbstractList<E> |
| implements RandomAccess, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = 8842843931221139166L; |
| |
| public Iterator<E> iterator() { |
| return emptyIterator(); |
| } |
| public ListIterator<E> listIterator() { |
| return emptyListIterator(); |
| } |
| |
| public int size() {return 0;} |
| public boolean isEmpty() {return true;} |
| public void clear() {} |
| |
| public boolean contains(Object obj) {return false;} |
| public boolean containsAll(Collection<?> c) { return c.isEmpty(); } |
| |
| public Object[] toArray() { return new Object[0]; } |
| |
| public <T> T[] toArray(T[] a) { |
| if (a.length > 0) |
| a[0] = null; |
| return a; |
| } |
| |
| public E get(int index) { |
| throw new IndexOutOfBoundsException("Index: "+index); |
| } |
| |
| public boolean equals(Object o) { |
| return (o instanceof List) && ((List<?>)o).isEmpty(); |
| } |
| |
| public int hashCode() { return 1; } |
| |
| @Override |
| public boolean removeIf(Predicate<? super E> filter) { |
| Objects.requireNonNull(filter); |
| return false; |
| } |
| @Override |
| public void replaceAll(UnaryOperator<E> operator) { |
| Objects.requireNonNull(operator); |
| } |
| @Override |
| public void sort(Comparator<? super E> c) { |
| } |
| |
| // Override default methods in Collection |
| @Override |
| public void forEach(Consumer<? super E> action) { |
| Objects.requireNonNull(action); |
| } |
| |
| @Override |
| public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); } |
| |
| // Preserves singleton property |
| @java.io.Serial |
| private Object readResolve() { |
| return EMPTY_LIST; |
| } |
| } |
| |
| /** |
| * The empty map (immutable). This map is serializable. |
| * |
| * @see #emptyMap() |
| * @since 1.3 |
| */ |
| @SuppressWarnings("rawtypes") |
| public static final Map EMPTY_MAP = new EmptyMap<>(); |
| |
| /** |
| * Returns an empty map (immutable). This map is serializable. |
| * |
| * <p>This example illustrates the type-safe way to obtain an empty map: |
| * <pre> |
| * Map<String, Date> s = Collections.emptyMap(); |
| * </pre> |
| * @implNote Implementations of this method need not create a separate |
| * {@code Map} object for each call. Using this method is likely to have |
| * comparable cost to using the like-named field. (Unlike this method, the |
| * field does not provide type safety.) |
| * |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @return an empty map |
| * @see #EMPTY_MAP |
| * @since 1.5 |
| */ |
| @SuppressWarnings("unchecked") |
| public static final <K,V> Map<K,V> emptyMap() { |
| return (Map<K,V>) EMPTY_MAP; |
| } |
| |
| /** |
| * Returns an empty sorted map (immutable). This map is serializable. |
| * |
| * <p>This example illustrates the type-safe way to obtain an empty map: |
| * <pre> {@code |
| * SortedMap<String, Date> s = Collections.emptySortedMap(); |
| * }</pre> |
| * |
| * @implNote Implementations of this method need not create a separate |
| * {@code SortedMap} object for each call. |
| * |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @return an empty sorted map |
| * @since 1.8 |
| */ |
| @SuppressWarnings("unchecked") |
| public static final <K,V> SortedMap<K,V> emptySortedMap() { |
| return (SortedMap<K,V>) UnmodifiableNavigableMap.EMPTY_NAVIGABLE_MAP; |
| } |
| |
| /** |
| * Returns an empty navigable map (immutable). This map is serializable. |
| * |
| * <p>This example illustrates the type-safe way to obtain an empty map: |
| * <pre> {@code |
| * NavigableMap<String, Date> s = Collections.emptyNavigableMap(); |
| * }</pre> |
| * |
| * @implNote Implementations of this method need not create a separate |
| * {@code NavigableMap} object for each call. |
| * |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @return an empty navigable map |
| * @since 1.8 |
| */ |
| @SuppressWarnings("unchecked") |
| public static final <K,V> NavigableMap<K,V> emptyNavigableMap() { |
| return (NavigableMap<K,V>) UnmodifiableNavigableMap.EMPTY_NAVIGABLE_MAP; |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class EmptyMap<K,V> |
| extends AbstractMap<K,V> |
| implements Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 6428348081105594320L; |
| |
| public int size() {return 0;} |
| public boolean isEmpty() {return true;} |
| public void clear() {} |
| public boolean containsKey(Object key) {return false;} |
| public boolean containsValue(Object value) {return false;} |
| public V get(Object key) {return null;} |
| public Set<K> keySet() {return emptySet();} |
| public Collection<V> values() {return emptySet();} |
| public Set<Map.Entry<K,V>> entrySet() {return emptySet();} |
| |
| public boolean equals(Object o) { |
| return (o instanceof Map) && ((Map<?,?>)o).isEmpty(); |
| } |
| |
| public int hashCode() {return 0;} |
| |
| // Override default methods in Map |
| @Override |
| public V getOrDefault(Object k, V defaultValue) { |
| return defaultValue; |
| } |
| |
| @Override |
| public void forEach(BiConsumer<? super K, ? super V> action) { |
| Objects.requireNonNull(action); |
| } |
| |
| @Override |
| public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
| Objects.requireNonNull(function); |
| } |
| |
| @Override |
| public V putIfAbsent(K key, V value) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public boolean remove(Object key, Object value) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public boolean replace(K key, V oldValue, V newValue) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V replace(K key, V value) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V computeIfAbsent(K key, |
