Aurimas Liutikas | dc3f885 | 2024-07-11 10:07:48 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. Oracle designates this |
| 8 | * particular file as subject to the "Classpath" exception as provided |
| 9 | * by Oracle in the LICENSE file that accompanied this code. |
| 10 | * |
| 11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | * version 2 for more details (a copy is included in the LICENSE file that |
| 15 | * accompanied this code). |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License version |
| 18 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 20 | * |
| 21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 22 | * or visit www.oracle.com if you need additional information or have any |
| 23 | * questions. |
| 24 | */ |
| 25 | |
| 26 | package java.lang.invoke; |
| 27 | |
| 28 | import sun.invoke.util.VerifyAccess; |
| 29 | import sun.invoke.util.Wrapper; |
| 30 | import sun.reflect.Reflection; |
| 31 | |
| 32 | import java.lang.reflect.*; |
| 33 | import java.nio.ByteOrder; |
| 34 | import java.util.List; |
| 35 | import java.util.Arrays; |
| 36 | import java.util.ArrayList; |
| 37 | import java.util.Iterator; |
| 38 | import java.util.NoSuchElementException; |
| 39 | import java.util.Objects; |
| 40 | import java.util.stream.Collectors; |
| 41 | import java.util.stream.Stream; |
| 42 | |
| 43 | import static java.lang.invoke.MethodHandleStatics.*; |
| 44 | import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException; |
| 45 | import static java.lang.invoke.MethodType.methodType; |
| 46 | |
| 47 | /** |
| 48 | * This class consists exclusively of static methods that operate on or return |
| 49 | * method handles. They fall into several categories: |
| 50 | * <ul> |
| 51 | * <li>Lookup methods which help create method handles for methods and fields. |
| 52 | * <li>Combinator methods, which combine or transform pre-existing method handles into new ones. |
| 53 | * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns. |
| 54 | * </ul> |
| 55 | * <p> |
| 56 | * @author John Rose, JSR 292 EG |
| 57 | * @since 1.7 |
| 58 | */ |
| 59 | public class MethodHandles { |
| 60 | |
| 61 | private MethodHandles() { } // do not instantiate |
| 62 | |
| 63 | // Android-changed: We do not use MemberName / MethodHandleImpl. |
| 64 | // |
| 65 | // private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); |
| 66 | // static { MethodHandleImpl.initStatics(); } |
| 67 | // See IMPL_LOOKUP below. |
| 68 | |
| 69 | //// Method handle creation from ordinary methods. |
| 70 | |
| 71 | /** |
| 72 | * Returns a {@link Lookup lookup object} with |
| 73 | * full capabilities to emulate all supported bytecode behaviors of the caller. |
| 74 | * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller. |
| 75 | * Factory methods on the lookup object can create |
| 76 | * <a href="MethodHandleInfo.html#directmh">direct method handles</a> |
| 77 | * for any member that the caller has access to via bytecodes, |
| 78 | * including protected and private fields and methods. |
| 79 | * This lookup object is a <em>capability</em> which may be delegated to trusted agents. |
| 80 | * Do not store it in place where untrusted code can access it. |
| 81 | * <p> |
| 82 | * This method is caller sensitive, which means that it may return different |
| 83 | * values to different callers. |
| 84 | * <p> |
| 85 | * For any given caller class {@code C}, the lookup object returned by this call |
| 86 | * has equivalent capabilities to any lookup object |
| 87 | * supplied by the JVM to the bootstrap method of an |
| 88 | * <a href="package-summary.html#indyinsn">invokedynamic instruction</a> |
| 89 | * executing in the same caller class {@code C}. |
| 90 | * @return a lookup object for the caller of this method, with private access |
| 91 | */ |
| 92 | // Android-changed: Remove caller sensitive. |
| 93 | // @CallerSensitive |
| 94 | public static Lookup lookup() { |
| 95 | return new Lookup(Reflection.getCallerClass()); |
| 96 | } |
| 97 | |
| 98 | /** |
| 99 | * Returns a {@link Lookup lookup object} which is trusted minimally. |
| 100 | * It can only be used to create method handles to |
| 101 | * publicly accessible fields and methods. |
| 102 | * <p> |
| 103 | * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class} |
| 104 | * of this lookup object will be {@link java.lang.Object}. |
| 105 | * |
| 106 | * <p style="font-size:smaller;"> |
| 107 | * <em>Discussion:</em> |
| 108 | * The lookup class can be changed to any other class {@code C} using an expression of the form |
| 109 | * {@link Lookup#in publicLookup().in(C.class)}. |
| 110 | * Since all classes have equal access to public names, |
| 111 | * such a change would confer no new access rights. |
| 112 | * A public lookup object is always subject to |
| 113 | * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>. |
| 114 | * Also, it cannot access |
| 115 | * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>. |
| 116 | * @return a lookup object which is trusted minimally |
| 117 | */ |
| 118 | public static Lookup publicLookup() { |
| 119 | return Lookup.PUBLIC_LOOKUP; |
| 120 | } |
| 121 | |
| 122 | // Android-removed: Documentation related to the security manager and module checks |
| 123 | /** |
| 124 | * Returns a {@link Lookup lookup object} with full capabilities to emulate all |
| 125 | * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc"> |
| 126 | * private access</a>, on a target class. |
| 127 | * @param targetClass the target class |
| 128 | * @param lookup the caller lookup object |
| 129 | * @return a lookup object for the target class, with private access |
| 130 | * @throws IllegalArgumentException if {@code targetClass} is a primitive type or array class |
| 131 | * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null} |
| 132 | * @throws IllegalAccessException is not thrown on Android |
| 133 | * @since 9 |
| 134 | */ |
| 135 | public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException { |
| 136 | // Android-removed: SecurityManager calls |
| 137 | // SecurityManager sm = System.getSecurityManager(); |
| 138 | // if (sm != null) sm.checkPermission(ACCESS_PERMISSION); |
| 139 | if (targetClass.isPrimitive()) |
| 140 | throw new IllegalArgumentException(targetClass + " is a primitive class"); |
| 141 | if (targetClass.isArray()) |
| 142 | throw new IllegalArgumentException(targetClass + " is an array class"); |
| 143 | // BEGIN Android-removed: There is no module information on Android |
| 144 | /** |
| 145 | * Module targetModule = targetClass.getModule(); |
| 146 | * Module callerModule = lookup.lookupClass().getModule(); |
| 147 | * if (!callerModule.canRead(targetModule)) |
| 148 | * throw new IllegalAccessException(callerModule + " does not read " + targetModule); |
| 149 | * if (targetModule.isNamed()) { |
| 150 | * String pn = targetClass.getPackageName(); |
| 151 | * assert pn.length() > 0 : "unnamed package cannot be in named module"; |
| 152 | * if (!targetModule.isOpen(pn, callerModule)) |
| 153 | * throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule); |
| 154 | * } |
| 155 | * if ((lookup.lookupModes() & Lookup.MODULE) == 0) |
| 156 | * throw new IllegalAccessException("lookup does not have MODULE lookup mode"); |
| 157 | * if (!callerModule.isNamed() && targetModule.isNamed()) { |
| 158 | * IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger(); |
| 159 | * if (logger != null) { |
| 160 | * logger.logIfOpenedForIllegalAccess(lookup, targetClass); |
| 161 | * } |
| 162 | * } |
| 163 | */ |
| 164 | // END Android-removed: There is no module information on Android |
| 165 | return new Lookup(targetClass); |
| 166 | } |
| 167 | |
| 168 | |
| 169 | /** |
| 170 | * Performs an unchecked "crack" of a |
| 171 | * <a href="MethodHandleInfo.html#directmh">direct method handle</a>. |
| 172 | * The result is as if the user had obtained a lookup object capable enough |
| 173 | * to crack the target method handle, called |
| 174 | * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect} |
| 175 | * on the target to obtain its symbolic reference, and then called |
| 176 | * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs} |
| 177 | * to resolve the symbolic reference to a member. |
| 178 | * <p> |
| 179 | * If there is a security manager, its {@code checkPermission} method |
| 180 | * is called with a {@code ReflectPermission("suppressAccessChecks")} permission. |
| 181 | * @param <T> the desired type of the result, either {@link Member} or a subtype |
| 182 | * @param target a direct method handle to crack into symbolic reference components |
| 183 | * @param expected a class object representing the desired result type {@code T} |
| 184 | * @return a reference to the method, constructor, or field object |
| 185 | * @exception SecurityException if the caller is not privileged to call {@code setAccessible} |
| 186 | * @exception NullPointerException if either argument is {@code null} |
| 187 | * @exception IllegalArgumentException if the target is not a direct method handle |
| 188 | * @exception ClassCastException if the member is not of the expected type |
| 189 | * @since 1.8 |
| 190 | */ |
| 191 | public static <T extends Member> T |
| 192 | reflectAs(Class<T> expected, MethodHandle target) { |
| 193 | MethodHandleImpl directTarget = getMethodHandleImpl(target); |
| 194 | // Given that this is specified to be an "unchecked" crack, we can directly allocate |
| 195 | // a member from the underlying ArtField / Method and bypass all associated access checks. |
| 196 | return expected.cast(directTarget.getMemberInternal()); |
| 197 | } |
| 198 | |
| 199 | /** |
| 200 | * A <em>lookup object</em> is a factory for creating method handles, |
| 201 | * when the creation requires access checking. |
| 202 | * Method handles do not perform |
| 203 | * access checks when they are called, but rather when they are created. |
| 204 | * Therefore, method handle access |
| 205 | * restrictions must be enforced when a method handle is created. |
| 206 | * The caller class against which those restrictions are enforced |
| 207 | * is known as the {@linkplain #lookupClass lookup class}. |
| 208 | * <p> |
| 209 | * A lookup class which needs to create method handles will call |
| 210 | * {@link #lookup MethodHandles.lookup} to create a factory for itself. |
| 211 | * When the {@code Lookup} factory object is created, the identity of the lookup class is |
| 212 | * determined, and securely stored in the {@code Lookup} object. |
| 213 | * The lookup class (or its delegates) may then use factory methods |
| 214 | * on the {@code Lookup} object to create method handles for access-checked members. |
| 215 | * This includes all methods, constructors, and fields which are allowed to the lookup class, |
| 216 | * even private ones. |
| 217 | * |
| 218 | * <h1><a name="lookups"></a>Lookup Factory Methods</h1> |
| 219 | * The factory methods on a {@code Lookup} object correspond to all major |
| 220 | * use cases for methods, constructors, and fields. |
| 221 | * Each method handle created by a factory method is the functional |
| 222 | * equivalent of a particular <em>bytecode behavior</em>. |
| 223 | * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.) |
| 224 | * Here is a summary of the correspondence between these factory methods and |
| 225 | * the behavior the resulting method handles: |
| 226 | * <table border=1 cellpadding=5 summary="lookup method behaviors"> |
| 227 | * <tr> |
| 228 | * <th><a name="equiv"></a>lookup expression</th> |
| 229 | * <th>member</th> |
| 230 | * <th>bytecode behavior</th> |
| 231 | * </tr> |
| 232 | * <tr> |
| 233 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td> |
| 234 | * <td>{@code FT f;}</td><td>{@code (T) this.f;}</td> |
| 235 | * </tr> |
| 236 | * <tr> |
| 237 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td> |
| 238 | * <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td> |
| 239 | * </tr> |
| 240 | * <tr> |
| 241 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td> |
| 242 | * <td>{@code FT f;}</td><td>{@code this.f = x;}</td> |
| 243 | * </tr> |
| 244 | * <tr> |
| 245 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td> |
| 246 | * <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td> |
| 247 | * </tr> |
| 248 | * <tr> |
| 249 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td> |
| 250 | * <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td> |
| 251 | * </tr> |
| 252 | * <tr> |
| 253 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td> |
| 254 | * <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td> |
| 255 | * </tr> |
| 256 | * <tr> |
| 257 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td> |
| 258 | * <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td> |
| 259 | * </tr> |
| 260 | * <tr> |
| 261 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td> |
| 262 | * <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td> |
| 263 | * </tr> |
| 264 | * <tr> |
| 265 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td> |
| 266 | * <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td> |
| 267 | * </tr> |
| 268 | * <tr> |
| 269 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td> |
| 270 | * <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td> |
| 271 | * </tr> |
| 272 | * <tr> |
| 273 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td> |
| 274 | * <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td> |
| 275 | * </tr> |
| 276 | * <tr> |
| 277 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td> |
| 278 | * <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td> |
| 279 | * </tr> |
| 280 | * <tr> |
| 281 | * <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td> |
| 282 | * <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td> |
| 283 | * </tr> |
| 284 | * </table> |
| 285 | * |
| 286 | * Here, the type {@code C} is the class or interface being searched for a member, |
| 287 | * documented as a parameter named {@code refc} in the lookup methods. |
| 288 | * The method type {@code MT} is composed from the return type {@code T} |
| 289 | * and the sequence of argument types {@code A*}. |
| 290 | * The constructor also has a sequence of argument types {@code A*} and |
| 291 | * is deemed to return the newly-created object of type {@code C}. |
| 292 | * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}. |
| 293 | * The formal parameter {@code this} stands for the self-reference of type {@code C}; |
| 294 | * if it is present, it is always the leading argument to the method handle invocation. |
| 295 | * (In the case of some {@code protected} members, {@code this} may be |
| 296 | * restricted in type to the lookup class; see below.) |
| 297 | * The name {@code arg} stands for all the other method handle arguments. |
| 298 | * In the code examples for the Core Reflection API, the name {@code thisOrNull} |
| 299 | * stands for a null reference if the accessed method or field is static, |
| 300 | * and {@code this} otherwise. |
| 301 | * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand |
| 302 | * for reflective objects corresponding to the given members. |
| 303 | * <p> |
| 304 | * In cases where the given member is of variable arity (i.e., a method or constructor) |
| 305 | * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}. |
| 306 | * In all other cases, the returned method handle will be of fixed arity. |
| 307 | * <p style="font-size:smaller;"> |
| 308 | * <em>Discussion:</em> |
| 309 | * The equivalence between looked-up method handles and underlying |
| 310 | * class members and bytecode behaviors |
| 311 | * can break down in a few ways: |
| 312 | * <ul style="font-size:smaller;"> |
| 313 | * <li>If {@code C} is not symbolically accessible from the lookup class's loader, |
| 314 | * the lookup can still succeed, even when there is no equivalent |
| 315 | * Java expression or bytecoded constant. |
| 316 | * <li>Likewise, if {@code T} or {@code MT} |
| 317 | * is not symbolically accessible from the lookup class's loader, |
| 318 | * the lookup can still succeed. |
| 319 | * For example, lookups for {@code MethodHandle.invokeExact} and |
| 320 | * {@code MethodHandle.invoke} will always succeed, regardless of requested type. |
| 321 | * <li>If there is a security manager installed, it can forbid the lookup |
| 322 | * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>). |
| 323 | * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle} |
| 324 | * constant is not subject to security manager checks. |
| 325 | * <li>If the looked-up method has a |
| 326 | * <a href="MethodHandle.html#maxarity">very large arity</a>, |
| 327 | * the method handle creation may fail, due to the method handle |
| 328 | * type having too many parameters. |
| 329 | * </ul> |
| 330 | * |
| 331 | * <h1><a name="access"></a>Access checking</h1> |
| 332 | * Access checks are applied in the factory methods of {@code Lookup}, |
| 333 | * when a method handle is created. |
| 334 | * This is a key difference from the Core Reflection API, since |
| 335 | * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} |
| 336 | * performs access checking against every caller, on every call. |
| 337 | * <p> |
| 338 | * All access checks start from a {@code Lookup} object, which |
| 339 | * compares its recorded lookup class against all requests to |
| 340 | * create method handles. |
| 341 | * A single {@code Lookup} object can be used to create any number |
| 342 | * of access-checked method handles, all checked against a single |
| 343 | * lookup class. |
| 344 | * <p> |
| 345 | * A {@code Lookup} object can be shared with other trusted code, |
| 346 | * such as a metaobject protocol. |
| 347 | * A shared {@code Lookup} object delegates the capability |
| 348 | * to create method handles on private members of the lookup class. |
| 349 | * Even if privileged code uses the {@code Lookup} object, |