| Function<? super K, ? extends V> mappingFunction) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V computeIfPresent(K key, |
| BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V compute(K key, |
| BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V merge(K key, V value, |
| BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| // Preserves singleton property |
| @java.io.Serial |
| private Object readResolve() { |
| return EMPTY_MAP; |
| } |
| } |
| |
| // Singleton collections |
| |
| /** |
| * Returns an immutable set containing only the specified object. |
| * The returned set is serializable. |
| * |
| * @param <T> the class of the objects in the set |
| * @param o the sole object to be stored in the returned set. |
| * @return an immutable set containing only the specified object. |
| */ |
| public static <T> Set<T> singleton(T o) { |
| return new SingletonSet<>(o); |
| } |
| |
| static <E> Iterator<E> singletonIterator(final E e) { |
| return new Iterator<>() { |
| private boolean hasNext = true; |
| public boolean hasNext() { |
| return hasNext; |
| } |
| public E next() { |
| if (hasNext) { |
| hasNext = false; |
| return e; |
| } |
| throw new NoSuchElementException(); |
| } |
| public void remove() { |
| throw new UnsupportedOperationException(); |
| } |
| @Override |
| public void forEachRemaining(Consumer<? super E> action) { |
| Objects.requireNonNull(action); |
| if (hasNext) { |
| hasNext = false; |
| action.accept(e); |
| } |
| } |
| }; |
| } |
| |
| /** |
| * Creates a {@code Spliterator} with only the specified element |
| * |
| * @param <T> Type of elements |
| * @return A singleton {@code Spliterator} |
| */ |
| static <T> Spliterator<T> singletonSpliterator(final T element) { |
| return new Spliterator<>() { |
| long est = 1; |
| |
| @Override |
| public Spliterator<T> trySplit() { |
| return null; |
| } |
| |
| @Override |
| public boolean tryAdvance(Consumer<? super T> consumer) { |
| Objects.requireNonNull(consumer); |
| if (est > 0) { |
| est--; |
| consumer.accept(element); |
| return true; |
| } |
| return false; |
| } |
| |
| @Override |
| public void forEachRemaining(Consumer<? super T> consumer) { |
| tryAdvance(consumer); |
| } |
| |
| @Override |
| public long estimateSize() { |
| return est; |
| } |
| |
| @Override |
| public int characteristics() { |
| int value = (element != null) ? Spliterator.NONNULL : 0; |
| |
| return value | Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.IMMUTABLE | |
| Spliterator.DISTINCT | Spliterator.ORDERED; |
| } |
| }; |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class SingletonSet<E> |
| extends AbstractSet<E> |
| implements Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 3193687207550431679L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final E element; |
| |
| SingletonSet(E e) {element = e;} |
| |
| public Iterator<E> iterator() { |
| return singletonIterator(element); |
| } |
| |
| public int size() {return 1;} |
| |
| public boolean contains(Object o) {return eq(o, element);} |
| |
| // Override default methods for Collection |
| @Override |
| public void forEach(Consumer<? super E> action) { |
| action.accept(element); |
| } |
| @Override |
| public Spliterator<E> spliterator() { |
| return singletonSpliterator(element); |
| } |
| @Override |
| public boolean removeIf(Predicate<? super E> filter) { |
| throw new UnsupportedOperationException(); |
| } |
| @Override |
| public int hashCode() { |
| return Objects.hashCode(element); |
| } |
| } |
| |
| /** |
| * Returns an immutable list containing only the specified object. |
| * The returned list is serializable. |
| * |
| * @param <T> the class of the objects in the list |
| * @param o the sole object to be stored in the returned list. |
| * @return an immutable list containing only the specified object. |
| * @since 1.3 |
| */ |
| public static <T> List<T> singletonList(T o) { |
| return new SingletonList<>(o); |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class SingletonList<E> |
| extends AbstractList<E> |
| implements RandomAccess, Serializable { |
| |
| @java.io.Serial |
| private static final long serialVersionUID = 3093736618740652951L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final E element; |
| |
| SingletonList(E obj) {element = obj;} |
| |
| public Iterator<E> iterator() { |
| return singletonIterator(element); |
| } |
| |
| public int size() {return 1;} |
| |
| public boolean contains(Object obj) {return eq(obj, element);} |
| |
| public E get(int index) { |
| if (index != 0) |
| throw new IndexOutOfBoundsException("Index: "+index+", Size: 1"); |
| return element; |
| } |
| |
| // Override default methods for Collection |
| @Override |
| public void forEach(Consumer<? super E> action) { |
| action.accept(element); |
| } |
| @Override |
| public boolean removeIf(Predicate<? super E> filter) { |
| throw new UnsupportedOperationException(); |
| } |
| @Override |
| public void replaceAll(UnaryOperator<E> operator) { |
| throw new UnsupportedOperationException(); |
| } |
| @Override |
| public void sort(Comparator<? super E> c) { |
| } |
| @Override |
| public Spliterator<E> spliterator() { |
| return singletonSpliterator(element); |
| } |
| @Override |
| public int hashCode() { |
| return 31 + Objects.hashCode(element); |
| } |
| } |
| |
| /** |
| * Returns an immutable map, mapping only the specified key to the |
| * specified value. The returned map is serializable. |
| * |
| * @param <K> the class of the map keys |
| * @param <V> the class of the map values |
| * @param key the sole key to be stored in the returned map. |
| * @param value the value to which the returned map maps {@code key}. |
| * @return an immutable map containing only the specified key-value |
| * mapping. |
| * @since 1.3 |
| */ |
| public static <K,V> Map<K,V> singletonMap(K key, V value) { |
| return new SingletonMap<>(key, value); |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class SingletonMap<K,V> |
| extends AbstractMap<K,V> |
| implements Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = -6979724477215052911L; |
| |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final K k; |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final V v; |
| |
| SingletonMap(K key, V value) { |
| k = key; |
| v = value; |
| } |
| |
| public int size() {return 1;} |
| public boolean isEmpty() {return false;} |
| public boolean containsKey(Object key) {return eq(key, k);} |
| public boolean containsValue(Object value) {return eq(value, v);} |
| public V get(Object key) {return (eq(key, k) ? v : null);} |
| |
| private transient Set<K> keySet; |
| private transient Set<Map.Entry<K,V>> entrySet; |
| private transient Collection<V> values; |
| |
| public Set<K> keySet() { |
| if (keySet==null) |
| keySet = singleton(k); |
| return keySet; |
| } |
| |
| public Set<Map.Entry<K,V>> entrySet() { |
| if (entrySet==null) |
| entrySet = Collections.singleton( |
| new SimpleImmutableEntry<>(k, v)); |
| return entrySet; |
| } |
| |
| public Collection<V> values() { |
| if (values==null) |
| values = singleton(v); |
| return values; |
| } |
| |
| // Override default methods in Map |
| @Override |
| public V getOrDefault(Object key, V defaultValue) { |
| return eq(key, k) ? v : defaultValue; |
| } |
| |
| @Override |
| public void forEach(BiConsumer<? super K, ? super V> action) { |
| action.accept(k, v); |
| } |
| |
| @Override |
| public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V putIfAbsent(K key, V value) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public boolean remove(Object key, Object value) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public boolean replace(K key, V oldValue, V newValue) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V replace(K key, V value) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V computeIfAbsent(K key, |
| Function<? super K, ? extends V> mappingFunction) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V computeIfPresent(K key, |
| BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V compute(K key, |
| BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public V merge(K key, V value, |
| BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
| throw new UnsupportedOperationException(); |
| } |
| |
| @Override |
| public int hashCode() { |
| return Objects.hashCode(k) ^ Objects.hashCode(v); |
| } |
| } |
| |
| // Miscellaneous |
| |
| /** |
| * Returns an immutable list consisting of {@code n} copies of the |
| * specified object. The newly allocated data object is tiny (it contains |
| * a single reference to the data object). This method is useful in |
| * combination with the {@code List.addAll} method to grow lists. |
| * The returned list is serializable. |
| * |
| * @param <T> the class of the object to copy and of the objects |
| * in the returned list. |
| * @param n the number of elements in the returned list. |
| * @param o the element to appear repeatedly in the returned list. |
| * @return an immutable list consisting of {@code n} copies of the |
| * specified object. |
| * @throws IllegalArgumentException if {@code n < 0} |
| * @see List#addAll(Collection) |
| * @see List#addAll(int, Collection) |
| */ |
| public static <T> List<T> nCopies(int n, T o) { |
| if (n < 0) |
| throw new IllegalArgumentException("List length = " + n); |
| return new CopiesList<>(n, o); |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class CopiesList<E> |
| extends AbstractList<E> |
| implements RandomAccess, Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 2739099268398711800L; |
| |
| final int n; |
| @SuppressWarnings("serial") // Conditionally serializable |
| final E element; |
| |
| CopiesList(int n, E e) { |
| assert n >= 0; |
| this.n = n; |
| element = e; |
| } |
| |
| public int size() { |
| return n; |
| } |
| |
| public boolean contains(Object obj) { |
| return n != 0 && eq(obj, element); |
| } |
| |
| public int indexOf(Object o) { |
| return contains(o) ? 0 : -1; |
| } |
| |
| public int lastIndexOf(Object o) { |
| return contains(o) ? n - 1 : -1; |
| } |
| |
| public E get(int index) { |
| Objects.checkIndex(index, n); |
| return element; |
| } |
| |
| @Override |
| public void forEach(Consumer<? super E> action) { |
| Objects.requireNonNull(action); |
| int n = this.n; |
| E element = this.element; |
| for (int i = 0; i < n; i++) { |
| action.accept(element); |
| } |
| } |
| |
| public Object[] toArray() { |
| final Object[] a = new Object[n]; |
| if (element != null) |
| Arrays.fill(a, 0, n, element); |