| 350 | * the access checking is confined to the privileges of the |
| 351 | * original lookup class. |
| 352 | * <p> |
| 353 | * A lookup can fail, because |
| 354 | * the containing class is not accessible to the lookup class, or |
| 355 | * because the desired class member is missing, or because the |
| 356 | * desired class member is not accessible to the lookup class, or |
| 357 | * because the lookup object is not trusted enough to access the member. |
| 358 | * In any of these cases, a {@code ReflectiveOperationException} will be |
| 359 | * thrown from the attempted lookup. The exact class will be one of |
| 360 | * the following: |
| 361 | * <ul> |
| 362 | * <li>NoSuchMethodException — if a method is requested but does not exist |
| 363 | * <li>NoSuchFieldException — if a field is requested but does not exist |
| 364 | * <li>IllegalAccessException — if the member exists but an access check fails |
| 365 | * </ul> |
| 366 | * <p> |
| 367 | * In general, the conditions under which a method handle may be |
| 368 | * looked up for a method {@code M} are no more restrictive than the conditions |
| 369 | * under which the lookup class could have compiled, verified, and resolved a call to {@code M}. |
| 370 | * Where the JVM would raise exceptions like {@code NoSuchMethodError}, |
| 371 | * a method handle lookup will generally raise a corresponding |
| 372 | * checked exception, such as {@code NoSuchMethodException}. |
| 373 | * And the effect of invoking the method handle resulting from the lookup |
| 374 | * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a> |
| 375 | * to executing the compiled, verified, and resolved call to {@code M}. |
| 376 | * The same point is true of fields and constructors. |
| 377 | * <p style="font-size:smaller;"> |
| 378 | * <em>Discussion:</em> |
| 379 | * Access checks only apply to named and reflected methods, |
| 380 | * constructors, and fields. |
| 381 | * Other method handle creation methods, such as |
| 382 | * {@link MethodHandle#asType MethodHandle.asType}, |
| 383 | * do not require any access checks, and are used |
| 384 | * independently of any {@code Lookup} object. |
| 385 | * <p> |
| 386 | * If the desired member is {@code protected}, the usual JVM rules apply, |
| 387 | * including the requirement that the lookup class must be either be in the |
| 388 | * same package as the desired member, or must inherit that member. |
| 389 | * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.) |
| 390 | * In addition, if the desired member is a non-static field or method |
| 391 | * in a different package, the resulting method handle may only be applied |
| 392 | * to objects of the lookup class or one of its subclasses. |
| 393 | * This requirement is enforced by narrowing the type of the leading |
| 394 | * {@code this} parameter from {@code C} |
| 395 | * (which will necessarily be a superclass of the lookup class) |
| 396 | * to the lookup class itself. |
| 397 | * <p> |
| 398 | * The JVM imposes a similar requirement on {@code invokespecial} instruction, |
| 399 | * that the receiver argument must match both the resolved method <em>and</em> |
| 400 | * the current class. Again, this requirement is enforced by narrowing the |
| 401 | * type of the leading parameter to the resulting method handle. |
| 402 | * (See the Java Virtual Machine Specification, section 4.10.1.9.) |
| 403 | * <p> |
| 404 | * The JVM represents constructors and static initializer blocks as internal methods |
| 405 | * with special names ({@code "<init>"} and {@code "<clinit>"}). |
| 406 | * The internal syntax of invocation instructions allows them to refer to such internal |
| 407 | * methods as if they were normal methods, but the JVM bytecode verifier rejects them. |
| 408 | * A lookup of such an internal method will produce a {@code NoSuchMethodException}. |
| 409 | * <p> |
| 410 | * In some cases, access between nested classes is obtained by the Java compiler by creating |
| 411 | * an wrapper method to access a private method of another class |
| 412 | * in the same top-level declaration. |
| 413 | * For example, a nested class {@code C.D} |
| 414 | * can access private members within other related classes such as |
| 415 | * {@code C}, {@code C.D.E}, or {@code C.B}, |
| 416 | * but the Java compiler may need to generate wrapper methods in |
| 417 | * those related classes. In such cases, a {@code Lookup} object on |
| 418 | * {@code C.E} would be unable to those private members. |
| 419 | * A workaround for this limitation is the {@link Lookup#in Lookup.in} method, |
| 420 | * which can transform a lookup on {@code C.E} into one on any of those other |
| 421 | * classes, without special elevation of privilege. |
| 422 | * <p> |
| 423 | * The accesses permitted to a given lookup object may be limited, |
| 424 | * according to its set of {@link #lookupModes lookupModes}, |
| 425 | * to a subset of members normally accessible to the lookup class. |
| 426 | * For example, the {@link #publicLookup publicLookup} |
| 427 | * method produces a lookup object which is only allowed to access |
| 428 | * public members in public classes. |
| 429 | * The caller sensitive method {@link #lookup lookup} |
| 430 | * produces a lookup object with full capabilities relative to |
| 431 | * its caller class, to emulate all supported bytecode behaviors. |
| 432 | * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object |
| 433 | * with fewer access modes than the original lookup object. |
| 434 | * |
| 435 | * <p style="font-size:smaller;"> |
| 436 | * <a name="privacc"></a> |
| 437 | * <em>Discussion of private access:</em> |
| 438 | * We say that a lookup has <em>private access</em> |
| 439 | * if its {@linkplain #lookupModes lookup modes} |
| 440 | * include the possibility of accessing {@code private} members. |
| 441 | * As documented in the relevant methods elsewhere, |
| 442 | * only lookups with private access possess the following capabilities: |
| 443 | * <ul style="font-size:smaller;"> |
| 444 | * <li>access private fields, methods, and constructors of the lookup class |
| 445 | * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods, |
| 446 | * such as {@code Class.forName} |
| 447 | * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions |
| 448 | * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a> |
| 449 | * for classes accessible to the lookup class |
| 450 | * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes |
| 451 | * within the same package member |
| 452 | * </ul> |
| 453 | * <p style="font-size:smaller;"> |
| 454 | * Each of these permissions is a consequence of the fact that a lookup object |
| 455 | * with private access can be securely traced back to an originating class, |
| 456 | * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions |
| 457 | * can be reliably determined and emulated by method handles. |
| 458 | * |
| 459 | * <h1><a name="secmgr"></a>Security manager interactions</h1> |
| 460 | * Although bytecode instructions can only refer to classes in |
| 461 | * a related class loader, this API can search for methods in any |
| 462 | * class, as long as a reference to its {@code Class} object is |
| 463 | * available. Such cross-loader references are also possible with the |
| 464 | * Core Reflection API, and are impossible to bytecode instructions |
| 465 | * such as {@code invokestatic} or {@code getfield}. |
| 466 | * There is a {@linkplain java.lang.SecurityManager security manager API} |
| 467 | * to allow applications to check such cross-loader references. |
| 468 | * These checks apply to both the {@code MethodHandles.Lookup} API |
| 469 | * and the Core Reflection API |
| 470 | * (as found on {@link java.lang.Class Class}). |
| 471 | * <p> |
| 472 | * If a security manager is present, member lookups are subject to |
| 473 | * additional checks. |
| 474 | * From one to three calls are made to the security manager. |
| 475 | * Any of these calls can refuse access by throwing a |
| 476 | * {@link java.lang.SecurityException SecurityException}. |
| 477 | * Define {@code smgr} as the security manager, |
| 478 | * {@code lookc} as the lookup class of the current lookup object, |
| 479 | * {@code refc} as the containing class in which the member |
| 480 | * is being sought, and {@code defc} as the class in which the |
| 481 | * member is actually defined. |
| 482 | * The value {@code lookc} is defined as <em>not present</em> |
| 483 | * if the current lookup object does not have |
| 484 | * <a href="MethodHandles.Lookup.html#privacc">private access</a>. |
| 485 | * The calls are made according to the following rules: |
| 486 | * <ul> |
| 487 | * <li><b>Step 1:</b> |
| 488 | * If {@code lookc} is not present, or if its class loader is not |
| 489 | * the same as or an ancestor of the class loader of {@code refc}, |
| 490 | * then {@link SecurityManager#checkPackageAccess |
| 491 | * smgr.checkPackageAccess(refcPkg)} is called, |
| 492 | * where {@code refcPkg} is the package of {@code refc}. |
| 493 | * <li><b>Step 2:</b> |
| 494 | * If the retrieved member is not public and |
| 495 | * {@code lookc} is not present, then |
| 496 | * {@link SecurityManager#checkPermission smgr.checkPermission} |
| 497 | * with {@code RuntimePermission("accessDeclaredMembers")} is called. |
| 498 | * <li><b>Step 3:</b> |
| 499 | * If the retrieved member is not public, |
| 500 | * and if {@code lookc} is not present, |
| 501 | * and if {@code defc} and {@code refc} are different, |
| 502 | * then {@link SecurityManager#checkPackageAccess |
| 503 | * smgr.checkPackageAccess(defcPkg)} is called, |
| 504 | * where {@code defcPkg} is the package of {@code defc}. |
| 505 | * </ul> |
| 506 | * Security checks are performed after other access checks have passed. |
| 507 | * Therefore, the above rules presuppose a member that is public, |
| 508 | * or else that is being accessed from a lookup class that has |
| 509 | * rights to access the member. |
| 510 | * |
| 511 | * <h1><a name="callsens"></a>Caller sensitive methods</h1> |
| 512 | * A small number of Java methods have a special property called caller sensitivity. |
| 513 | * A <em>caller-sensitive</em> method can behave differently depending on the |
| 514 | * identity of its immediate caller. |
| 515 | * <p> |
| 516 | * If a method handle for a caller-sensitive method is requested, |
| 517 | * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply, |
| 518 | * but they take account of the lookup class in a special way. |
| 519 | * The resulting method handle behaves as if it were called |
| 520 | * from an instruction contained in the lookup class, |
| 521 | * so that the caller-sensitive method detects the lookup class. |
| 522 | * (By contrast, the invoker of the method handle is disregarded.) |
| 523 | * Thus, in the case of caller-sensitive methods, |
| 524 | * different lookup classes may give rise to |
| 525 | * differently behaving method handles. |
| 526 | * <p> |
| 527 | * In cases where the lookup object is |
| 528 | * {@link #publicLookup publicLookup()}, |
| 529 | * or some other lookup object without |
| 530 | * <a href="MethodHandles.Lookup.html#privacc">private access</a>, |
| 531 | * the lookup class is disregarded. |
| 532 | * In such cases, no caller-sensitive method handle can be created, |
| 533 | * access is forbidden, and the lookup fails with an |
| 534 | * {@code IllegalAccessException}. |
| 535 | * <p style="font-size:smaller;"> |
| 536 | * <em>Discussion:</em> |
| 537 | * For example, the caller-sensitive method |
| 538 | * {@link java.lang.Class#forName(String) Class.forName(x)} |
| 539 | * can return varying classes or throw varying exceptions, |
| 540 | * depending on the class loader of the class that calls it. |
| 541 | * A public lookup of {@code Class.forName} will fail, because |
| 542 | * there is no reasonable way to determine its bytecode behavior. |
| 543 | * <p style="font-size:smaller;"> |
| 544 | * If an application caches method handles for broad sharing, |
| 545 | * it should use {@code publicLookup()} to create them. |
| 546 | * If there is a lookup of {@code Class.forName}, it will fail, |
| 547 | * and the application must take appropriate action in that case. |
| 548 | * It may be that a later lookup, perhaps during the invocation of a |
| 549 | * bootstrap method, can incorporate the specific identity |
| 550 | * of the caller, making the method accessible. |
| 551 | * <p style="font-size:smaller;"> |
| 552 | * The function {@code MethodHandles.lookup} is caller sensitive |
| 553 | * so that there can be a secure foundation for lookups. |
| 554 | * Nearly all other methods in the JSR 292 API rely on lookup |
| 555 | * objects to check access requests. |
| 556 | */ |
| 557 | // Android-changed: Change link targets from MethodHandles#[public]Lookup to |
| 558 | // #[public]Lookup to work around complaints from javadoc. |
| 559 | public static final |
| 560 | class Lookup { |
| 561 | /** The class on behalf of whom the lookup is being performed. */ |
| 562 | /* @NonNull */ private final Class<?> lookupClass; |
| 563 | |
| 564 | /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */ |
| 565 | private final int allowedModes; |
| 566 | |
| 567 | /** A single-bit mask representing {@code public} access, |
| 568 | * which may contribute to the result of {@link #lookupModes lookupModes}. |
| 569 | * The value, {@code 0x01}, happens to be the same as the value of the |
| 570 | * {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}. |
| 571 | */ |
| 572 | public static final int PUBLIC = Modifier.PUBLIC; |
| 573 | |
| 574 | /** A single-bit mask representing {@code private} access, |
| 575 | * which may contribute to the result of {@link #lookupModes lookupModes}. |
| 576 | * The value, {@code 0x02}, happens to be the same as the value of the |
| 577 | * {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}. |
| 578 | */ |
| 579 | public static final int PRIVATE = Modifier.PRIVATE; |
| 580 | |
| 581 | /** A single-bit mask representing {@code protected} access, |
| 582 | * which may contribute to the result of {@link #lookupModes lookupModes}. |
| 583 | * The value, {@code 0x04}, happens to be the same as the value of the |
| 584 | * {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}. |
| 585 | */ |
| 586 | public static final int PROTECTED = Modifier.PROTECTED; |
| 587 | |
| 588 | /** A single-bit mask representing {@code package} access (default access), |
| 589 | * which may contribute to the result of {@link #lookupModes lookupModes}. |
| 590 | * The value is {@code 0x08}, which does not correspond meaningfully to |
| 591 | * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. |
| 592 | */ |
| 593 | public static final int PACKAGE = Modifier.STATIC; |
| 594 | |
| 595 | private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE); |
| 596 | |
| 597 | // Android-note: Android has no notion of a trusted lookup. If required, such lookups |
| 598 | // are performed by the runtime. As a result, we always use lookupClass, which will always |
| 599 | // be non-null in our implementation. |
| 600 | // |
| 601 | // private static final int TRUSTED = -1; |
| 602 | |
| 603 | private static int fixmods(int mods) { |
| 604 | mods &= (ALL_MODES - PACKAGE); |
| 605 | return (mods != 0) ? mods : PACKAGE; |
| 606 | } |
| 607 | |
| 608 | /** Tells which class is performing the lookup. It is this class against |
| 609 | * which checks are performed for visibility and access permissions. |
| 610 | * <p> |
| 611 | * The class implies a maximum level of access permission, |
| 612 | * but the permissions may be additionally limited by the bitmask |
| 613 | * {@link #lookupModes lookupModes}, which controls whether non-public members |
| 614 | * can be accessed. |
| 615 | * @return the lookup class, on behalf of which this lookup object finds members |
| 616 | */ |
| 617 | public Class<?> lookupClass() { |
| 618 | return lookupClass; |
| 619 | } |
| 620 | |
| 621 | /** Tells which access-protection classes of members this lookup object can produce. |
| 622 | * The result is a bit-mask of the bits |
| 623 | * {@linkplain #PUBLIC PUBLIC (0x01)}, |
| 624 | * {@linkplain #PRIVATE PRIVATE (0x02)}, |
| 625 | * {@linkplain #PROTECTED PROTECTED (0x04)}, |
| 626 | * and {@linkplain #PACKAGE PACKAGE (0x08)}. |
| 627 | * <p> |
| 628 | * A freshly-created lookup object |
| 629 | * on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} |
| 630 | * has all possible bits set, since the caller class can access all its own members. |
| 631 | * A lookup object on a new lookup class |
| 632 | * {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object} |
| 633 | * may have some mode bits set to zero. |
| 634 | * The purpose of this is to restrict access via the new lookup object, |
| 635 | * so that it can access only names which can be reached by the original |
| 636 | * lookup object, and also by the new lookup class. |
| 637 | * @return the lookup modes, which limit the kinds of access performed by this lookup object |
| 638 | */ |
| 639 | public int lookupModes() { |
| 640 | return allowedModes & ALL_MODES; |
| 641 | } |
| 642 | |
| 643 | /** Embody the current class (the lookupClass) as a lookup class |
| 644 | * for method handle creation. |
| 645 | * Must be called by from a method in this package, |
| 646 | * which in turn is called by a method not in this package. |
| 647 | */ |
| 648 | Lookup(Class<?> lookupClass) { |
| 649 | this(lookupClass, ALL_MODES); |
| 650 | // make sure we haven't accidentally picked up a privileged class: |
| 651 | checkUnprivilegedlookupClass(lookupClass, ALL_MODES); |
| 652 | } |
| 653 | |
| 654 | private Lookup(Class<?> lookupClass, int allowedModes) { |
| 655 | this.lookupClass = lookupClass; |
| 656 | this.allowedModes = allowedModes; |
| 657 | } |
| 658 | |
| 659 | /** |
| 660 | * Creates a lookup on the specified new lookup class. |