| return a; |
| } |
| |
| @SuppressWarnings("unchecked") |
| public <T> T[] toArray(T[] a) { |
| final int n = this.n; |
| if (a.length < n) { |
| a = (T[])java.lang.reflect.Array |
| .newInstance(a.getClass().getComponentType(), n); |
| if (element != null) |
| Arrays.fill(a, 0, n, element); |
| } else { |
| Arrays.fill(a, 0, n, element); |
| if (a.length > n) |
| a[n] = null; |
| } |
| return a; |
| } |
| |
| public List<E> subList(int fromIndex, int toIndex) { |
| if (fromIndex < 0) |
| throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); |
| if (toIndex > n) |
| throw new IndexOutOfBoundsException("toIndex = " + toIndex); |
| if (fromIndex > toIndex) |
| throw new IllegalArgumentException("fromIndex(" + fromIndex + |
| ") > toIndex(" + toIndex + ")"); |
| return new CopiesList<>(toIndex - fromIndex, element); |
| } |
| |
| @Override |
| public int hashCode() { |
| if (n == 0) return 1; |
| // hashCode of n repeating elements is 31^n + elementHash * Sum(31^k, k = 0..n-1) |
| // this implementation completes in O(log(n)) steps taking advantage of |
| // 31^(2*n) = (31^n)^2 and Sum(31^k, k = 0..(2*n-1)) = Sum(31^k, k = 0..n-1) * (31^n + 1) |
| int pow = 31; |
| int sum = 1; |
| for (int i = Integer.numberOfLeadingZeros(n) + 1; i < Integer.SIZE; i++) { |
| sum *= pow + 1; |
| pow *= pow; |
| if ((n << i) < 0) { |
| pow *= 31; |
| sum = sum * 31 + 1; |
| } |
| } |
| return pow + sum * (element == null ? 0 : element.hashCode()); |
| } |
| |
| @Override |
| public boolean equals(Object o) { |
| if (o == this) |
| return true; |
| // Android-changed: (b/247094511) instanceof pattern variable is not yet supported. |
| // if (o instanceof CopiesList<?> other) { |
| if (o instanceof CopiesList<?>) { |
| CopiesList<?> other = (CopiesList<?>) o; |
| return n == other.n && (n == 0 || eq(element, other.element)); |
| } |
| if (!(o instanceof List)) |
| return false; |
| |
| int remaining = n; |
| E e = element; |
| Iterator<?> itr = ((List<?>) o).iterator(); |
| if (e == null) { |
| while (itr.hasNext() && remaining-- > 0) { |
| if (itr.next() != null) |
| return false; |
| } |
| } else { |
| while (itr.hasNext() && remaining-- > 0) { |
| if (!e.equals(itr.next())) |
| return false; |
| } |
| } |
| return remaining == 0 && !itr.hasNext(); |
| } |
| |
| // Override default methods in Collection |
| @Override |
| public Stream<E> stream() { |
| return IntStream.range(0, n).mapToObj(i -> element); |
| } |
| |
| @Override |
| public Stream<E> parallelStream() { |
| return IntStream.range(0, n).parallel().mapToObj(i -> element); |
| } |
| |
| @Override |
| public Spliterator<E> spliterator() { |
| return stream().spliterator(); |
| } |
| |
| @java.io.Serial |
| private void readObject(ObjectInputStream ois) throws IOException, ClassNotFoundException { |
| ois.defaultReadObject(); |
| SharedSecrets.getJavaObjectInputStreamAccess().checkArray(ois, Object[].class, n); |
| } |
| } |
| |
| /** |
| * Returns a comparator that imposes the reverse of the <em>natural |
| * ordering</em> on a collection of objects that implement the |
| * {@code Comparable} interface. (The natural ordering is the ordering |
| * imposed by the objects' own {@code compareTo} method.) This enables a |
| * simple idiom for sorting (or maintaining) collections (or arrays) of |
| * objects that implement the {@code Comparable} interface in |
| * reverse-natural-order. For example, suppose {@code a} is an array of |
| * strings. Then: <pre> |
| * Arrays.sort(a, Collections.reverseOrder()); |
| * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p> |
| * |
| * The returned comparator is serializable. |
| * |
| * @apiNote |
| * This method returns a {@code Comparator} that is suitable for sorting |
| * elements in reverse order. To obtain a reverse-ordered <i>view</i> of a |
| * sequenced collection, use the {@link SequencedCollection#reversed |
| * SequencedCollection.reversed} method. Or, to obtain a reverse-ordered |
| * <i>view</i> of a sequenced map, use the {@link SequencedMap#reversed |
| * SequencedMap.reversed} method. |
| * |
| * @param <T> the class of the objects compared by the comparator |
| * @return A comparator that imposes the reverse of the <i>natural |
| * ordering</i> on a collection of objects that implement |
| * the {@code Comparable} interface. |
| * @see Comparable |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> Comparator<T> reverseOrder() { |
| return (Comparator<T>) ReverseComparator.REVERSE_ORDER; |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class ReverseComparator |
| implements Comparator<Comparable<Object>>, Serializable { |
| |
| @java.io.Serial |
| private static final long serialVersionUID = 7207038068494060240L; |
| |
| static final ReverseComparator REVERSE_ORDER |
| = new ReverseComparator(); |
| |
| public int compare(Comparable<Object> c1, Comparable<Object> c2) { |
| return c2.compareTo(c1); |
| } |
| |
| @java.io.Serial |
| private Object readResolve() { return Collections.reverseOrder(); } |
| |
| @Override |
| public Comparator<Comparable<Object>> reversed() { |
| return Comparator.naturalOrder(); |
| } |
| } |
| |
| /** |
| * Returns a comparator that imposes the reverse ordering of the specified |
| * comparator. If the specified comparator is {@code null}, this method is |
| * equivalent to {@link #reverseOrder()} (in other words, it returns a |
| * comparator that imposes the reverse of the <em>natural ordering</em> on |
| * a collection of objects that implement the Comparable interface). |
| * |
| * <p>The returned comparator is serializable (assuming the specified |
| * comparator is also serializable or {@code null}). |
| * |
| * @apiNote |
| * This method returns a {@code Comparator} that is suitable for sorting |
| * elements in reverse order. To obtain a reverse-ordered <i>view</i> of a |
| * sequenced collection, use the {@link SequencedCollection#reversed |
| * SequencedCollection.reversed} method. Or, to obtain a reverse-ordered |
| * <i>view</i> of a sequenced map, use the {@link SequencedMap#reversed |
| * SequencedMap.reversed} method. |
| * |
| * @param <T> the class of the objects compared by the comparator |
| * @param cmp a comparator who's ordering is to be reversed by the returned |
| * comparator or {@code null} |
| * @return A comparator that imposes the reverse ordering of the |
| * specified comparator. |
| * @since 1.5 |
| */ |
| @SuppressWarnings("unchecked") |
| public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) { |
| if (cmp == null) { |
| return (Comparator<T>) ReverseComparator.REVERSE_ORDER; |
| } else if (cmp == ReverseComparator.REVERSE_ORDER) { |
| return (Comparator<T>) Comparators.NaturalOrderComparator.INSTANCE; |
| } else if (cmp == Comparators.NaturalOrderComparator.INSTANCE) { |
| return (Comparator<T>) ReverseComparator.REVERSE_ORDER; |
| } else if (cmp instanceof ReverseComparator2) { |
| return ((ReverseComparator2<T>) cmp).cmp; |
| } else { |
| return new ReverseComparator2<>(cmp); |
| } |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class ReverseComparator2<T> implements Comparator<T>, |
| Serializable |
| { |
| @java.io.Serial |
| private static final long serialVersionUID = 4374092139857L; |
| |
| /** |
| * The comparator specified in the static factory. This will never |
| * be null, as the static factory returns a ReverseComparator |
| * instance if its argument is null. |
| * |
| * @serial |
| */ |
| @SuppressWarnings("serial") // Conditionally serializable |
| final Comparator<T> cmp; |
| |
| ReverseComparator2(Comparator<T> cmp) { |
| assert cmp != null; |
| this.cmp = cmp; |
| } |
| |
| public int compare(T t1, T t2) { |
| return cmp.compare(t2, t1); |
| } |
| |
| public boolean equals(Object o) { |
| return (o == this) || |
| (o instanceof ReverseComparator2<?> that && |
| cmp.equals(that.cmp)); |
| } |
| |
| public int hashCode() { |
| return cmp.hashCode() ^ Integer.MIN_VALUE; |
| } |
| |
| @Override |
| public Comparator<T> reversed() { |
| return cmp; |
| } |
| } |
| |
| /** |
| * Returns an enumeration over the specified collection. This provides |
| * interoperability with legacy APIs that require an enumeration |
| * as input. |
| * |
| * <p>The iterator returned from a call to {@link Enumeration#asIterator()} |
| * does not support removal of elements from the specified collection. This |
| * is necessary to avoid unintentionally increasing the capabilities of the |
| * returned enumeration. |
| * |
| * @param <T> the class of the objects in the collection |
| * @param c the collection for which an enumeration is to be returned. |
| * @return an enumeration over the specified collection. |
| * @see Enumeration |
| */ |
| public static <T> Enumeration<T> enumeration(final Collection<T> c) { |
| return new Enumeration<>() { |
| private final Iterator<T> i = c.iterator(); |
| |
| public boolean hasMoreElements() { |
| return i.hasNext(); |
| } |
| |
| public T nextElement() { |
| return i.next(); |
| } |
| }; |
| } |
| |
| /** |
| * Returns an array list containing the elements returned by the |
| * specified enumeration in the order they are returned by the |
| * enumeration. This method provides interoperability between |
| * legacy APIs that return enumerations and new APIs that require |
| * collections. |
| * |
| * @param <T> the class of the objects returned by the enumeration |
| * @param e enumeration providing elements for the returned |
| * array list |
| * @return an array list containing the elements returned |
| * by the specified enumeration. |
| * @since 1.4 |
| * @see Enumeration |
| * @see ArrayList |
| */ |
| public static <T> ArrayList<T> list(Enumeration<T> e) { |
| ArrayList<T> l = new ArrayList<>(); |
| while (e.hasMoreElements()) |
| l.add(e.nextElement()); |
| return l; |
| } |
| |
| /** |
| * Returns true if the specified arguments are equal, or both null. |
| * |
| * NB: Do not replace with Object.equals until JDK-8015417 is resolved. |
| */ |
| static boolean eq(Object o1, Object o2) { |
| return o1==null ? o2==null : o1.equals(o2); |
| } |
| |
| /** |
| * Returns the number of elements in the specified collection equal to the |
| * specified object. More formally, returns the number of elements |
| * {@code e} in the collection such that |
| * {@code Objects.equals(o, e)}. |
| * |
| * @param c the collection in which to determine the frequency |
| * of {@code o} |
| * @param o the object whose frequency is to be determined |
| * @return the number of elements in {@code c} equal to {@code o} |
| * @throws NullPointerException if {@code c} is null |
| * @since 1.5 |
| */ |
| public static int frequency(Collection<?> c, Object o) { |
| int result = 0; |
| if (o == null) { |
| for (Object e : c) |
| if (e == null) |