| 661 | * The resulting object will report the specified |
| 662 | * class as its own {@link #lookupClass lookupClass}. |
| 663 | * <p> |
| 664 | * However, the resulting {@code Lookup} object is guaranteed |
| 665 | * to have no more access capabilities than the original. |
| 666 | * In particular, access capabilities can be lost as follows:<ul> |
| 667 | * <li>If the new lookup class differs from the old one, |
| 668 | * protected members will not be accessible by virtue of inheritance. |
| 669 | * (Protected members may continue to be accessible because of package sharing.) |
| 670 | * <li>If the new lookup class is in a different package |
| 671 | * than the old one, protected and default (package) members will not be accessible. |
| 672 | * <li>If the new lookup class is not within the same package member |
| 673 | * as the old one, private members will not be accessible. |
| 674 | * <li>If the new lookup class is not accessible to the old lookup class, |
| 675 | * then no members, not even public members, will be accessible. |
| 676 | * (In all other cases, public members will continue to be accessible.) |
| 677 | * </ul> |
| 678 | * |
| 679 | * @param requestedLookupClass the desired lookup class for the new lookup object |
| 680 | * @return a lookup object which reports the desired lookup class |
| 681 | * @throws NullPointerException if the argument is null |
| 682 | */ |
| 683 | public Lookup in(Class<?> requestedLookupClass) { |
| 684 | requestedLookupClass.getClass(); // null check |
| 685 | // Android-changed: There's no notion of a trusted lookup. |
| 686 | // if (allowedModes == TRUSTED) // IMPL_LOOKUP can make any lookup at all |
| 687 | // return new Lookup(requestedLookupClass, ALL_MODES); |
| 688 | |
| 689 | if (requestedLookupClass == this.lookupClass) |
| 690 | return this; // keep same capabilities |
| 691 | int newModes = (allowedModes & (ALL_MODES & ~PROTECTED)); |
| 692 | if ((newModes & PACKAGE) != 0 |
| 693 | && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) { |
| 694 | newModes &= ~(PACKAGE|PRIVATE); |
| 695 | } |
| 696 | // Allow nestmate lookups to be created without special privilege: |
| 697 | if ((newModes & PRIVATE) != 0 |
| 698 | && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) { |
| 699 | newModes &= ~PRIVATE; |
| 700 | } |
| 701 | if ((newModes & PUBLIC) != 0 |
| 702 | && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) { |
| 703 | // The requested class it not accessible from the lookup class. |
| 704 | // No permissions. |
| 705 | newModes = 0; |
| 706 | } |
| 707 | checkUnprivilegedlookupClass(requestedLookupClass, newModes); |
| 708 | return new Lookup(requestedLookupClass, newModes); |
| 709 | } |
| 710 | |
| 711 | // Make sure outer class is initialized first. |
| 712 | // |
| 713 | // Android-changed: Removed unnecessary reference to IMPL_NAMES. |
| 714 | // static { IMPL_NAMES.getClass(); } |
| 715 | |
| 716 | /** Version of lookup which is trusted minimally. |
| 717 | * It can only be used to create method handles to |
| 718 | * publicly accessible members. |
| 719 | */ |
| 720 | static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC); |
| 721 | |
| 722 | /** Package-private version of lookup which is trusted. */ |
| 723 | static final Lookup IMPL_LOOKUP = new Lookup(Object.class, ALL_MODES); |
| 724 | |
| 725 | private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) { |
| 726 | String name = lookupClass.getName(); |
| 727 | if (name.startsWith("java.lang.invoke.")) |
| 728 | throw newIllegalArgumentException("illegal lookupClass: "+lookupClass); |
| 729 | |
| 730 | // For caller-sensitive MethodHandles.lookup() |
| 731 | // disallow lookup more restricted packages |
| 732 | // |
| 733 | // Android-changed: The bootstrap classloader isn't null. |
| 734 | if (allowedModes == ALL_MODES && |
| 735 | lookupClass.getClassLoader() == Object.class.getClassLoader()) { |
| 736 | if ((name.startsWith("java.") |
| 737 | && !name.startsWith("java.io.ObjectStreamClass") |
| 738 | && !name.startsWith("java.util.concurrent.") |
| 739 | && !name.equals("java.lang.Daemons$FinalizerWatchdogDaemon") |
| 740 | && !name.equals("java.lang.runtime.ObjectMethods") |
| 741 | && !name.equals("java.lang.Thread") |
| 742 | && !name.equals("java.util.HashMap")) || |
| 743 | (name.startsWith("sun.") |
| 744 | && !name.startsWith("sun.invoke.") |
| 745 | && !name.equals("sun.reflect.ReflectionFactory"))) { |
| 746 | throw newIllegalArgumentException("illegal lookupClass: " + lookupClass); |
| 747 | } |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | /** |
| 752 | * Displays the name of the class from which lookups are to be made. |
| 753 | * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.) |
| 754 | * If there are restrictions on the access permitted to this lookup, |
| 755 | * this is indicated by adding a suffix to the class name, consisting |
| 756 | * of a slash and a keyword. The keyword represents the strongest |
| 757 | * allowed access, and is chosen as follows: |
| 758 | * <ul> |
| 759 | * <li>If no access is allowed, the suffix is "/noaccess". |
| 760 | * <li>If only public access is allowed, the suffix is "/public". |
| 761 | * <li>If only public and package access are allowed, the suffix is "/package". |
| 762 | * <li>If only public, package, and private access are allowed, the suffix is "/private". |
| 763 | * </ul> |
| 764 | * If none of the above cases apply, it is the case that full |
| 765 | * access (public, package, private, and protected) is allowed. |
| 766 | * In this case, no suffix is added. |
| 767 | * This is true only of an object obtained originally from |
| 768 | * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}. |
| 769 | * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in} |
| 770 | * always have restricted access, and will display a suffix. |
| 771 | * <p> |
| 772 | * (It may seem strange that protected access should be |
| 773 | * stronger than private access. Viewed independently from |
| 774 | * package access, protected access is the first to be lost, |
| 775 | * because it requires a direct subclass relationship between |
| 776 | * caller and callee.) |
| 777 | * @see #in |
| 778 | */ |
| 779 | @Override |
| 780 | public String toString() { |
| 781 | String cname = lookupClass.getName(); |
| 782 | switch (allowedModes) { |
| 783 | case 0: // no privileges |
| 784 | return cname + "/noaccess"; |
| 785 | case PUBLIC: |
| 786 | return cname + "/public"; |
| 787 | case PUBLIC|PACKAGE: |
| 788 | return cname + "/package"; |
| 789 | case ALL_MODES & ~PROTECTED: |
| 790 | return cname + "/private"; |
| 791 | case ALL_MODES: |
| 792 | return cname; |
| 793 | // Android-changed: No support for TRUSTED callers. |
| 794 | // case TRUSTED: |
| 795 | // return "/trusted"; // internal only; not exported |
| 796 | default: // Should not happen, but it's a bitfield... |
| 797 | cname = cname + "/" + Integer.toHexString(allowedModes); |
| 798 | assert(false) : cname; |
| 799 | return cname; |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | /** |
| 804 | * Produces a method handle for a static method. |
| 805 | * The type of the method handle will be that of the method. |
| 806 | * (Since static methods do not take receivers, there is no |
| 807 | * additional receiver argument inserted into the method handle type, |
| 808 | * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.) |
| 809 | * The method and all its argument types must be accessible to the lookup object. |
| 810 | * <p> |
| 811 | * The returned method handle will have |
| 812 | * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
| 813 | * the method's variable arity modifier bit ({@code 0x0080}) is set. |
| 814 | * <p> |
| 815 | * If the returned method handle is invoked, the method's class will |
| 816 | * be initialized, if it has not already been initialized. |
| 817 | * <p><b>Example:</b> |
| 818 | * <blockquote><pre>{@code |
| 819 | import static java.lang.invoke.MethodHandles.*; |
| 820 | import static java.lang.invoke.MethodType.*; |
| 821 | ... |
| 822 | MethodHandle MH_asList = publicLookup().findStatic(Arrays.class, |
| 823 | "asList", methodType(List.class, Object[].class)); |
| 824 | assertEquals("[x, y]", MH_asList.invoke("x", "y").toString()); |
| 825 | * }</pre></blockquote> |
| 826 | * @param refc the class from which the method is accessed |
| 827 | * @param name the name of the method |
| 828 | * @param type the type of the method |
| 829 | * @return the desired method handle |
| 830 | * @throws NoSuchMethodException if the method does not exist |
| 831 | * @throws IllegalAccessException if access checking fails, |
| 832 | * or if the method is not {@code static}, |
| 833 | * or if the method's variable arity modifier bit |
| 834 | * is set and {@code asVarargsCollector} fails |
| 835 | * @exception SecurityException if a security manager is present and it |
| 836 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 837 | * @throws NullPointerException if any argument is null |
| 838 | */ |
| 839 | public |
| 840 | MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
| 841 | Method method = refc.getDeclaredMethod(name, type.ptypes()); |
| 842 | final int modifiers = method.getModifiers(); |
| 843 | if (!Modifier.isStatic(modifiers)) { |
| 844 | throw new IllegalAccessException("Method" + method + " is not static"); |
| 845 | } |
| 846 | checkReturnType(method, type); |
| 847 | checkAccess(refc, method.getDeclaringClass(), modifiers, method.getName()); |
| 848 | return createMethodHandle(method, MethodHandle.INVOKE_STATIC, type); |
| 849 | } |
| 850 | |
| 851 | private MethodHandle findVirtualForMH(String name, MethodType type) { |
| 852 | // these names require special lookups because of the implicit MethodType argument |
| 853 | if ("invoke".equals(name)) |
| 854 | return invoker(type); |
| 855 | if ("invokeExact".equals(name)) |
| 856 | return exactInvoker(type); |
| 857 | return null; |
| 858 | } |
| 859 | |
| 860 | private MethodHandle findVirtualForVH(String name, MethodType type) { |
| 861 | VarHandle.AccessMode accessMode; |
| 862 | try { |
| 863 | accessMode = VarHandle.AccessMode.valueFromMethodName(name); |
| 864 | } catch (IllegalArgumentException e) { |
| 865 | return null; |
| 866 | } |
| 867 | return varHandleInvoker(accessMode, type); |
| 868 | } |
| 869 | |
| 870 | private static MethodHandle createMethodHandle(Method method, int handleKind, |
| 871 | MethodType methodType) { |
| 872 | MethodHandle mh = new MethodHandleImpl(method.getArtMethod(), handleKind, methodType); |
| 873 | if (method.isVarArgs()) { |
| 874 | return new Transformers.VarargsCollector(mh); |
| 875 | } else { |
| 876 | return mh; |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | /** |
| 881 | * Produces a method handle for a virtual method. |
| 882 | * The type of the method handle will be that of the method, |
| 883 | * with the receiver type (usually {@code refc}) prepended. |
| 884 | * The method and all its argument types must be accessible to the lookup object. |
| 885 | * <p> |
| 886 | * When called, the handle will treat the first argument as a receiver |
| 887 | * and dispatch on the receiver's type to determine which method |
| 888 | * implementation to enter. |
| 889 | * (The dispatching action is identical with that performed by an |
| 890 | * {@code invokevirtual} or {@code invokeinterface} instruction.) |
| 891 | * <p> |
| 892 | * The first argument will be of type {@code refc} if the lookup |
| 893 | * class has full privileges to access the member. Otherwise |
| 894 | * the member must be {@code protected} and the first argument |
| 895 | * will be restricted in type to the lookup class. |
| 896 | * <p> |
| 897 | * The returned method handle will have |
| 898 | * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
| 899 | * the method's variable arity modifier bit ({@code 0x0080}) is set. |
| 900 | * <p> |
| 901 | * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual} |
| 902 | * instructions and method handles produced by {@code findVirtual}, |
| 903 | * if the class is {@code MethodHandle} and the name string is |
| 904 | * {@code invokeExact} or {@code invoke}, the resulting |
| 905 | * method handle is equivalent to one produced by |
| 906 | * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or |
| 907 | * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker} |
| 908 | * with the same {@code type} argument. |
| 909 | * |
| 910 | * <b>Example:</b> |
| 911 | * <blockquote><pre>{@code |
| 912 | import static java.lang.invoke.MethodHandles.*; |
| 913 | import static java.lang.invoke.MethodType.*; |
| 914 | ... |
| 915 | MethodHandle MH_concat = publicLookup().findVirtual(String.class, |
| 916 | "concat", methodType(String.class, String.class)); |
| 917 | MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class, |
| 918 | "hashCode", methodType(int.class)); |
| 919 | MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class, |
| 920 | "hashCode", methodType(int.class)); |
| 921 | assertEquals("xy", (String) MH_concat.invokeExact("x", "y")); |
| 922 | assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy")); |
| 923 | assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy")); |
| 924 | // interface method: |
| 925 | MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class, |
| 926 | "subSequence", methodType(CharSequence.class, int.class, int.class)); |
| 927 | assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString()); |
| 928 | // constructor "internal method" must be accessed differently: |
| 929 | MethodType MT_newString = methodType(void.class); //()V for new String() |
| 930 | try { assertEquals("impossible", lookup() |
| 931 | .findVirtual(String.class, "<init>", MT_newString)); |
| 932 | } catch (NoSuchMethodException ex) { } // OK |
| 933 | MethodHandle MH_newString = publicLookup() |
| 934 | .findConstructor(String.class, MT_newString); |
| 935 | assertEquals("", (String) MH_newString.invokeExact()); |
| 936 | * }</pre></blockquote> |
| 937 | * |
| 938 | * @param refc the class or interface from which the method is accessed |
| 939 | * @param name the name of the method |
| 940 | * @param type the type of the method, with the receiver argument omitted |
| 941 | * @return the desired method handle |
| 942 | * @throws NoSuchMethodException if the method does not exist |
| 943 | * @throws IllegalAccessException if access checking fails, |
| 944 | * or if the method is {@code static} |
| 945 | * or if the method's variable arity modifier bit |
| 946 | * is set and {@code asVarargsCollector} fails |
| 947 | * @exception SecurityException if a security manager is present and it |
| 948 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 949 | * @throws NullPointerException if any argument is null |
| 950 | */ |
| 951 | public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
| 952 | // Special case : when we're looking up a virtual method on the MethodHandles class |
| 953 | // itself, we can return one of our specialized invokers. |
| 954 | if (refc == MethodHandle.class) { |
| 955 | MethodHandle mh = findVirtualForMH(name, type); |
| 956 | if (mh != null) { |
| 957 | return mh; |
| 958 | } |
| 959 | } else if (refc == VarHandle.class) { |
| 960 | // Returns an non-exact invoker. |
| 961 | MethodHandle mh = findVirtualForVH(name, type); |
| 962 | if (mh != null) { |
| 963 | return mh; |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | Method method = refc.getInstanceMethod(name, type.ptypes()); |
| 968 | if (method == null) { |
| 969 | // This is pretty ugly and a consequence of the MethodHandles API. We have to throw |
| 970 | // an IAE and not an NSME if the method exists but is static (even though the RI's |
| 971 | // IAE has a message that says "no such method"). We confine the ugliness and |
| 972 | // slowness to the failure case, and allow getInstanceMethod to remain fairly |
| 973 | // general. |
| 974 | try { |
| 975 | Method m = refc.getDeclaredMethod(name, type.ptypes()); |
| 976 | if (Modifier.isStatic(m.getModifiers())) { |
| 977 | throw new IllegalAccessException("Method" + m + " is static"); |
| 978 | } |
| 979 | } catch (NoSuchMethodException ignored) { |
| 980 | } |
| 981 | |
| 982 | throw new NoSuchMethodException(name + " " + Arrays.toString(type.ptypes())); |
| 983 | } |
| 984 | checkReturnType(method, type); |
| 985 | |
| 986 | // We have a valid method, perform access checks. |
| 987 | checkAccess(refc, method.getDeclaringClass(), method.getModifiers(), method.getName()); |
| 988 | |
| 989 | // Insert the leading reference parameter. |
| 990 | MethodType handleType = type.insertParameterTypes(0, refc); |
| 991 | return createMethodHandle(method, MethodHandle.INVOKE_VIRTUAL, handleType); |
| 992 | } |
| 993 | |
| 994 | /** |
| 995 | * Produces a method handle which creates an object and initializes it, using |
| 996 | * the constructor of the specified type. |
| 997 | * The parameter types of the method handle will be those of the constructor, |
| 998 | * while the return type will be a reference to the constructor's class. |
| 999 | * The constructor and all its argument types must be accessible to the lookup object. |
| 1000 | * <p> |
| 1001 | * The requested type must have a return type of {@code void}. |
| 1002 | * (This is consistent with the JVM's treatment of constructor type descriptors.) |
| 1003 | * <p> |
| 1004 | * The returned method handle will have |
| 1005 | * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
| 1006 | * the constructor's variable arity modifier bit ({@code 0x0080}) is set. |
| 1007 | * <p> |
| 1008 | * If the returned method handle is invoked, the constructor's class will |
| 1009 | * be initialized, if it has not already been initialized. |
| 1010 | * <p><b>Example:</b> |
| 1011 | * <blockquote><pre>{@code |
| 1012 | import static java.lang.invoke.MethodHandles.*; |
| 1013 | import static java.lang.invoke.MethodType.*; |