| result++; |
| } else { |
| for (Object e : c) |
| if (o.equals(e)) |
| result++; |
| } |
| return result; |
| } |
| |
| /** |
| * Returns {@code true} if the two specified collections have no |
| * elements in common. |
| * |
| * <p>Care must be exercised if this method is used on collections that |
| * do not comply with the general contract for {@code Collection}. |
| * Implementations may elect to iterate over either collection and test |
| * for containment in the other collection (or to perform any equivalent |
| * computation). If either collection uses a nonstandard equality test |
| * (as does a {@link SortedSet} whose ordering is not <em>compatible with |
| * equals</em>, or the key set of an {@link IdentityHashMap}), both |
| * collections must use the same nonstandard equality test, or the |
| * result of this method is undefined. |
| * |
| * <p>Care must also be exercised when using collections that have |
| * restrictions on the elements that they may contain. Collection |
| * implementations are allowed to throw exceptions for any operation |
| * involving elements they deem ineligible. For absolute safety the |
| * specified collections should contain only elements which are |
| * eligible elements for both collections. |
| * |
| * <p>Note that it is permissible to pass the same collection in both |
| * parameters, in which case the method will return {@code true} if and |
| * only if the collection is empty. |
| * |
| * @param c1 a collection |
| * @param c2 a collection |
| * @return {@code true} if the two specified collections have no |
| * elements in common. |
| * @throws NullPointerException if either collection is {@code null}. |
| * @throws NullPointerException if one collection contains a {@code null} |
| * element and {@code null} is not an eligible element for the other collection. |
| * (<a href="Collection.html#optional-restrictions">optional</a>) |
| * @throws ClassCastException if one collection contains an element that is |
| * of a type which is ineligible for the other collection. |
| * (<a href="Collection.html#optional-restrictions">optional</a>) |
| * @since 1.5 |
| */ |
| public static boolean disjoint(Collection<?> c1, Collection<?> c2) { |
| // The collection to be used for contains(). Preference is given to |
| // the collection who's contains() has lower O() complexity. |
| Collection<?> contains = c2; |
| // The collection to be iterated. If the collections' contains() impl |
| // are of different O() complexity, the collection with slower |
| // contains() will be used for iteration. For collections who's |
| // contains() are of the same complexity then best performance is |
| // achieved by iterating the smaller collection. |
| Collection<?> iterate = c1; |
| |
| // Performance optimization cases. The heuristics: |
| // 1. Generally iterate over c1. |
| // 2. If c1 is a Set then iterate over c2. |
| // 3. If either collection is empty then result is always true. |
| // 4. Iterate over the smaller Collection. |
| if (c1 instanceof Set) { |
| // Use c1 for contains as a Set's contains() is expected to perform |
| // better than O(N/2) |
| iterate = c2; |
| contains = c1; |
| } else if (!(c2 instanceof Set)) { |
| // Both are mere Collections. Iterate over smaller collection. |
| // Example: If c1 contains 3 elements and c2 contains 50 elements and |
| // assuming contains() requires ceiling(N/2) comparisons then |
| // checking for all c1 elements in c2 would require 75 comparisons |
| // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring |
| // 100 comparisons (50 * ceiling(3/2)). |
| int c1size = c1.size(); |
| int c2size = c2.size(); |
| if (c1size == 0 || c2size == 0) { |
| // At least one collection is empty. Nothing will match. |
| return true; |
| } |
| |
| if (c1size > c2size) { |
| iterate = c2; |
| contains = c1; |
| } |
| } |
| |
| for (Object e : iterate) { |
| if (contains.contains(e)) { |
| // Found a common element. Collections are not disjoint. |
| return false; |
| } |
| } |
| |
| // No common elements were found. |
| return true; |
| } |
| |
| /** |
| * Adds all of the specified elements to the specified collection. |
| * Elements to be added may be specified individually or as an array. |
| * The behaviour of this convenience method is similar to that of |
| * {@code c.addAll(Collections.unmodifiableList(Arrays.asList(elements)))}. |
| * |
| * <p>When elements are specified individually, this method provides a |
| * convenient way to add a few elements to an existing collection: |
| * <pre> |
| * Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon"); |
| * </pre> |
| * |
| * @param <T> the class of the elements to add and of the collection |
| * @param c the collection into which {@code elements} are to be inserted |
| * @param elements the elements to insert into {@code c} |
| * @return {@code true} if the collection changed as a result of the call |
| * @throws UnsupportedOperationException if {@code c} does not support |
| * the {@code add} operation |
| * @throws NullPointerException if {@code elements} contains one or more |
| * null values and {@code c} does not permit null elements, or |
| * if {@code c} or {@code elements} are {@code null} |
| * @throws IllegalArgumentException if some property of a value in |
| * {@code elements} prevents it from being added to {@code c} |
| * @see Collection#addAll(Collection) |
| * @since 1.5 |
| */ |
| @SafeVarargs |
| public static <T> boolean addAll(Collection<? super T> c, T... elements) { |
| boolean result = false; |
| for (T element : elements) |
| result |= c.add(element); |
| return result; |
| } |
| |
| /** |
| * Returns a set backed by the specified map. The resulting set displays |
| * the same ordering, concurrency, and performance characteristics as the |
| * backing map. In essence, this factory method provides a {@link Set} |
| * implementation corresponding to any {@link Map} implementation. There |
| * is no need to use this method on a {@link Map} implementation that |
| * already has a corresponding {@link Set} implementation (such as {@link |
| * HashMap} or {@link TreeMap}). |
| * |
| * <p>Each method invocation on the set returned by this method results in |
| * exactly one method invocation on the backing map or its {@code keySet} |
| * view, with one exception. The {@code addAll} method is implemented |
| * as a sequence of {@code put} invocations on the backing map. |
| * |
| * <p>The specified map must be empty at the time this method is invoked, |
| * and should not be accessed directly after this method returns. These |
| * conditions are ensured if the map is created empty, passed directly |
| * to this method, and no reference to the map is retained, as illustrated |
| * in the following code fragment: |
| * <pre> |
| * Set<Object> weakHashSet = Collections.newSetFromMap( |
| * new WeakHashMap<Object, Boolean>()); |
| * </pre> |
| * |
| * @param <E> the class of the map keys and of the objects in the |
| * returned set |
| * @param map the backing map |
| * @return the set backed by the map |
| * @throws IllegalArgumentException if {@code map} is not empty |
| * @since 1.6 |
| */ |
| public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) { |
| if (! map.isEmpty()) // implicit null check |
| throw new IllegalArgumentException("Map is non-empty"); |
| return new SetFromMap<>(map); |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class SetFromMap<E> extends AbstractSet<E> |
| implements Set<E>, Serializable |
| { |
| @SuppressWarnings("serial") // Conditionally serializable |
| final Map<E, Boolean> m; // The backing map |
| private transient Set<E> s; // Its keySet |
| |
| SetFromMap(Map<E, Boolean> map) { |
| m = map; |
| s = map.keySet(); |
| } |
| |
| public void clear() { m.clear(); } |
| public int size() { return m.size(); } |
| public boolean isEmpty() { return m.isEmpty(); } |
| public boolean contains(Object o) { return m.containsKey(o); } |
| public boolean remove(Object o) { return m.remove(o) != null; } |
| public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; } |
| public Iterator<E> iterator() { return s.iterator(); } |
| public Object[] toArray() { return s.toArray(); } |
| public <T> T[] toArray(T[] a) { return s.toArray(a); } |
| public String toString() { return s.toString(); } |
| public int hashCode() { return s.hashCode(); } |
| public boolean equals(Object o) { return o == this || s.equals(o); } |
| public boolean containsAll(Collection<?> c) {return s.containsAll(c);} |
| public boolean removeAll(Collection<?> c) {return s.removeAll(c);} |
| public boolean retainAll(Collection<?> c) {return s.retainAll(c);} |
| // addAll is the only inherited implementation |
| |
| // Override default methods in Collection |
| @Override |
| public void forEach(Consumer<? super E> action) { |
| s.forEach(action); |
| } |
| @Override |
| public boolean removeIf(Predicate<? super E> filter) { |
| return s.removeIf(filter); |
| } |
| |
| @Override |
| public Spliterator<E> spliterator() {return s.spliterator();} |
| @Override |
| public Stream<E> stream() {return s.stream();} |
| @Override |
| public Stream<E> parallelStream() {return s.parallelStream();} |
| |
| @java.io.Serial |
| private static final long serialVersionUID = 2454657854757543876L; |
| |
| @java.io.Serial |
| private void readObject(java.io.ObjectInputStream stream) |
| throws IOException, ClassNotFoundException |
| { |
| stream.defaultReadObject(); |
| s = m.keySet(); |
| } |
| |
| @java.io.Serial |
| private void readObjectNoData() throws java.io.ObjectStreamException { |
| throw new java.io.InvalidObjectException("missing SetFromMap data"); |
| } |
| } |
| |
| /** |
| * Returns a sequenced set backed by the specified map. The resulting set displays |
| * the same ordering, concurrency, and performance characteristics as the |
| * backing map. In essence, this factory method provides a {@link SequencedSet} |
| * implementation corresponding to any {@link SequencedMap} implementation. |
| * |
| * <p>Each method invocation on the set returned by this method results in |
| * exactly one method invocation on the backing map or its {@code keySet} |
| * view, with one exception. The {@code addAll} method is implemented |
| * as a sequence of {@code put} invocations on the backing map. |
| * |
| * <p>The specified map must be empty at the time this method is invoked, |
| * and should not be accessed directly after this method returns. These |
| * conditions are ensured if the map is created empty, passed directly |
| * to this method, and no reference to the map is retained. |
| * |
| * @apiNote |
| * The following example code creates a {@code SequencedSet} from a |
| * {@code LinkedHashMap}. This differs from a {@code LinkedHashSet} |