| 1014 | ... |
| 1015 | MethodHandle MH_newArrayList = publicLookup().findConstructor( |
| 1016 | ArrayList.class, methodType(void.class, Collection.class)); |
| 1017 | Collection orig = Arrays.asList("x", "y"); |
| 1018 | Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig); |
| 1019 | assert(orig != copy); |
| 1020 | assertEquals(orig, copy); |
| 1021 | // a variable-arity constructor: |
| 1022 | MethodHandle MH_newProcessBuilder = publicLookup().findConstructor( |
| 1023 | ProcessBuilder.class, methodType(void.class, String[].class)); |
| 1024 | ProcessBuilder pb = (ProcessBuilder) |
| 1025 | MH_newProcessBuilder.invoke("x", "y", "z"); |
| 1026 | assertEquals("[x, y, z]", pb.command().toString()); |
| 1027 | * }</pre></blockquote> |
| 1028 | * @param refc the class or interface from which the method is accessed |
| 1029 | * @param type the type of the method, with the receiver argument omitted, and a void return type |
| 1030 | * @return the desired method handle |
| 1031 | * @throws NoSuchMethodException if the constructor does not exist |
| 1032 | * @throws IllegalAccessException if access checking fails |
| 1033 | * or if the method's variable arity modifier bit |
| 1034 | * is set and {@code asVarargsCollector} fails |
| 1035 | * @exception SecurityException if a security manager is present and it |
| 1036 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 1037 | * @throws NullPointerException if any argument is null |
| 1038 | */ |
| 1039 | public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
| 1040 | if (refc.isArray()) { |
| 1041 | throw new NoSuchMethodException("no constructor for array class: " + refc.getName()); |
| 1042 | } |
| 1043 | // The queried |type| is (PT1,PT2,..)V |
| 1044 | Constructor constructor = refc.getDeclaredConstructor(type.ptypes()); |
| 1045 | if (constructor == null) { |
| 1046 | throw new NoSuchMethodException( |
| 1047 | "No constructor for " + constructor.getDeclaringClass() + " matching " + type); |
| 1048 | } |
| 1049 | checkAccess(refc, constructor.getDeclaringClass(), constructor.getModifiers(), |
| 1050 | constructor.getName()); |
| 1051 | |
| 1052 | return createMethodHandleForConstructor(constructor); |
| 1053 | } |
| 1054 | |
| 1055 | // BEGIN Android-added: Add findClass(String) from OpenJDK 17. http://b/270028670 |
| 1056 | // TODO: Unhide this method. |
| 1057 | /** |
| 1058 | * Looks up a class by name from the lookup context defined by this {@code Lookup} object, |
| 1059 | * <a href="MethodHandles.Lookup.html#equiv">as if resolved</a> by an {@code ldc} instruction. |
| 1060 | * Such a resolution, as specified in JVMS 5.4.3.1 section, attempts to locate and load the class, |
| 1061 | * and then determines whether the class is accessible to this lookup object. |
| 1062 | * <p> |
| 1063 | * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, |
| 1064 | * its class loader, and the {@linkplain #lookupModes() lookup modes}. |
| 1065 | * |
| 1066 | * @param targetName the fully qualified name of the class to be looked up. |
| 1067 | * @return the requested class. |
| 1068 | * @throws SecurityException if a security manager is present and it |
| 1069 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 1070 | * @throws LinkageError if the linkage fails |
| 1071 | * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader. |
| 1072 | * @throws IllegalAccessException if the class is not accessible, using the allowed access |
| 1073 | * modes. |
| 1074 | * @throws NullPointerException if {@code targetName} is null |
| 1075 | * @since 9 |
| 1076 | * @jvms 5.4.3.1 Class and Interface Resolution |
| 1077 | * @hide |
| 1078 | */ |
| 1079 | public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException { |
| 1080 | Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader()); |
| 1081 | return accessClass(targetClass); |
| 1082 | } |
| 1083 | // END Android-added: Add findClass(String) from OpenJDK 17. http://b/270028670 |
| 1084 | |
| 1085 | private MethodHandle createMethodHandleForConstructor(Constructor constructor) { |
| 1086 | Class<?> refc = constructor.getDeclaringClass(); |
| 1087 | MethodType constructorType = |
| 1088 | MethodType.methodType(refc, constructor.getParameterTypes()); |
| 1089 | MethodHandle mh; |
| 1090 | if (refc == String.class) { |
| 1091 | // String constructors have optimized StringFactory methods |
| 1092 | // that matches returned type. These factory methods combine the |
| 1093 | // memory allocation and initialization calls for String objects. |
| 1094 | mh = new MethodHandleImpl(constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT, |
| 1095 | constructorType); |
| 1096 | } else { |
| 1097 | // Constructors for all other classes use a Construct transformer to perform |
| 1098 | // their memory allocation and call to <init>. |
| 1099 | MethodType initType = initMethodType(constructorType); |
| 1100 | MethodHandle initHandle = new MethodHandleImpl( |
| 1101 | constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT, initType); |
| 1102 | mh = new Transformers.Construct(initHandle, constructorType); |
| 1103 | } |
| 1104 | |
| 1105 | if (constructor.isVarArgs()) { |
| 1106 | mh = new Transformers.VarargsCollector(mh); |
| 1107 | } |
| 1108 | return mh; |
| 1109 | } |
| 1110 | |
| 1111 | private static MethodType initMethodType(MethodType constructorType) { |
| 1112 | // Returns a MethodType appropriate for class <init> |
| 1113 | // methods. Constructor MethodTypes have the form |
| 1114 | // (PT1,PT2,...)C and class <init> MethodTypes have the |
| 1115 | // form (C,PT1,PT2,...)V. |
| 1116 | assert constructorType.rtype() != void.class; |
| 1117 | |
| 1118 | // Insert constructorType C as the first parameter type in |
| 1119 | // the MethodType for <init>. |
| 1120 | Class<?> [] initPtypes = new Class<?> [constructorType.ptypes().length + 1]; |
| 1121 | initPtypes[0] = constructorType.rtype(); |
| 1122 | System.arraycopy(constructorType.ptypes(), 0, initPtypes, 1, |
| 1123 | constructorType.ptypes().length); |
| 1124 | |
| 1125 | // Set the return type for the <init> MethodType to be void. |
| 1126 | return MethodType.methodType(void.class, initPtypes); |
| 1127 | } |
| 1128 | |
| 1129 | // BEGIN Android-added: Add accessClass(Class) from OpenJDK 17. http://b/270028670 |
| 1130 | /* |
| 1131 | * Returns IllegalAccessException due to access violation to the given targetClass. |
| 1132 | * |
| 1133 | * This method is called by {@link Lookup#accessClass} and {@link Lookup#ensureInitialized} |
| 1134 | * which verifies access to a class rather a member. |
| 1135 | */ |
| 1136 | private IllegalAccessException makeAccessException(Class<?> targetClass) { |
| 1137 | String message = "access violation: "+ targetClass; |
| 1138 | if (this == MethodHandles.publicLookup()) { |
| 1139 | message += ", from public Lookup"; |
| 1140 | } else { |
| 1141 | // Android-changed: Remove unsupported module name. |
| 1142 | // Module m = lookupClass().getModule(); |
| 1143 | // message += ", from " + lookupClass() + " (" + m + ")"; |
| 1144 | message += ", from " + lookupClass(); |
| 1145 | // Android-removed: Remove prevLookupClass until supported by Lookup in OpenJDK 17. |
| 1146 | // if (prevLookupClass != null) { |
| 1147 | // message += ", previous lookup " + |
| 1148 | // prevLookupClass.getName() + " (" + prevLookupClass.getModule() + ")"; |
| 1149 | // } |
| 1150 | } |
| 1151 | return new IllegalAccessException(message); |
| 1152 | } |
| 1153 | |
| 1154 | // TODO: Unhide this method. |
| 1155 | /** |
| 1156 | * Determines if a class can be accessed from the lookup context defined by |
| 1157 | * this {@code Lookup} object. The static initializer of the class is not run. |
| 1158 | * If {@code targetClass} is an array class, {@code targetClass} is accessible |
| 1159 | * if the element type of the array class is accessible. Otherwise, |
| 1160 | * {@code targetClass} is determined as accessible as follows. |
| 1161 | * |
| 1162 | * <p> |
| 1163 | * If {@code targetClass} is in the same module as the lookup class, |
| 1164 | * the lookup class is {@code LC} in module {@code M1} and |
| 1165 | * the previous lookup class is in module {@code M0} or |
| 1166 | * {@code null} if not present, |
| 1167 | * {@code targetClass} is accessible if and only if one of the following is true: |
| 1168 | * <ul> |
| 1169 | * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is |
| 1170 | * {@code LC} or other class in the same nest of {@code LC}.</li> |
| 1171 | * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is |
| 1172 | * in the same runtime package of {@code LC}.</li> |
| 1173 | * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is |
| 1174 | * a public type in {@code M1}.</li> |
| 1175 | * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is |
| 1176 | * a public type in a package exported by {@code M1} to at least {@code M0} |
| 1177 | * if the previous lookup class is present; otherwise, {@code targetClass} |
| 1178 | * is a public type in a package exported by {@code M1} unconditionally.</li> |
| 1179 | * </ul> |
| 1180 | * |
| 1181 | * <p> |
| 1182 | * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup |
| 1183 | * can access public types in all modules when the type is in a package |
| 1184 | * that is exported unconditionally. |
| 1185 | * <p> |
| 1186 | * Otherwise, {@code targetClass} is in a different module from {@code lookupClass}, |
| 1187 | * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass} |
| 1188 | * is inaccessible. |
| 1189 | * <p> |
| 1190 | * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class}, |
| 1191 | * {@code M1} is the module containing {@code lookupClass} and |
| 1192 | * {@code M2} is the module containing {@code targetClass}, |
| 1193 | * then {@code targetClass} is accessible if and only if |
| 1194 | * <ul> |
| 1195 | * <li>{@code M1} reads {@code M2}, and |
| 1196 | * <li>{@code targetClass} is public and in a package exported by |
| 1197 | * {@code M2} at least to {@code M1}. |
| 1198 | * </ul> |
| 1199 | * <p> |
| 1200 | * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class}, |
| 1201 | * {@code M1} and {@code M2} are as before, and {@code M0} is the module |
| 1202 | * containing the previous lookup class, then {@code targetClass} is accessible |
| 1203 | * if and only if one of the following is true: |
| 1204 | * <ul> |
| 1205 | * <li>{@code targetClass} is in {@code M0} and {@code M1} |
| 1206 | * {@linkplain Module#reads reads} {@code M0} and the type is |
| 1207 | * in a package that is exported to at least {@code M1}. |
| 1208 | * <li>{@code targetClass} is in {@code M1} and {@code M0} |
| 1209 | * {@linkplain Module#reads reads} {@code M1} and the type is |
| 1210 | * in a package that is exported to at least {@code M0}. |
| 1211 | * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0} |
| 1212 | * and {@code M1} reads {@code M2} and the type is in a package |
| 1213 | * that is exported to at least both {@code M0} and {@code M2}. |
| 1214 | * </ul> |
| 1215 | * <p> |
| 1216 | * Otherwise, {@code targetClass} is not accessible. |
| 1217 | * |
| 1218 | * @param targetClass the class to be access-checked |
| 1219 | * @return the class that has been access-checked |
| 1220 | * @throws IllegalAccessException if the class is not accessible from the lookup class |
| 1221 | * and previous lookup class, if present, using the allowed access modes. |
| 1222 | * @throws SecurityException if a security manager is present and it |
| 1223 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 1224 | * @throws NullPointerException if {@code targetClass} is {@code null} |
| 1225 | * @since 9 |
| 1226 | * @see <a href="#cross-module-lookup">Cross-module lookups</a> |
| 1227 | * @hide |
| 1228 | */ |
| 1229 | public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException { |
| 1230 | if (!isClassAccessible(targetClass)) { |
| 1231 | throw makeAccessException(targetClass); |
| 1232 | } |
| 1233 | // Android-removed: SecurityManager is unnecessary on Android. |
| 1234 | // checkSecurityManager(targetClass); |
| 1235 | return targetClass; |
| 1236 | } |
| 1237 | |
| 1238 | boolean isClassAccessible(Class<?> refc) { |
| 1239 | Objects.requireNonNull(refc); |
| 1240 | Class<?> caller = lookupClassOrNull(); |
| 1241 | Class<?> type = refc; |
| 1242 | while (type.isArray()) { |
| 1243 | type = type.getComponentType(); |
| 1244 | } |
| 1245 | // Android-removed: Remove prevLookupClass until supported by Lookup in OpenJDK 17. |
| 1246 | // return caller == null || VerifyAccess.isClassAccessible(type, caller, prevLookupClass, allowedModes); |
| 1247 | return caller == null || VerifyAccess.isClassAccessible(type, caller, allowedModes); |
| 1248 | } |
| 1249 | |
| 1250 | // This is just for calling out to MethodHandleImpl. |
| 1251 | private Class<?> lookupClassOrNull() { |
| 1252 | // Android-changed: Android always returns lookupClass and has no concept of TRUSTED. |
| 1253 | // return (allowedModes == TRUSTED) ? null : lookupClass; |
| 1254 | return lookupClass; |
| 1255 | } |
| 1256 | // END Android-added: Add accessClass(Class) from OpenJDK 17. http://b/270028670 |
| 1257 | |
| 1258 | /** |
| 1259 | * Produces an early-bound method handle for a virtual method. |
| 1260 | * It will bypass checks for overriding methods on the receiver, |
| 1261 | * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial} |
| 1262 | * instruction from within the explicitly specified {@code specialCaller}. |
| 1263 | * The type of the method handle will be that of the method, |
| 1264 | * with a suitably restricted receiver type prepended. |
| 1265 | * (The receiver type will be {@code specialCaller} or a subtype.) |
| 1266 | * The method and all its argument types must be accessible |
| 1267 | * to the lookup object. |
| 1268 | * <p> |
| 1269 | * Before method resolution, |
| 1270 | * if the explicitly specified caller class is not identical with the |
| 1271 | * lookup class, or if this lookup object does not have |
| 1272 | * <a href="MethodHandles.Lookup.html#privacc">private access</a> |
| 1273 | * privileges, the access fails. |
| 1274 | * <p> |
| 1275 | * The returned method handle will have |
| 1276 | * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
| 1277 | * the method's variable arity modifier bit ({@code 0x0080}) is set. |
| 1278 | * <p style="font-size:smaller;"> |
| 1279 | * <em>(Note: JVM internal methods named {@code "<init>"} are not visible to this API, |
| 1280 | * even though the {@code invokespecial} instruction can refer to them |
| 1281 | * in special circumstances. Use {@link #findConstructor findConstructor} |
| 1282 | * to access instance initialization methods in a safe manner.)</em> |
| 1283 | * <p><b>Example:</b> |
| 1284 | * <blockquote><pre>{@code |
| 1285 | import static java.lang.invoke.MethodHandles.*; |
| 1286 | import static java.lang.invoke.MethodType.*; |
| 1287 | ... |
| 1288 | static class Listie extends ArrayList { |
| 1289 | public String toString() { return "[wee Listie]"; } |
| 1290 | static Lookup lookup() { return MethodHandles.lookup(); } |
| 1291 | } |
| 1292 | ... |
| 1293 | // no access to constructor via invokeSpecial: |
| 1294 | MethodHandle MH_newListie = Listie.lookup() |
| 1295 | .findConstructor(Listie.class, methodType(void.class)); |
| 1296 | Listie l = (Listie) MH_newListie.invokeExact(); |
| 1297 | try { assertEquals("impossible", Listie.lookup().findSpecial( |
| 1298 | Listie.class, "<init>", methodType(void.class), Listie.class)); |
| 1299 | } catch (NoSuchMethodException ex) { } // OK |
| 1300 | // access to super and self methods via invokeSpecial: |
| 1301 | MethodHandle MH_super = Listie.lookup().findSpecial( |
| 1302 | ArrayList.class, "toString" , methodType(String.class), Listie.class); |
| 1303 | MethodHandle MH_this = Listie.lookup().findSpecial( |
| 1304 | Listie.class, "toString" , methodType(String.class), Listie.class); |
| 1305 | MethodHandle MH_duper = Listie.lookup().findSpecial( |
| 1306 | Object.class, "toString" , methodType(String.class), Listie.class); |
| 1307 | assertEquals("[]", (String) MH_super.invokeExact(l)); |
| 1308 | assertEquals(""+l, (String) MH_this.invokeExact(l)); |
| 1309 | assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method |
| 1310 | try { assertEquals("inaccessible", Listie.lookup().findSpecial( |
| 1311 | String.class, "toString", methodType(String.class), Listie.class)); |
| 1312 | } catch (IllegalAccessException ex) { } // OK |
| 1313 | Listie subl = new Listie() { public String toString() { return "[subclass]"; } }; |
| 1314 | assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method |
| 1315 | * }</pre></blockquote> |
| 1316 | * |
| 1317 | * @param refc the class or interface from which the method is accessed |
| 1318 | * @param name the name of the method (which must not be "<init>") |
| 1319 | * @param type the type of the method, with the receiver argument omitted |
| 1320 | * @param specialCaller the proposed calling class to perform the {@code invokespecial} |
| 1321 | * @return the desired method handle |
| 1322 | * @throws NoSuchMethodException if the method does not exist |
| 1323 | * @throws IllegalAccessException if access checking fails |
| 1324 | * or if the method's variable arity modifier bit |
| 1325 | * is set and {@code asVarargsCollector} fails |
| 1326 | * @exception SecurityException if a security manager is present and it |
| 1327 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 1328 | * @throws NullPointerException if any argument is null |
| 1329 | */ |
| 1330 | public MethodHandle findSpecial(Class<?> refc, String name, MethodType type, |
| 1331 | Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException { |
| 1332 | if (specialCaller == null) { |
| 1333 | throw new NullPointerException("specialCaller == null"); |
| 1334 | } |
| 1335 | |
| 1336 | if (type == null) { |
| 1337 | throw new NullPointerException("type == null"); |
| 1338 | } |
| 1339 | |
| 1340 | if (name == null) { |
| 1341 | throw new NullPointerException("name == null"); |
| 1342 | } |
| 1343 | |
| 1344 | if (refc == null) { |
| 1345 | throw new NullPointerException("ref == null"); |
| 1346 | } |
| 1347 | |
| 1348 | // Make sure that the special caller is identical to the lookup class or that we have |
| 1349 | // private access. |
| 1350 | // Android-changed: Also allow access to any interface methods. |
| 1351 | checkSpecialCaller(specialCaller, refc); |
| 1352 | |
| 1353 | // Even though constructors are invoked using a "special" invoke, handles to them can't |
| 1354 | // be created using findSpecial. Callers must use findConstructor instead. Similarly, |
| 1355 | // there is no path for calling static class initializers. |
| 1356 | if (name.startsWith("<")) { |
| 1357 | throw new NoSuchMethodException(name + " is not a valid method name."); |
| 1358 | } |
| 1359 | |
| 1360 | Method method = refc.getDeclaredMethod(name, type.ptypes()); |
| 1361 | checkReturnType(method, type); |
| 1362 | return findSpecial(method, type, refc, specialCaller); |
| 1363 | } |
| 1364 | |
| 1365 | private MethodHandle findSpecial(Method method, MethodType type, |
| 1366 | Class<?> refc, Class<?> specialCaller) |
| 1367 | throws IllegalAccessException { |
| 1368 | if (Modifier.isStatic(method.getModifiers())) { |
| 1369 | throw new IllegalAccessException("expected a non-static method:" + method); |
| 1370 | } |
| 1371 | |
| 1372 | if (Modifier.isPrivate(method.getModifiers())) { |
| 1373 | // Since this is a private method, we'll need to also make sure that the |
| 1374 | // lookup class is the same as the refering class. We've already checked that |
| 1375 | // the specialCaller is the same as the special lookup class, both of these must |
| 1376 | // be the same as the declaring class(*) in order to access the private method. |
| 1377 | // |
| 1378 | // (*) Well, this isn't true for nested classes but OpenJDK doesn't support those |
| 1379 | // either. |
| 1380 | if (refc != lookupClass()) { |
| 1381 | throw new IllegalAccessException("no private access for invokespecial : " |
| 1382 | + refc + ", from" + this); |
| 1383 | } |
| 1384 | |
| 1385 | // This is a private method, so there's nothing special to do. |
| 1386 | MethodType handleType = type.insertParameterTypes(0, refc); |
| 1387 | return createMethodHandle(method, MethodHandle.INVOKE_DIRECT, handleType); |
| 1388 | } |
| 1389 | |
| 1390 | // This is a public, protected or package-private method, which means we're expecting |
| 1391 | // invoke-super semantics. We'll have to restrict the receiver type appropriately on the |
| 1392 | // handle once we check that there really is a "super" relationship between them. |
| 1393 | if (!method.getDeclaringClass().isAssignableFrom(specialCaller)) { |
| 1394 | throw new IllegalAccessException(refc + "is not assignable from " + specialCaller); |
| 1395 | } |
| 1396 | |
| 1397 | // Note that we restrict the receiver to "specialCaller" instances. |
| 1398 | MethodType handleType = type.insertParameterTypes(0, specialCaller); |
| 1399 | return createMethodHandle(method, MethodHandle.INVOKE_SUPER, handleType); |
| 1400 | } |
| 1401 | |
| 1402 | /** |
| 1403 | * Produces a method handle giving read access to a non-static field. |
| 1404 | * The type of the method handle will have a return type of the field's |
| 1405 | * value type. |
| 1406 | * The method handle's single argument will be the instance containing |
| 1407 | * the field. |
| 1408 | * Access checking is performed immediately on behalf of the lookup class. |
| 1409 | * @param refc the class or interface from which the method is accessed |
| 1410 | * @param name the field's name |
| 1411 | * @param type the field's type |
| 1412 | * @return a method handle which can load values from the field |
| 1413 | * @throws NoSuchFieldException if the field does not exist |
| 1414 | * @throws IllegalAccessException if access checking fails, or if the field is {@code static} |
| 1415 | * @exception SecurityException if a security manager is present and it |
| 1416 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 1417 | * @throws NullPointerException if any argument is null |
| 1418 | */ |
| 1419 | public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
| 1420 | return findAccessor(refc, name, type, MethodHandle.IGET); |
| 1421 | } |
| 1422 | |
| 1423 | private MethodHandle findAccessor(Class<?> refc, String name, Class<?> type, int kind) |
| 1424 | throws NoSuchFieldException, IllegalAccessException { |
| 1425 | final Field field = findFieldOfType(refc, name, type); |
| 1426 | return findAccessor(field, refc, type, kind, true /* performAccessChecks */); |
| 1427 | } |
| 1428 | |
| 1429 | private MethodHandle findAccessor(Field field, Class<?> refc, Class<?> type, int kind, |
| 1430 | boolean performAccessChecks) |
| 1431 | throws IllegalAccessException { |
| 1432 | final boolean isSetterKind = kind == MethodHandle.IPUT || kind == MethodHandle.SPUT; |
| 1433 | final boolean isStaticKind = kind == MethodHandle.SGET || kind == MethodHandle.SPUT; |
| 1434 | commonFieldChecks(field, refc, type, isStaticKind, performAccessChecks); |
| 1435 | if (performAccessChecks) { |
| 1436 | final int modifiers = field.getModifiers(); |
| 1437 | if (isSetterKind && Modifier.isFinal(modifiers)) { |
| 1438 | throw new IllegalAccessException("Field " + field + " is final"); |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | final MethodType methodType; |
| 1443 | switch (kind) { |
| 1444 | case MethodHandle.SGET: |
| 1445 | methodType = MethodType.methodType(type); |
| 1446 | break; |
| 1447 | case MethodHandle.SPUT: |
| 1448 | methodType = MethodType.methodType(void.class, type); |
| 1449 | break; |
| 1450 | case MethodHandle.IGET: |
| 1451 | methodType = MethodType.methodType(type, refc); |
| 1452 | break; |
| 1453 | case MethodHandle.IPUT: |
| 1454 | methodType = MethodType.methodType(void.class, refc, type); |
| 1455 | break; |
| 1456 | default: |
| 1457 | throw new IllegalArgumentException("Invalid kind " + kind); |
| 1458 | } |
| 1459 | return new MethodHandleImpl(field.getArtField(), kind, methodType); |
| 1460 | } |
| 1461 | |
| 1462 | /** |
| 1463 | * Produces a method handle giving write access to a non-static field. |
| 1464 | * The type of the method handle will have a void return type. |
| 1465 | * The method handle will take two arguments, the instance containing |
| 1466 | * the field, and the value to be stored. |
| 1467 | * The second argument will be of the field's value type. |
| 1468 | * Access checking is performed immediately on behalf of the lookup class. |
| 1469 | * @param refc the class or interface from which the method is accessed |
| 1470 | * @param name the field's name |
| 1471 | * @param type the field's type |
| 1472 | * @return a method handle which can store values into the field |
| 1473 | * @throws NoSuchFieldException if the field does not exist |
| 1474 | * @throws IllegalAccessException if access checking fails, or if the field is {@code static} |
| 1475 | * @exception SecurityException if a security manager is present and it |
| 1476 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 1477 | * @throws NullPointerException if any argument is null |
| 1478 | */ |
| 1479 | public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
| 1480 | return findAccessor(refc, name, type, MethodHandle.IPUT); |
| 1481 | } |
| 1482 | |
| 1483 | // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method. |
| 1484 | /** |
| 1485 | * Produces a VarHandle giving access to a non-static field {@code name} |
| 1486 | * of type {@code type} declared in a class of type {@code recv}. |
| 1487 | * The VarHandle's variable type is {@code type} and it has one |
| 1488 | * coordinate type, {@code recv}. |
| 1489 | * <p> |
| 1490 | * Access checking is performed immediately on behalf of the lookup |
| 1491 | * class. |
| 1492 | * <p> |
| 1493 | * Certain access modes of the returned VarHandle are unsupported under |
| 1494 | * the following conditions: |
| 1495 | * <ul> |
| 1496 | * <li>if the field is declared {@code final}, then the write, atomic |
| 1497 | * update, numeric atomic update, and bitwise atomic update access |
| 1498 | * modes are unsupported. |
| 1499 | * <li>if the field type is anything other than {@code byte}, |
| 1500 | * {@code short}, {@code char}, {@code int}, {@code long}, |
| 1501 | * {@code float}, or {@code double} then numeric atomic update |
| 1502 | * access modes are unsupported. |
| 1503 | * <li>if the field type is anything other than {@code boolean}, |
| 1504 | * {@code byte}, {@code short}, {@code char}, {@code int} or |
| 1505 | * {@code long} then bitwise atomic update access modes are |
| 1506 | * unsupported. |
| 1507 | * </ul> |
| 1508 | * <p> |
| 1509 | * If the field is declared {@code volatile} then the returned VarHandle |
| 1510 | * will override access to the field (effectively ignore the |
| 1511 | * {@code volatile} declaration) in accordance to its specified |
| 1512 | * access modes. |
| 1513 | * <p> |
| 1514 | * If the field type is {@code float} or {@code double} then numeric |
| 1515 | * and atomic update access modes compare values using their bitwise |
| 1516 | * representation (see {@link Float#floatToRawIntBits} and |
| 1517 | * {@link Double#doubleToRawLongBits}, respectively). |
| 1518 | * @apiNote |
| 1519 | * Bitwise comparison of {@code float} values or {@code double} values, |
| 1520 | * as performed by the numeric and atomic update access modes, differ |
| 1521 | * from the primitive {@code ==} operator and the {@link Float#equals} |
| 1522 | * and {@link Double#equals} methods, specifically with respect to |
| 1523 | * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. |
| 1524 | * Care should be taken when performing a compare and set or a compare |
| 1525 | * and exchange operation with such values since the operation may |
| 1526 | * unexpectedly fail. |
| 1527 | * There are many possible NaN values that are considered to be |
| 1528 | * {@code NaN} in Java, although no IEEE 754 floating-point operation |
| 1529 | * provided by Java can distinguish between them. Operation failure can |
| 1530 | * occur if the expected or witness value is a NaN value and it is |
| 1531 | * transformed (perhaps in a platform specific manner) into another NaN |
| 1532 | * value, and thus has a different bitwise representation (see |
| 1533 | * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more |
| 1534 | * details). |
| 1535 | * The values {@code -0.0} and {@code +0.0} have different bitwise |
| 1536 | * representations but are considered equal when using the primitive |
| 1537 | * {@code ==} operator. Operation failure can occur if, for example, a |
| 1538 | * numeric algorithm computes an expected value to be say {@code -0.0} |
| 1539 | * and previously computed the witness value to be say {@code +0.0}. |
| 1540 | * @param recv the receiver class, of type {@code R}, that declares the |
| 1541 | * non-static field |
| 1542 | * @param name the field's name |
| 1543 | * @param type the field's type, of type {@code T} |
| 1544 | * @return a VarHandle giving access to non-static fields. |
| 1545 | * @throws NoSuchFieldException if the field does not exist |
| 1546 | * @throws IllegalAccessException if access checking fails, or if the field is {@code static} |
| 1547 | * @exception SecurityException if a security manager is present and it |
| 1548 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 1549 | * @throws NullPointerException if any argument is null |
| 1550 | * @since 9 |
| 1551 | */ |
| 1552 | public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
| 1553 | final Field field = findFieldOfType(recv, name, type); |
| 1554 | final boolean isStatic = false; |
| 1555 | final boolean performAccessChecks = true; |
| 1556 | commonFieldChecks(field, recv, type, isStatic, performAccessChecks); |
| 1557 | return FieldVarHandle.create(field); |
| 1558 | } |
| 1559 | // END Android-changed: OpenJDK 9+181 VarHandle API factory method. |
| 1560 | |
| 1561 | // BEGIN Android-added: Common field resolution and access check methods. |
| 1562 | private Field findFieldOfType(final Class<?> refc, String name, Class<?> type) |
| 1563 | throws NoSuchFieldException { |
| 1564 | Field field = null; |
| 1565 | |
| 1566 | // Search refc and super classes for the field. |
| 1567 | for (Class<?> cls = refc; cls != null; cls = cls.getSuperclass()) { |
| 1568 | try { |
| 1569 | field = cls.getDeclaredField(name); |
| 1570 | break; |
| 1571 | } catch (NoSuchFieldException e) { |
| 1572 | } |
| 1573 | } |
| 1574 | |
| 1575 | if (field == null) { |
| 1576 | // Force failure citing refc. |
| 1577 | field = refc.getDeclaredField(name); |
| 1578 | } |
| 1579 | |
| 1580 | final Class<?> fieldType = field.getType(); |
| 1581 | if (fieldType != type) { |
| 1582 | throw new NoSuchFieldException(name); |
| 1583 | } |
| 1584 | return field; |
| 1585 | } |
| 1586 | |
| 1587 | private void commonFieldChecks(Field field, Class<?> refc, Class<?> type, |
| 1588 | boolean isStatic, boolean performAccessChecks) |
| 1589 | throws IllegalAccessException { |
| 1590 | final int modifiers = field.getModifiers(); |
| 1591 | if (performAccessChecks) { |
| 1592 | checkAccess(refc, field.getDeclaringClass(), modifiers, field.getName()); |
| 1593 | } |
| 1594 | if (Modifier.isStatic(modifiers) != isStatic) { |
| 1595 | String reason = "Field " + field + " is " + |
| 1596 | (isStatic ? "not " : "") + "static"; |
| 1597 | throw new IllegalAccessException(reason); |
| 1598 | } |
| 1599 | } |
| 1600 | // END Android-added: Common field resolution and access check methods. |
| 1601 | |
| 1602 | /** |
| 1603 | * Produces a method handle giving read access to a static field. |
| 1604 | * The type of the method handle will have a return type of the field's |
| 1605 | * value type. |
| 1606 | * The method handle will take no arguments. |
| 1607 | * Access checking is performed immediately on behalf of the lookup class. |
| 1608 | * <p> |
| 1609 | * If the returned method handle is invoked, the field's class will |
| 1610 | * be initialized, if it has not already been initialized. |
| 1611 | * @param refc the class or interface from which the method is accessed |
| 1612 | * @param name the field's name |
| 1613 | * @param type the field's type |
| 1614 | * @return a method handle which can load values from the field |
| 1615 | * @throws NoSuchFieldException if the field does not exist |
| 1616 | * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} |
| 1617 | * @exception SecurityException if a security manager is present and it |
| 1618 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 1619 | * @throws NullPointerException if any argument is null |
| 1620 | */ |
| 1621 | public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
| 1622 | return findAccessor(refc, name, type, MethodHandle.SGET); |
| 1623 | } |
| 1624 | |
| 1625 | /** |
| 1626 | * Produces a method handle giving write access to a static field. |
| 1627 | * The type of the method handle will have a void return type. |
| 1628 | * The method handle will take a single |
| 1629 | * argument, of the field's value type, the value to be stored. |
| 1630 | * Access checking is performed immediately on behalf of the lookup class. |
| 1631 | * <p> |
| 1632 | * If the returned method handle is invoked, the field's class will |
| 1633 | * be initialized, if it has not already been initialized. |
| 1634 | * @param refc the class or interface from which the method is accessed |
| 1635 | * @param name the field's name |
| 1636 | * @param type the field's type |
| 1637 | * @return a method handle which can store values into the field |
| 1638 | * @throws NoSuchFieldException if the field does not exist |
| 1639 | * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} |
| 1640 | * @exception SecurityException if a security manager is present and it |
| 1641 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 1642 | * @throws NullPointerException if any argument is null |
| 1643 | */ |
| 1644 | public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
| 1645 | return findAccessor(refc, name, type, MethodHandle.SPUT); |
| 1646 | } |
| 1647 | |
| 1648 | // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method. |
| 1649 | /** |
| 1650 | * Produces a VarHandle giving access to a static field {@code name} of |
| 1651 | * type {@code type} declared in a class of type {@code decl}. |
| 1652 | * The VarHandle's variable type is {@code type} and it has no |
| 1653 | * coordinate types. |
| 1654 | * <p> |
| 1655 | * Access checking is performed immediately on behalf of the lookup |
| 1656 | * class. |
| 1657 | * <p> |
| 1658 | * If the returned VarHandle is operated on, the declaring class will be |
| 1659 | * initialized, if it has not already been initialized. |
| 1660 | * <p> |
| 1661 | * Certain access modes of the returned VarHandle are unsupported under |
| 1662 | * the following conditions: |
| 1663 | * <ul> |
| 1664 | * <li>if the field is declared {@code final}, then the write, atomic |
| 1665 | * update, numeric atomic update, and bitwise atomic update access |
| 1666 | * modes are unsupported. |
| 1667 | * <li>if the field type is anything other than {@code byte}, |
| 1668 | * {@code short}, {@code char}, {@code int}, {@code long}, |
| 1669 | * {@code float}, or {@code double}, then numeric atomic update |
| 1670 | * access modes are unsupported. |
| 1671 | * <li>if the field type is anything other than {@code boolean}, |
| 1672 | * {@code byte}, {@code short}, {@code char}, {@code int} or |
| 1673 | * {@code long} then bitwise atomic update access modes are |
| 1674 | * unsupported. |
| 1675 | * </ul> |
| 1676 | * <p> |
| 1677 | * If the field is declared {@code volatile} then the returned VarHandle |
| 1678 | * will override access to the field (effectively ignore the |