| * in that the map's {@code removeEldestEntry} is overridden to provide |
| * an eviction policy, which is not possible with a {@code LinkedHashSet}. |
| * |
| * {@snippet : |
| * SequencedSet<String> set = Collections.newSequencedSetFromMap( |
| * new LinkedHashMap<String, Boolean>() { |
| * protected boolean removeEldestEntry(Map.Entry<String, Boolean> e) { |
| * return this.size() > 5; |
| * } |
| * }); |
| * } |
| * |
| * @param <E> the class of the map keys and of the objects in the |
| * returned set |
| * @param map the backing map |
| * @return the set backed by the map |
| * @throws IllegalArgumentException if {@code map} is not empty |
| * @since 21 |
| */ |
| public static <E> SequencedSet<E> newSequencedSetFromMap(SequencedMap<E, Boolean> map) { |
| if (! map.isEmpty()) // implicit null check |
| throw new IllegalArgumentException("Map is non-empty"); |
| return new SequencedSetFromMap<>(map); |
| } |
| |
| /** |
| * @serial include |
| */ |
| private static class SequencedSetFromMap<E> extends SetFromMap<E> implements SequencedSet<E> { |
| private E nsee(Map.Entry<E, Boolean> e) { |
| if (e == null) { |
| throw new NoSuchElementException(); |
| } else { |
| return e.getKey(); |
| } |
| } |
| |
| private SequencedMap<E, Boolean> map() { |
| return (SequencedMap<E, Boolean>) super.m; |
| } |
| |
| SequencedSetFromMap(SequencedMap<E, Boolean> map) { |
| super(map); |
| } |
| |
| // Even though this wrapper class is serializable, the reversed view is effectively |
| // not serializable because it points to the reversed map view, which usually isn't |
| // serializable. |
| public SequencedSet<E> reversed() { return new SequencedSetFromMap<>(map().reversed()); } |
| |
| public void addFirst(E e) { map().putFirst(e, Boolean.TRUE); } |
| public void addLast(E e) { map().putLast(e, Boolean.TRUE); } |
| public E getFirst() { return nsee(map().firstEntry()); } |
| public E getLast() { return nsee(map().lastEntry()); } |
| public E removeFirst() { return nsee(map().pollFirstEntry()); } |
| public E removeLast() { return nsee(map().pollLastEntry()); } |
| |
| @java.io.Serial |
| private static final long serialVersionUID = -3943479744841433802L; |
| } |
| |
| /** |
| * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo) |
| * {@link Queue}. Method {@code add} is mapped to {@code push}, |
| * {@code remove} is mapped to {@code pop} and so on. This |
| * view can be useful when you would like to use a method |
| * requiring a {@code Queue} but you need Lifo ordering. |
| * |
| * <p>Each method invocation on the queue returned by this method |
| * results in exactly one method invocation on the backing deque, with |
| * one exception. The {@link Queue#addAll addAll} method is |
| * implemented as a sequence of {@link Deque#addFirst addFirst} |
| * invocations on the backing deque. |
| * |
| * @apiNote |
| * This method provides a view that inverts the sense of certain operations, |
| * but it doesn't reverse the encounter order. To obtain a reverse-ordered |
| * view, use the {@link Deque#reversed Deque.reversed} method. |
| * |
| * @param <T> the class of the objects in the deque |
| * @param deque the deque |
| * @return the queue |
| * @since 1.6 |
| */ |
| public static <T> Queue<T> asLifoQueue(Deque<T> deque) { |
| return new AsLIFOQueue<>(Objects.requireNonNull(deque)); |
| } |
| |
| /** |
| * @serial include |
| */ |
| static class AsLIFOQueue<E> extends AbstractQueue<E> |
| implements Queue<E>, Serializable { |
| @java.io.Serial |
| private static final long serialVersionUID = 1802017725587941708L; |
| @SuppressWarnings("serial") // Conditionally serializable |
| private final Deque<E> q; |
| AsLIFOQueue(Deque<E> q) { this.q = q; } |
| public boolean add(E e) { q.addFirst(e); return true; } |
| public boolean offer(E e) { return q.offerFirst(e); } |
| public E poll() { return q.pollFirst(); } |
| public E remove() { return q.removeFirst(); } |
| public E peek() { return q.peekFirst(); } |
| public E element() { return q.getFirst(); } |
| public void clear() { q.clear(); } |
| public int size() { return q.size(); } |
| public boolean isEmpty() { return q.isEmpty(); } |
| public boolean contains(Object o) { return q.contains(o); } |
| public boolean remove(Object o) { return q.remove(o); } |
| public Iterator<E> iterator() { return q.iterator(); } |
| public Object[] toArray() { return q.toArray(); } |
| public <T> T[] toArray(T[] a) { return q.toArray(a); } |
| public <T> T[] toArray(IntFunction<T[]> f) { return q.toArray(f); } |
| public String toString() { return q.toString(); } |
| public boolean containsAll(Collection<?> c) { return q.containsAll(c); } |
| public boolean removeAll(Collection<?> c) { return q.removeAll(c); } |
| public boolean retainAll(Collection<?> c) { return q.retainAll(c); } |
| // We use inherited addAll; forwarding addAll would be wrong |
| |
| // Override default methods in Collection |
| @Override |
| public void forEach(Consumer<? super E> action) {q.forEach(action);} |
| @Override |
| public boolean removeIf(Predicate<? super E> filter) { |
| return q.removeIf(filter); |
| } |
| @Override |
| public Spliterator<E> spliterator() {return q.spliterator();} |
| @Override |
| public Stream<E> stream() {return q.stream();} |
| @Override |
| public Stream<E> parallelStream() {return q.parallelStream();} |
| } |
| } |