| 1679 | * {@code volatile} declaration) in accordance to its specified |
| 1680 | * access modes. |
| 1681 | * <p> |
| 1682 | * If the field type is {@code float} or {@code double} then numeric |
| 1683 | * and atomic update access modes compare values using their bitwise |
| 1684 | * representation (see {@link Float#floatToRawIntBits} and |
| 1685 | * {@link Double#doubleToRawLongBits}, respectively). |
| 1686 | * @apiNote |
| 1687 | * Bitwise comparison of {@code float} values or {@code double} values, |
| 1688 | * as performed by the numeric and atomic update access modes, differ |
| 1689 | * from the primitive {@code ==} operator and the {@link Float#equals} |
| 1690 | * and {@link Double#equals} methods, specifically with respect to |
| 1691 | * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. |
| 1692 | * Care should be taken when performing a compare and set or a compare |
| 1693 | * and exchange operation with such values since the operation may |
| 1694 | * unexpectedly fail. |
| 1695 | * There are many possible NaN values that are considered to be |
| 1696 | * {@code NaN} in Java, although no IEEE 754 floating-point operation |
| 1697 | * provided by Java can distinguish between them. Operation failure can |
| 1698 | * occur if the expected or witness value is a NaN value and it is |
| 1699 | * transformed (perhaps in a platform specific manner) into another NaN |
| 1700 | * value, and thus has a different bitwise representation (see |
| 1701 | * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more |
| 1702 | * details). |
| 1703 | * The values {@code -0.0} and {@code +0.0} have different bitwise |
| 1704 | * representations but are considered equal when using the primitive |
| 1705 | * {@code ==} operator. Operation failure can occur if, for example, a |
| 1706 | * numeric algorithm computes an expected value to be say {@code -0.0} |
| 1707 | * and previously computed the witness value to be say {@code +0.0}. |
| 1708 | * @param decl the class that declares the static field |
| 1709 | * @param name the field's name |
| 1710 | * @param type the field's type, of type {@code T} |
| 1711 | * @return a VarHandle giving access to a static field |
| 1712 | * @throws NoSuchFieldException if the field does not exist |
| 1713 | * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} |
| 1714 | * @exception SecurityException if a security manager is present and it |
| 1715 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 1716 | * @throws NullPointerException if any argument is null |
| 1717 | * @since 9 |
| 1718 | */ |
| 1719 | public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
| 1720 | final Field field = findFieldOfType(decl, name, type); |
| 1721 | final boolean isStatic = true; |
| 1722 | final boolean performAccessChecks = true; |
| 1723 | commonFieldChecks(field, decl, type, isStatic, performAccessChecks); |
| 1724 | return StaticFieldVarHandle.create(field); |
| 1725 | } |
| 1726 | // END Android-changed: OpenJDK 9+181 VarHandle API factory method. |
| 1727 | |
| 1728 | /** |
| 1729 | * Produces an early-bound method handle for a non-static method. |
| 1730 | * The receiver must have a supertype {@code defc} in which a method |
| 1731 | * of the given name and type is accessible to the lookup class. |
| 1732 | * The method and all its argument types must be accessible to the lookup object. |
| 1733 | * The type of the method handle will be that of the method, |
| 1734 | * without any insertion of an additional receiver parameter. |
| 1735 | * The given receiver will be bound into the method handle, |
| 1736 | * so that every call to the method handle will invoke the |
| 1737 | * requested method on the given receiver. |
| 1738 | * <p> |
| 1739 | * The returned method handle will have |
| 1740 | * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
| 1741 | * the method's variable arity modifier bit ({@code 0x0080}) is set |
| 1742 | * <em>and</em> the trailing array argument is not the only argument. |
| 1743 | * (If the trailing array argument is the only argument, |
| 1744 | * the given receiver value will be bound to it.) |
| 1745 | * <p> |
| 1746 | * This is equivalent to the following code: |
| 1747 | * <blockquote><pre>{@code |
| 1748 | import static java.lang.invoke.MethodHandles.*; |
| 1749 | import static java.lang.invoke.MethodType.*; |
| 1750 | ... |
| 1751 | MethodHandle mh0 = lookup().findVirtual(defc, name, type); |
| 1752 | MethodHandle mh1 = mh0.bindTo(receiver); |
| 1753 | MethodType mt1 = mh1.type(); |
| 1754 | if (mh0.isVarargsCollector()) |
| 1755 | mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1)); |
| 1756 | return mh1; |
| 1757 | * }</pre></blockquote> |
| 1758 | * where {@code defc} is either {@code receiver.getClass()} or a super |
| 1759 | * type of that class, in which the requested method is accessible |
| 1760 | * to the lookup class. |
| 1761 | * (Note that {@code bindTo} does not preserve variable arity.) |
| 1762 | * @param receiver the object from which the method is accessed |
| 1763 | * @param name the name of the method |
| 1764 | * @param type the type of the method, with the receiver argument omitted |
| 1765 | * @return the desired method handle |
| 1766 | * @throws NoSuchMethodException if the method does not exist |
| 1767 | * @throws IllegalAccessException if access checking fails |
| 1768 | * or if the method's variable arity modifier bit |
| 1769 | * is set and {@code asVarargsCollector} fails |
| 1770 | * @exception SecurityException if a security manager is present and it |
| 1771 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 1772 | * @throws NullPointerException if any argument is null |
| 1773 | * @see MethodHandle#bindTo |
| 1774 | * @see #findVirtual |
| 1775 | */ |
| 1776 | public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
| 1777 | MethodHandle handle = findVirtual(receiver.getClass(), name, type); |
| 1778 | MethodHandle adapter = handle.bindTo(receiver); |
| 1779 | MethodType adapterType = adapter.type(); |
| 1780 | if (handle.isVarargsCollector()) { |
| 1781 | adapter = adapter.asVarargsCollector( |
| 1782 | adapterType.parameterType(adapterType.parameterCount() - 1)); |
| 1783 | } |
| 1784 | |
| 1785 | return adapter; |
| 1786 | } |
| 1787 | |
| 1788 | /** |
| 1789 | * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a> |
| 1790 | * to <i>m</i>, if the lookup class has permission. |
| 1791 | * If <i>m</i> is non-static, the receiver argument is treated as an initial argument. |
| 1792 | * If <i>m</i> is virtual, overriding is respected on every call. |
| 1793 | * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped. |
| 1794 | * The type of the method handle will be that of the method, |
| 1795 | * with the receiver type prepended (but only if it is non-static). |
| 1796 | * If the method's {@code accessible} flag is not set, |
| 1797 | * access checking is performed immediately on behalf of the lookup class. |
| 1798 | * If <i>m</i> is not public, do not share the resulting handle with untrusted parties. |
| 1799 | * <p> |
| 1800 | * The returned method handle will have |
| 1801 | * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
| 1802 | * the method's variable arity modifier bit ({@code 0x0080}) is set. |
| 1803 | * <p> |
| 1804 | * If <i>m</i> is static, and |
| 1805 | * if the returned method handle is invoked, the method's class will |
| 1806 | * be initialized, if it has not already been initialized. |
| 1807 | * @param m the reflected method |
| 1808 | * @return a method handle which can invoke the reflected method |
| 1809 | * @throws IllegalAccessException if access checking fails |
| 1810 | * or if the method's variable arity modifier bit |
| 1811 | * is set and {@code asVarargsCollector} fails |
| 1812 | * @throws NullPointerException if the argument is null |
| 1813 | */ |
| 1814 | public MethodHandle unreflect(Method m) throws IllegalAccessException { |
| 1815 | if (m == null) { |
| 1816 | throw new NullPointerException("m == null"); |
| 1817 | } |
| 1818 | |
| 1819 | MethodType methodType = MethodType.methodType(m.getReturnType(), |
| 1820 | m.getParameterTypes()); |
| 1821 | |
| 1822 | // We should only perform access checks if setAccessible hasn't been called yet. |
| 1823 | if (!m.isAccessible()) { |
| 1824 | checkAccess(m.getDeclaringClass(), m.getDeclaringClass(), m.getModifiers(), |
| 1825 | m.getName()); |
| 1826 | } |
| 1827 | |
| 1828 | if (Modifier.isStatic(m.getModifiers())) { |
| 1829 | return createMethodHandle(m, MethodHandle.INVOKE_STATIC, methodType); |
| 1830 | } else { |
| 1831 | methodType = methodType.insertParameterTypes(0, m.getDeclaringClass()); |
| 1832 | return createMethodHandle(m, MethodHandle.INVOKE_VIRTUAL, methodType); |
| 1833 | } |
| 1834 | } |
| 1835 | |
| 1836 | /** |
| 1837 | * Produces a method handle for a reflected method. |
| 1838 | * It will bypass checks for overriding methods on the receiver, |
| 1839 | * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial} |
| 1840 | * instruction from within the explicitly specified {@code specialCaller}. |
| 1841 | * The type of the method handle will be that of the method, |
| 1842 | * with a suitably restricted receiver type prepended. |
| 1843 | * (The receiver type will be {@code specialCaller} or a subtype.) |
| 1844 | * If the method's {@code accessible} flag is not set, |
| 1845 | * access checking is performed immediately on behalf of the lookup class, |
| 1846 | * as if {@code invokespecial} instruction were being linked. |
| 1847 | * <p> |
| 1848 | * Before method resolution, |
| 1849 | * if the explicitly specified caller class is not identical with the |
| 1850 | * lookup class, or if this lookup object does not have |
| 1851 | * <a href="MethodHandles.Lookup.html#privacc">private access</a> |
| 1852 | * privileges, the access fails. |
| 1853 | * <p> |
| 1854 | * The returned method handle will have |
| 1855 | * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
| 1856 | * the method's variable arity modifier bit ({@code 0x0080}) is set. |
| 1857 | * @param m the reflected method |
| 1858 | * @param specialCaller the class nominally calling the method |
| 1859 | * @return a method handle which can invoke the reflected method |
| 1860 | * @throws IllegalAccessException if access checking fails |
| 1861 | * or if the method's variable arity modifier bit |
| 1862 | * is set and {@code asVarargsCollector} fails |
| 1863 | * @throws NullPointerException if any argument is null |
| 1864 | */ |
| 1865 | public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException { |
| 1866 | if (m == null) { |
| 1867 | throw new NullPointerException("m == null"); |
| 1868 | } |
| 1869 | |
| 1870 | if (specialCaller == null) { |
| 1871 | throw new NullPointerException("specialCaller == null"); |
| 1872 | } |
| 1873 | |
| 1874 | if (!m.isAccessible()) { |
| 1875 | // Android-changed: Match Java language 9 behavior where unreflectSpecial continues |
| 1876 | // to require exact caller lookupClass match. |
| 1877 | checkSpecialCaller(specialCaller, null); |
| 1878 | } |
| 1879 | |
| 1880 | final MethodType methodType = MethodType.methodType(m.getReturnType(), |
| 1881 | m.getParameterTypes()); |
| 1882 | return findSpecial(m, methodType, m.getDeclaringClass() /* refc */, specialCaller); |
| 1883 | } |
| 1884 | |
| 1885 | /** |
| 1886 | * Produces a method handle for a reflected constructor. |
| 1887 | * The type of the method handle will be that of the constructor, |
| 1888 | * with the return type changed to the declaring class. |
| 1889 | * The method handle will perform a {@code newInstance} operation, |
| 1890 | * creating a new instance of the constructor's class on the |
| 1891 | * arguments passed to the method handle. |
| 1892 | * <p> |
| 1893 | * If the constructor's {@code accessible} flag is not set, |
| 1894 | * access checking is performed immediately on behalf of the lookup class. |
| 1895 | * <p> |
| 1896 | * The returned method handle will have |
| 1897 | * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
| 1898 | * the constructor's variable arity modifier bit ({@code 0x0080}) is set. |
| 1899 | * <p> |
| 1900 | * If the returned method handle is invoked, the constructor's class will |
| 1901 | * be initialized, if it has not already been initialized. |
| 1902 | * @param c the reflected constructor |
| 1903 | * @return a method handle which can invoke the reflected constructor |
| 1904 | * @throws IllegalAccessException if access checking fails |
| 1905 | * or if the method's variable arity modifier bit |
| 1906 | * is set and {@code asVarargsCollector} fails |
| 1907 | * @throws NullPointerException if the argument is null |
| 1908 | */ |
| 1909 | public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException { |
| 1910 | if (c == null) { |
| 1911 | throw new NullPointerException("c == null"); |
| 1912 | } |
| 1913 | |
| 1914 | if (!c.isAccessible()) { |
| 1915 | checkAccess(c.getDeclaringClass(), c.getDeclaringClass(), c.getModifiers(), |
| 1916 | c.getName()); |
| 1917 | } |
| 1918 | |
| 1919 | return createMethodHandleForConstructor(c); |
| 1920 | } |
| 1921 | |
| 1922 | /** |
| 1923 | * Produces a method handle giving read access to a reflected field. |
| 1924 | * The type of the method handle will have a return type of the field's |
| 1925 | * value type. |
| 1926 | * If the field is static, the method handle will take no arguments. |
| 1927 | * Otherwise, its single argument will be the instance containing |
| 1928 | * the field. |
| 1929 | * If the field's {@code accessible} flag is not set, |
| 1930 | * access checking is performed immediately on behalf of the lookup class. |
| 1931 | * <p> |
| 1932 | * If the field is static, and |
| 1933 | * if the returned method handle is invoked, the field's class will |
| 1934 | * be initialized, if it has not already been initialized. |
| 1935 | * @param f the reflected field |
| 1936 | * @return a method handle which can load values from the reflected field |
| 1937 | * @throws IllegalAccessException if access checking fails |
| 1938 | * @throws NullPointerException if the argument is null |
| 1939 | */ |
| 1940 | public MethodHandle unreflectGetter(Field f) throws IllegalAccessException { |
| 1941 | return findAccessor(f, f.getDeclaringClass(), f.getType(), |
| 1942 | Modifier.isStatic(f.getModifiers()) ? MethodHandle.SGET : MethodHandle.IGET, |
| 1943 | !f.isAccessible() /* performAccessChecks */); |
| 1944 | } |
| 1945 | |
| 1946 | /** |
| 1947 | * Produces a method handle giving write access to a reflected field. |
| 1948 | * The type of the method handle will have a void return type. |
| 1949 | * If the field is static, the method handle will take a single |
| 1950 | * argument, of the field's value type, the value to be stored. |
| 1951 | * Otherwise, the two arguments will be the instance containing |
| 1952 | * the field, and the value to be stored. |
| 1953 | * If the field's {@code accessible} flag is not set, |
| 1954 | * access checking is performed immediately on behalf of the lookup class. |
| 1955 | * <p> |
| 1956 | * If the field is static, and |
| 1957 | * if the returned method handle is invoked, the field's class will |
| 1958 | * be initialized, if it has not already been initialized. |
| 1959 | * @param f the reflected field |
| 1960 | * @return a method handle which can store values into the reflected field |
| 1961 | * @throws IllegalAccessException if access checking fails |
| 1962 | * @throws NullPointerException if the argument is null |
| 1963 | */ |
| 1964 | public MethodHandle unreflectSetter(Field f) throws IllegalAccessException { |
| 1965 | return findAccessor(f, f.getDeclaringClass(), f.getType(), |
| 1966 | Modifier.isStatic(f.getModifiers()) ? MethodHandle.SPUT : MethodHandle.IPUT, |
| 1967 | !f.isAccessible() /* performAccessChecks */); |
| 1968 | } |
| 1969 | |
| 1970 | // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method. |
| 1971 | /** |
| 1972 | * Produces a VarHandle giving access to a reflected field {@code f} |
| 1973 | * of type {@code T} declared in a class of type {@code R}. |
| 1974 | * The VarHandle's variable type is {@code T}. |
| 1975 | * If the field is non-static the VarHandle has one coordinate type, |
| 1976 | * {@code R}. Otherwise, the field is static, and the VarHandle has no |
| 1977 | * coordinate types. |
| 1978 | * <p> |
| 1979 | * Access checking is performed immediately on behalf of the lookup |
| 1980 | * class, regardless of the value of the field's {@code accessible} |
| 1981 | * flag. |
| 1982 | * <p> |
| 1983 | * If the field is static, and if the returned VarHandle is operated |
| 1984 | * on, the field's declaring class will be initialized, if it has not |
| 1985 | * already been initialized. |
| 1986 | * <p> |
| 1987 | * Certain access modes of the returned VarHandle are unsupported under |
| 1988 | * the following conditions: |
| 1989 | * <ul> |
| 1990 | * <li>if the field is declared {@code final}, then the write, atomic |
| 1991 | * update, numeric atomic update, and bitwise atomic update access |
| 1992 | * modes are unsupported. |
| 1993 | * <li>if the field type is anything other than {@code byte}, |
| 1994 | * {@code short}, {@code char}, {@code int}, {@code long}, |
| 1995 | * {@code float}, or {@code double} then numeric atomic update |
| 1996 | * access modes are unsupported. |
| 1997 | * <li>if the field type is anything other than {@code boolean}, |
| 1998 | * {@code byte}, {@code short}, {@code char}, {@code int} or |
| 1999 | * {@code long} then bitwise atomic update access modes are |
| 2000 | * unsupported. |
| 2001 | * </ul> |
| 2002 | * <p> |
| 2003 | * If the field is declared {@code volatile} then the returned VarHandle |
| 2004 | * will override access to the field (effectively ignore the |
| 2005 | * {@code volatile} declaration) in accordance to its specified |
| 2006 | * access modes. |
| 2007 | * <p> |
| 2008 | * If the field type is {@code float} or {@code double} then numeric |
| 2009 | * and atomic update access modes compare values using their bitwise |
| 2010 | * representation (see {@link Float#floatToRawIntBits} and |
| 2011 | * {@link Double#doubleToRawLongBits}, respectively). |
| 2012 | * @apiNote |
| 2013 | * Bitwise comparison of {@code float} values or {@code double} values, |
| 2014 | * as performed by the numeric and atomic update access modes, differ |
| 2015 | * from the primitive {@code ==} operator and the {@link Float#equals} |
| 2016 | * and {@link Double#equals} methods, specifically with respect to |
| 2017 | * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. |
| 2018 | * Care should be taken when performing a compare and set or a compare |
| 2019 | * and exchange operation with such values since the operation may |
| 2020 | * unexpectedly fail. |
| 2021 | * There are many possible NaN values that are considered to be |
| 2022 | * {@code NaN} in Java, although no IEEE 754 floating-point operation |
| 2023 | * provided by Java can distinguish between them. Operation failure can |
| 2024 | * occur if the expected or witness value is a NaN value and it is |
| 2025 | * transformed (perhaps in a platform specific manner) into another NaN |
| 2026 | * value, and thus has a different bitwise representation (see |
| 2027 | * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more |
| 2028 | * details). |
| 2029 | * The values {@code -0.0} and {@code +0.0} have different bitwise |
| 2030 | * representations but are considered equal when using the primitive |
| 2031 | * {@code ==} operator. Operation failure can occur if, for example, a |
| 2032 | * numeric algorithm computes an expected value to be say {@code -0.0} |
| 2033 | * and previously computed the witness value to be say {@code +0.0}. |
| 2034 | * @param f the reflected field, with a field of type {@code T}, and |
| 2035 | * a declaring class of type {@code R} |
| 2036 | * @return a VarHandle giving access to non-static fields or a static |
| 2037 | * field |
| 2038 | * @throws IllegalAccessException if access checking fails |
| 2039 | * @throws NullPointerException if the argument is null |
| 2040 | * @since 9 |
| 2041 | */ |
| 2042 | public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException { |
| 2043 | final boolean isStatic = Modifier.isStatic(f.getModifiers()); |
| 2044 | final boolean performAccessChecks = true; |
| 2045 | commonFieldChecks(f, f.getDeclaringClass(), f.getType(), isStatic, performAccessChecks); |
| 2046 | return isStatic ? StaticFieldVarHandle.create(f) : FieldVarHandle.create(f); |
| 2047 | } |
| 2048 | // END Android-changed: OpenJDK 9+181 VarHandle API factory method. |
| 2049 | |
| 2050 | /** |
| 2051 | * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a> |
| 2052 | * created by this lookup object or a similar one. |
| 2053 | * Security and access checks are performed to ensure that this lookup object |
| 2054 | * is capable of reproducing the target method handle. |
| 2055 | * This means that the cracking may fail if target is a direct method handle |
| 2056 | * but was created by an unrelated lookup object. |
| 2057 | * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> |
| 2058 | * and was created by a lookup object for a different class. |
| 2059 | * @param target a direct method handle to crack into symbolic reference components |
| 2060 | * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object |
| 2061 | * @exception SecurityException if a security manager is present and it |
| 2062 | * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
| 2063 | * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails |
| 2064 | * @exception NullPointerException if the target is {@code null} |
| 2065 | * @see MethodHandleInfo |
| 2066 | * @since 1.8 |
| 2067 | */ |
| 2068 | public MethodHandleInfo revealDirect(MethodHandle target) { |
| 2069 | MethodHandleImpl directTarget = getMethodHandleImpl(target); |
| 2070 | MethodHandleInfo info = directTarget.reveal(); |
| 2071 | |
| 2072 | try { |
| 2073 | checkAccess(lookupClass(), info.getDeclaringClass(), info.getModifiers(), |
| 2074 | info.getName()); |
| 2075 | } catch (IllegalAccessException exception) { |
| 2076 | throw new IllegalArgumentException("Unable to access memeber.", exception); |
| 2077 | } |
| 2078 | |
| 2079 | return info; |
| 2080 | } |
| 2081 | |
| 2082 | private boolean hasPrivateAccess() { |
| 2083 | return (allowedModes & PRIVATE) != 0; |
| 2084 | } |
| 2085 | |
| 2086 | /** Check public/protected/private bits on the symbolic reference class and its member. */ |
| 2087 | void checkAccess(Class<?> refc, Class<?> defc, int mods, String methName) |
| 2088 | throws IllegalAccessException { |
| 2089 | int allowedModes = this.allowedModes; |
| 2090 | |
| 2091 | if (Modifier.isProtected(mods) && |
| 2092 | defc == Object.class && |
| 2093 | "clone".equals(methName) && |
| 2094 | refc.isArray()) { |
| 2095 | // The JVM does this hack also. |
| 2096 | // (See ClassVerifier::verify_invoke_instructions |
| 2097 | // and LinkResolver::check_method_accessability.) |
| 2098 | // Because the JVM does not allow separate methods on array types, |
| 2099 | // there is no separate method for int[].clone. |
| 2100 | // All arrays simply inherit Object.clone. |
| 2101 | // But for access checking logic, we make Object.clone |
| 2102 | // (normally protected) appear to be public. |
| 2103 | // Later on, when the DirectMethodHandle is created, |
| 2104 | // its leading argument will be restricted to the |
| 2105 | // requested array type. |
| 2106 | // N.B. The return type is not adjusted, because |
| 2107 | // that is *not* the bytecode behavior. |
| 2108 | mods ^= Modifier.PROTECTED | Modifier.PUBLIC; |
| 2109 | } |
| 2110 | |
| 2111 | if (Modifier.isProtected(mods) && Modifier.isConstructor(mods)) { |
| 2112 | // cannot "new" a protected ctor in a different package |
| 2113 | mods ^= Modifier.PROTECTED; |
| 2114 | } |
| 2115 | |
| 2116 | if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0) |
| 2117 | return; // common case |
| 2118 | int requestedModes = fixmods(mods); // adjust 0 => PACKAGE |
| 2119 | if ((requestedModes & allowedModes) != 0) { |
| 2120 | if (VerifyAccess.isMemberAccessible(refc, defc, mods, lookupClass(), allowedModes)) |
| 2121 | return; |
| 2122 | } else { |
| 2123 | // Protected members can also be checked as if they were package-private. |
| 2124 | if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0 |
| 2125 | && VerifyAccess.isSamePackage(defc, lookupClass())) |
| 2126 | return; |
| 2127 | } |
| 2128 | |
| 2129 | throwMakeAccessException(accessFailedMessage(refc, defc, mods), this); |
| 2130 | } |
| 2131 | |
| 2132 | String accessFailedMessage(Class<?> refc, Class<?> defc, int mods) { |
| 2133 | // check the class first: |
| 2134 | boolean classOK = (Modifier.isPublic(defc.getModifiers()) && |
| 2135 | (defc == refc || |
| 2136 | Modifier.isPublic(refc.getModifiers()))); |
| 2137 | if (!classOK && (allowedModes & PACKAGE) != 0) { |
| 2138 | classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) && |
| 2139 | (defc == refc || |
| 2140 | VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES))); |
| 2141 | } |
| 2142 | if (!classOK) |
| 2143 | return "class is not public"; |
| 2144 | if (Modifier.isPublic(mods)) |
| 2145 | return "access to public member failed"; // (how?) |
| 2146 | if (Modifier.isPrivate(mods)) |
| 2147 | return "member is private"; |
| 2148 | if (Modifier.isProtected(mods)) |
| 2149 | return "member is protected"; |
| 2150 | return "member is private to package"; |
| 2151 | } |
| 2152 | |
| 2153 | // Android-changed: checkSpecialCaller assumes that ALLOW_NESTMATE_ACCESS = false, |
| 2154 | // as in upstream OpenJDK. |
| 2155 | // |
| 2156 | // private static final boolean ALLOW_NESTMATE_ACCESS = false; |
| 2157 | |
| 2158 | // Android-changed: Match java language 9 behavior allowing special access if the reflected |
| 2159 | // class (called 'refc', the class from which the method is being accessed) is an interface |
| 2160 | // and is implemented by the caller. |
| 2161 | private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException { |
| 2162 | // Android-changed: No support for TRUSTED lookups. Also construct the |
| 2163 | // IllegalAccessException by hand because the upstream code implicitly assumes |
| 2164 | // that the lookupClass == specialCaller. |
| 2165 | // |
| 2166 | // if (allowedModes == TRUSTED) return; |
| 2167 | boolean isInterfaceLookup = (refc != null && |
| 2168 | refc.isInterface() && |
| 2169 | refc.isAssignableFrom(specialCaller)); |
| 2170 | if (!hasPrivateAccess() || (specialCaller != lookupClass() && !isInterfaceLookup)) { |
| 2171 | throw new IllegalAccessException("no private access for invokespecial : " |
| 2172 | + specialCaller + ", from" + this); |
| 2173 | } |
| 2174 | } |
| 2175 | |
| 2176 | private void throwMakeAccessException(String message, Object from) throws |
| 2177 | IllegalAccessException{ |
| 2178 | message = message + ": "+ toString(); |
| 2179 | if (from != null) message += ", from " + from; |
| 2180 | throw new IllegalAccessException(message); |
| 2181 | } |
| 2182 | |
| 2183 | private void checkReturnType(Method method, MethodType methodType) |
| 2184 | throws NoSuchMethodException { |
| 2185 | if (method.getReturnType() != methodType.rtype()) { |
| 2186 | throw new NoSuchMethodException(method.getName() + methodType); |
| 2187 | } |
| 2188 | } |
| 2189 | } |
| 2190 | |
| 2191 | /** |
| 2192 | * "Cracks" {@code target} to reveal the underlying {@code MethodHandleImpl}. |
| 2193 | */ |
| 2194 | private static MethodHandleImpl getMethodHandleImpl(MethodHandle target) { |
| 2195 | // Special case : We implement handles to constructors as transformers, |
| 2196 | // so we must extract the underlying handle from the transformer. |
| 2197 | if (target instanceof Transformers.Construct) { |
| 2198 | target = ((Transformers.Construct) target).getConstructorHandle(); |
| 2199 | } |
| 2200 | |
| 2201 | // Special case: Var-args methods are also implemented as Transformers, |
| 2202 | // so we should get the underlying handle in that case as well. |
| 2203 | if (target instanceof Transformers.VarargsCollector) { |
| 2204 | target = target.asFixedArity(); |
| 2205 | } |
| 2206 | |
| 2207 | if (target instanceof MethodHandleImpl) { |
| 2208 | return (MethodHandleImpl) target; |
| 2209 | } |
| 2210 | |
| 2211 | throw new IllegalArgumentException(target + " is not a direct handle"); |
| 2212 | } |
| 2213 | |
| 2214 | // Android-removed: unsupported @jvms tag in doc-comment. |
| 2215 | /** |
| 2216 | * Produces a method handle constructing arrays of a desired type, |
| 2217 | * as if by the {@code anewarray} bytecode. |
| 2218 | * The return type of the method handle will be the array type. |
| 2219 | * The type of its sole argument will be {@code int}, which specifies the size of the array. |
| 2220 | * |
| 2221 | * <p> If the returned method handle is invoked with a negative |
| 2222 | * array size, a {@code NegativeArraySizeException} will be thrown. |
| 2223 | * |
| 2224 | * @param arrayClass an array type |
| 2225 | * @return a method handle which can create arrays of the given type |
| 2226 | * @throws NullPointerException if the argument is {@code null} |
| 2227 | * @throws IllegalArgumentException if {@code arrayClass} is not an array type |
| 2228 | * @see java.lang.reflect.Array#newInstance(Class, int) |
| 2229 | * @since 9 |
| 2230 | */ |
| 2231 | public static |
| 2232 | MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException { |
| 2233 | if (!arrayClass.isArray()) { |
| 2234 | throw newIllegalArgumentException("not an array class: " + arrayClass.getName()); |
| 2235 | } |
| 2236 | // Android-changed: transformer based implementation. |
| 2237 | // MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance). |
| 2238 | // bindTo(arrayClass.getComponentType()); |
| 2239 | // return ani.asType(ani.type().changeReturnType(arrayClass)) |
| 2240 | return new Transformers.ArrayConstructor(arrayClass); |
| 2241 | } |
| 2242 | |
| 2243 | // Android-removed: unsupported @jvms tag in doc-comment. |
| 2244 | /** |
| 2245 | * Produces a method handle returning the length of an array, |
| 2246 | * as if by the {@code arraylength} bytecode. |
| 2247 | * The type of the method handle will have {@code int} as return type, |
| 2248 | * and its sole argument will be the array type. |
| 2249 | * |
| 2250 | * <p> If the returned method handle is invoked with a {@code null} |
| 2251 | * array reference, a {@code NullPointerException} will be thrown. |
| 2252 | * |
| 2253 | * @param arrayClass an array type |
| 2254 | * @return a method handle which can retrieve the length of an array of the given array type |
| 2255 | * @throws NullPointerException if the argument is {@code null} |
| 2256 | * @throws IllegalArgumentException if arrayClass is not an array type |
| 2257 | * @since 9 |
| 2258 | */ |
| 2259 | public static |
| 2260 | MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException { |
| 2261 | // Android-changed: transformer based implementation. |
| 2262 | // return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH); |
| 2263 | if (!arrayClass.isArray()) { |
| 2264 | throw newIllegalArgumentException("not an array class: " + arrayClass.getName()); |
| 2265 | } |
| 2266 | return new Transformers.ArrayLength(arrayClass); |
| 2267 | } |
| 2268 | |
| 2269 | // BEGIN Android-added: method to check if a class is an array. |
| 2270 | private static void checkClassIsArray(Class<?> c) { |
| 2271 | if (!c.isArray()) { |
| 2272 | throw new IllegalArgumentException("Not an array type: " + c); |
| 2273 | } |
| 2274 | } |
| 2275 | |
| 2276 | private static void checkTypeIsViewable(Class<?> componentType) { |
| 2277 | if (componentType == short.class || |
| 2278 | componentType == char.class || |
| 2279 | componentType == int.class || |
| 2280 | componentType == long.class || |
| 2281 | componentType == float.class || |
| 2282 | componentType == double.class) { |
| 2283 | return; |
| 2284 | } |
| 2285 | throw new UnsupportedOperationException("Component type not supported: " + componentType); |
| 2286 | } |
| 2287 | // END Android-added: method to check if a class is an array. |
| 2288 | |
| 2289 | /** |
| 2290 | * Produces a method handle giving read access to elements of an array. |
| 2291 | * The type of the method handle will have a return type of the array's |
| 2292 | * element type. Its first argument will be the array type, |
| 2293 | * and the second will be {@code int}. |
| 2294 | * @param arrayClass an array type |
| 2295 | * @return a method handle which can load values from the given array type |
| 2296 | * @throws NullPointerException if the argument is null |
| 2297 | * @throws IllegalArgumentException if arrayClass is not an array type |
| 2298 | */ |
| 2299 | public static |
| 2300 | MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException { |
| 2301 | checkClassIsArray(arrayClass); |
| 2302 | final Class<?> componentType = arrayClass.getComponentType(); |
| 2303 | if (componentType.isPrimitive()) { |
| 2304 | try { |
| 2305 | return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, |
| 2306 | "arrayElementGetter", |
| 2307 | MethodType.methodType(componentType, arrayClass, int.class)); |
| 2308 | } catch (NoSuchMethodException | IllegalAccessException exception) { |
| 2309 | throw new AssertionError(exception); |
| 2310 | } |
| 2311 | } |
| 2312 | |
| 2313 | return new Transformers.ReferenceArrayElementGetter(arrayClass); |
| 2314 | } |
| 2315 | |
| 2316 | /** @hide */ public static byte arrayElementGetter(byte[] array, int i) { return array[i]; } |
| 2317 | /** @hide */ public static boolean arrayElementGetter(boolean[] array, int i) { return array[i]; } |
| 2318 | /** @hide */ public static char arrayElementGetter(char[] array, int i) { return array[i]; } |
| 2319 | /** @hide */ public static short arrayElementGetter(short[] array, int i) { return array[i]; } |
| 2320 | /** @hide */ public static int arrayElementGetter(int[] array, int i) { return array[i]; } |
| 2321 | /** @hide */ public static long arrayElementGetter(long[] array, int i) { return array[i]; } |
| 2322 | /** @hide */ public static float arrayElementGetter(float[] array, int i) { return array[i]; } |
| 2323 | /** @hide */ public static double arrayElementGetter(double[] array, int i) { return array[i]; } |
| 2324 | |
| 2325 | /** |
| 2326 | * Produces a method handle giving write access to elements of an array. |
| 2327 | * The type of the method handle will have a void return type. |
| 2328 | * Its last argument will be the array's element type. |
| 2329 | * The first and second arguments will be the array type and int. |
| 2330 | * @param arrayClass the class of an array |
| 2331 | * @return a method handle which can store values into the array type |
| 2332 | * @throws NullPointerException if the argument is null |
| 2333 | * @throws IllegalArgumentException if arrayClass is not an array type |
| 2334 | */ |
| 2335 | public static |
| 2336 | MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException { |
| 2337 | checkClassIsArray(arrayClass); |
| 2338 | final Class<?> componentType = arrayClass.getComponentType(); |
| 2339 | if (componentType.isPrimitive()) { |
| 2340 | try { |
| 2341 | return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, |
| 2342 | "arrayElementSetter", |
| 2343 | MethodType.methodType(void.class, arrayClass, int.class, componentType)); |
| 2344 | } catch (NoSuchMethodException | IllegalAccessException exception) { |
| 2345 | throw new AssertionError(exception); |
| 2346 | } |
| 2347 | } |
| 2348 | |
| 2349 | return new Transformers.ReferenceArrayElementSetter(arrayClass); |
| 2350 | } |
| 2351 | |
| 2352 | /** @hide */ |
| 2353 | public static void arrayElementSetter(byte[] array, int i, byte val) { array[i] = val; } |
| 2354 | /** @hide */ |
| 2355 | public static void arrayElementSetter(boolean[] array, int i, boolean val) { array[i] = val; } |
| 2356 | /** @hide */ |
| 2357 | public static void arrayElementSetter(char[] array, int i, char val) { array[i] = val; } |
| 2358 | /** @hide */ |
| 2359 | public static void arrayElementSetter(short[] array, int i, short val) { array[i] = val; } |
| 2360 | /** @hide */ |
| 2361 | public static void arrayElementSetter(int[] array, int i, int val) { array[i] = val; } |
| 2362 | /** @hide */ |
| 2363 | public static void arrayElementSetter(long[] array, int i, long val) { array[i] = val; } |
| 2364 | /** @hide */ |
| 2365 | public static void arrayElementSetter(float[] array, int i, float val) { array[i] = val; } |
| 2366 | /** @hide */ |
| 2367 | public static void arrayElementSetter(double[] array, int i, double val) { array[i] = val; } |
| 2368 | |
| 2369 | // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory methods. |
| 2370 | /** |
| 2371 | * Produces a VarHandle giving access to elements of an array of type |
| 2372 | * {@code arrayClass}. The VarHandle's variable type is the component type |
| 2373 | * of {@code arrayClass} and the list of coordinate types is |
| 2374 | * {@code (arrayClass, int)}, where the {@code int} coordinate type |
| 2375 | * corresponds to an argument that is an index into an array. |
| 2376 | * <p> |
| 2377 | * Certain access modes of the returned VarHandle are unsupported under |
| 2378 | * the following conditions: |
| 2379 | * <ul> |
| 2380 | * <li>if the component type is anything other than {@code byte}, |
| 2381 | * {@code short}, {@code char}, {@code int}, {@code long}, |
| 2382 | * {@code float}, or {@code double} then numeric atomic update access |
| 2383 | * modes are unsupported. |
| 2384 | * <li>if the field type is anything other than {@code boolean}, |
| 2385 | * {@code byte}, {@code short}, {@code char}, {@code int} or |
| 2386 | * {@code long} then bitwise atomic update access modes are |
| 2387 | * unsupported. |
| 2388 | * </ul> |
| 2389 | * <p> |
| 2390 | * If the component type is {@code float} or {@code double} then numeric |
| 2391 | * and atomic update access modes compare values using their bitwise |
| 2392 | * representation (see {@link Float#floatToRawIntBits} and |
| 2393 | * {@link Double#doubleToRawLongBits}, respectively). |
| 2394 | * @apiNote |
| 2395 | * Bitwise comparison of {@code float} values or {@code double} values, |
| 2396 | * as performed by the numeric and atomic update access modes, differ |
| 2397 | * from the primitive {@code ==} operator and the {@link Float#equals} |
| 2398 | * and {@link Double#equals} methods, specifically with respect to |
| 2399 | * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. |
| 2400 | * Care should be taken when performing a compare and set or a compare |
| 2401 | * and exchange operation with such values since the operation may |
| 2402 | * unexpectedly fail. |
| 2403 | * There are many possible NaN values that are considered to be |
| 2404 | * {@code NaN} in Java, although no IEEE 754 floating-point operation |
| 2405 | * provided by Java can distinguish between them. Operation failure can |
| 2406 | * occur if the expected or witness value is a NaN value and it is |
| 2407 | * transformed (perhaps in a platform specific manner) into another NaN |
| 2408 | * value, and thus has a different bitwise representation (see |
| 2409 | * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more |
| 2410 | * details). |
| 2411 | * The values {@code -0.0} and {@code +0.0} have different bitwise |
| 2412 | * representations but are considered equal when using the primitive |
| 2413 | * {@code ==} operator. Operation failure can occur if, for example, a |
| 2414 | * numeric algorithm computes an expected value to be say {@code -0.0} |
| 2415 | * and previously computed the witness value to be say {@code +0.0}. |
| 2416 | * @param arrayClass the class of an array, of type {@code T[]} |
| 2417 | * @return a VarHandle giving access to elements of an array |
| 2418 | * @throws NullPointerException if the arrayClass is null |
| 2419 | * @throws IllegalArgumentException if arrayClass is not an array type |
| 2420 | * @since 9 |
| 2421 | */ |
| 2422 | public static |
| 2423 | VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException { |
| 2424 | checkClassIsArray(arrayClass); |
| 2425 | return ArrayElementVarHandle.create(arrayClass); |
| 2426 | } |
| 2427 | |
| 2428 | /** |
| 2429 | * Produces a VarHandle giving access to elements of a {@code byte[]} array |
| 2430 | * viewed as if it were a different primitive array type, such as |
| 2431 | * {@code int[]} or {@code long[]}. |
| 2432 | * The VarHandle's variable type is the component type of |
| 2433 | * {@code viewArrayClass} and the list of coordinate types is |
| 2434 | * {@code (byte[], int)}, where the {@code int} coordinate type |
| 2435 | * corresponds to an argument that is an index into a {@code byte[]} array. |
| 2436 | * The returned VarHandle accesses bytes at an index in a {@code byte[]} |
| 2437 | * array, composing bytes to or from a value of the component type of |
| 2438 | * {@code viewArrayClass} according to the given endianness. |
| 2439 | * <p> |
| 2440 | * The supported component types (variables types) are {@code short}, |
| 2441 | * {@code char}, {@code int}, {@code long}, {@code float} and |
| 2442 | * {@code double}. |
| 2443 | * <p> |
| 2444 | * Access of bytes at a given index will result in an |
| 2445 | * {@code IndexOutOfBoundsException} if the index is less than {@code 0} |
| 2446 | * or greater than the {@code byte[]} array length minus the size (in bytes) |
| 2447 | * of {@code T}. |
| 2448 | * <p> |
| 2449 | * Access of bytes at an index may be aligned or misaligned for {@code T}, |
| 2450 | * with respect to the underlying memory address, {@code A} say, associated |
| 2451 | * with the array and index. |
| 2452 | * If access is misaligned then access for anything other than the |
| 2453 | * {@code get} and {@code set} access modes will result in an |
| 2454 | * {@code IllegalStateException}. In such cases atomic access is only |
| 2455 | * guaranteed with respect to the largest power of two that divides the GCD |
| 2456 | * of {@code A} and the size (in bytes) of {@code T}. |
| 2457 | * If access is aligned then following access modes are supported and are |
| 2458 | * guaranteed to support atomic access: |
| 2459 | * <ul> |
| 2460 | * <li>read write access modes for all {@code T}, with the exception of |
| 2461 | * access modes {@code get} and {@code set} for {@code long} and |
| 2462 | * {@code double} on 32-bit platforms. |
| 2463 | * <li>atomic update access modes for {@code int}, {@code long}, |
| 2464 | * {@code float} or {@code double}. |
| 2465 | * (Future major platform releases of the JDK may support additional |
| 2466 | * types for certain currently unsupported access modes.) |
| 2467 | * <li>numeric atomic update access modes for {@code int} and {@code long}. |
| 2468 | * (Future major platform releases of the JDK may support additional |
| 2469 | * numeric types for certain currently unsupported access modes.) |
| 2470 | * <li>bitwise atomic update access modes for {@code int} and {@code long}. |
| 2471 | * (Future major platform releases of the JDK may support additional |
| 2472 | * numeric types for certain currently unsupported access modes.) |
| 2473 | * </ul> |
| 2474 | * <p> |
| 2475 | * Misaligned access, and therefore atomicity guarantees, may be determined |
| 2476 | * for {@code byte[]} arrays without operating on a specific array. Given |
| 2477 | * an {@code index}, {@code T} and it's corresponding boxed type, |
| 2478 | * {@code T_BOX}, misalignment may be determined as follows: |
| 2479 | * <pre>{@code |
| 2480 | * int sizeOfT = T_BOX.BYTES; // size in bytes of T |
| 2481 | * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]). |
| 2482 | * alignmentOffset(0, sizeOfT); |
| 2483 | * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT; |
| 2484 | * boolean isMisaligned = misalignedAtIndex != 0; |
| 2485 | * }</pre> |
| 2486 | * <p> |
| 2487 | * If the variable type is {@code float} or {@code double} then atomic |
| 2488 | * update access modes compare values using their bitwise representation |
| 2489 | * (see {@link Float#floatToRawIntBits} and |
| 2490 | * {@link Double#doubleToRawLongBits}, respectively). |
| 2491 | * @param viewArrayClass the view array class, with a component type of |
| 2492 | * type {@code T} |
| 2493 | * @param byteOrder the endianness of the view array elements, as |
| 2494 | * stored in the underlying {@code byte} array |
| 2495 | * @return a VarHandle giving access to elements of a {@code byte[]} array |
| 2496 | * viewed as if elements corresponding to the components type of the view |
| 2497 | * array class |
| 2498 | * @throws NullPointerException if viewArrayClass or byteOrder is null |
| 2499 | * @throws IllegalArgumentException if viewArrayClass is not an array type |
| 2500 | * @throws UnsupportedOperationException if the component type of |
| 2501 | * viewArrayClass is not supported as a variable type |
| 2502 | * @since 9 |
| 2503 | */ |
| 2504 | public static |
| 2505 | VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass, |
| 2506 | ByteOrder byteOrder) throws IllegalArgumentException { |
| 2507 | checkClassIsArray(viewArrayClass); |
| 2508 | checkTypeIsViewable(viewArrayClass.getComponentType()); |
| 2509 | return ByteArrayViewVarHandle.create(viewArrayClass, byteOrder); |
| 2510 | } |
| 2511 | |
| 2512 | /** |
| 2513 | * Produces a VarHandle giving access to elements of a {@code ByteBuffer} |
| 2514 | * viewed as if it were an array of elements of a different primitive |
| 2515 | * component type to that of {@code byte}, such as {@code int[]} or |
| 2516 | * {@code long[]}. |
| 2517 | * The VarHandle's variable type is the component type of |
| 2518 | * {@code viewArrayClass} and the list of coordinate types is |
| 2519 | * {@code (ByteBuffer, int)}, where the {@code int} coordinate type |
| 2520 | * corresponds to an argument that is an index into a {@code byte[]} array. |
| 2521 | * The returned VarHandle accesses bytes at an index in a |
| 2522 | * {@code ByteBuffer}, composing bytes to or from a value of the component |
| 2523 | * type of {@code viewArrayClass} according to the given endianness. |
| 2524 | * <p> |
| 2525 | * The supported component types (variables types) are {@code short}, |
| 2526 | * {@code char}, {@code int}, {@code long}, {@code float} and |
| 2527 | * {@code double}. |
| 2528 | * <p> |
| 2529 | * Access will result in a {@code ReadOnlyBufferException} for anything |
| 2530 | * other than the read access modes if the {@code ByteBuffer} is read-only. |
| 2531 | * <p> |
| 2532 | * Access of bytes at a given index will result in an |
| 2533 | * {@code IndexOutOfBoundsException} if the index is less than {@code 0} |
| 2534 | * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of |
| 2535 | * {@code T}. |
| 2536 | * <p> |
| 2537 | * Access of bytes at an index may be aligned or misaligned for {@code T}, |
| 2538 | * with respect to the underlying memory address, {@code A} say, associated |
| 2539 | * with the {@code ByteBuffer} and index. |
| 2540 | * If access is misaligned then access for anything other than the |
| 2541 | * {@code get} and {@code set} access modes will result in an |
| 2542 | * {@code IllegalStateException}. In such cases atomic access is only |
| 2543 | * guaranteed with respect to the largest power of two that divides the GCD |
| 2544 | * of {@code A} and the size (in bytes) of {@code T}. |
| 2545 | * If access is aligned then following access modes are supported and are |
| 2546 | * guaranteed to support atomic access: |
| 2547 | * <ul> |
| 2548 | * <li>read write access modes for all {@code T}, with the exception of |
| 2549 | * access modes {@code get} and {@code set} for {@code long} and |
| 2550 | * {@code double} on 32-bit platforms. |
| 2551 | * <li>atomic update access modes for {@code int}, {@code long}, |
| 2552 | * {@code float} or {@code double}. |
| 2553 | * (Future major platform releases of the JDK may support additional |
| 2554 | * types for certain currently unsupported access modes.) |
| 2555 | * <li>numeric atomic update access modes for {@code int} and {@code long}. |
| 2556 | * (Future major platform releases of the JDK may support additional |
| 2557 | * numeric types for certain currently unsupported access modes.) |
| 2558 | * <li>bitwise atomic update access modes for {@code int} and {@code long}. |
| 2559 | * (Future major platform releases of the JDK may support additional |
| 2560 | * numeric types for certain currently unsupported access modes.) |
| 2561 | * </ul> |
| 2562 | * <p> |
| 2563 | * Misaligned access, and therefore atomicity guarantees, may be determined |
| 2564 | * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an |
| 2565 | * {@code index}, {@code T} and it's corresponding boxed type, |
| 2566 | * {@code T_BOX}, as follows: |
| 2567 | * <pre>{@code |
| 2568 | * int sizeOfT = T_BOX.BYTES; // size in bytes of T |
| 2569 | * ByteBuffer bb = ... |
| 2570 | * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT); |
| 2571 | * boolean isMisaligned = misalignedAtIndex != 0; |
| 2572 | * }</pre> |
| 2573 | * <p> |
| 2574 | * If the variable type is {@code float} or {@code double} then atomic |
| 2575 | * update access modes compare values using their bitwise representation |
| 2576 | * (see {@link Float#floatToRawIntBits} and |
| 2577 | * {@link Double#doubleToRawLongBits}, respectively). |
| 2578 | * @param viewArrayClass the view array class, with a component type of |
| 2579 | * type {@code T} |
| 2580 | * @param byteOrder the endianness of the view array elements, as |
| 2581 | * stored in the underlying {@code ByteBuffer} (Note this overrides the |
| 2582 | * endianness of a {@code ByteBuffer}) |
| 2583 | * @return a VarHandle giving access to elements of a {@code ByteBuffer} |
| 2584 | * viewed as if elements corresponding to the components type of the view |
| 2585 | * array class |
| 2586 | * @throws NullPointerException if viewArrayClass or byteOrder is null |
| 2587 | * @throws IllegalArgumentException if viewArrayClass is not an array type |
| 2588 | * @throws UnsupportedOperationException if the component type of |
| 2589 | * viewArrayClass is not supported as a variable type |
| 2590 | * @since 9 |
| 2591 | */ |
| 2592 | public static |
| 2593 | VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass, |
| 2594 | ByteOrder byteOrder) throws IllegalArgumentException { |
| 2595 | checkClassIsArray(viewArrayClass); |
| 2596 | checkTypeIsViewable(viewArrayClass.getComponentType()); |
| 2597 | return ByteBufferViewVarHandle.create(viewArrayClass, byteOrder); |
| 2598 | } |
| 2599 | // END Android-changed: OpenJDK 9+181 VarHandle API factory methods. |
| 2600 | |
| 2601 | /// method handle invocation (reflective style) |
| 2602 | |
| 2603 | /** |
| 2604 | * Produces a method handle which will invoke any method handle of the |
| 2605 | * given {@code type}, with a given number of trailing arguments replaced by |
| 2606 | * a single trailing {@code Object[]} array. |
| 2607 | * The resulting invoker will be a method handle with the following |
| 2608 | * arguments: |
| 2609 | * <ul> |
| 2610 | * <li>a single {@code MethodHandle} target |
| 2611 | * <li>zero or more leading values (counted by {@code leadingArgCount}) |
| 2612 | * <li>an {@code Object[]} array containing trailing arguments |
| 2613 | * </ul> |
| 2614 | * <p> |
| 2615 | * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with |
| 2616 | * the indicated {@code type}. |
| 2617 | * That is, if the target is exactly of the given {@code type}, it will behave |
| 2618 | * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType} |
| 2619 | * is used to convert the target to the required {@code type}. |
| 2620 | * <p> |
| 2621 | * The type of the returned invoker will not be the given {@code type}, but rather |
| 2622 | * will have all parameters except the first {@code leadingArgCount} |
| 2623 | * replaced by a single array of type {@code Object[]}, which will be |
| 2624 | * the final parameter. |
| 2625 | * <p> |
| 2626 | * Before invoking its target, the invoker will spread the final array, apply |
| 2627 | * reference casts as necessary, and unbox and widen primitive arguments. |
| 2628 | * If, when the invoker is called, the supplied array argument does |
| 2629 | * not have the correct number of elements, the invoker will throw |
| 2630 | * an {@link IllegalArgumentException} instead of invoking the target. |
| 2631 | * <p> |
| 2632 | * This method is equivalent to the following code (though it may be more efficient): |
| 2633 | * <blockquote><pre>{@code |
| 2634 | MethodHandle invoker = MethodHandles.invoker(type); |
| 2635 | int spreadArgCount = type.parameterCount() - leadingArgCount; |
| 2636 | invoker = invoker.asSpreader(Object[].class, spreadArgCount); |
| 2637 | return invoker; |
| 2638 | * }</pre></blockquote> |
| 2639 | * This method throws no reflective or security exceptions. |
| 2640 | * @param type the desired target type |
| 2641 | * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target |
| 2642 | * @return a method handle suitable for invoking any method handle of the given type |
| 2643 | * @throws NullPointerException if {@code type} is null |
| 2644 | * @throws IllegalArgumentException if {@code leadingArgCount} is not in |
| 2645 | * the range from 0 to {@code type.parameterCount()} inclusive, |
| 2646 | * or if the resulting method handle's type would have |
| 2647 | * <a href="MethodHandle.html#maxarity">too many parameters</a> |
| 2648 | */ |
| 2649 | static public |
| 2650 | MethodHandle spreadInvoker(MethodType type, int leadingArgCount) { |
| 2651 | if (leadingArgCount < 0 || leadingArgCount > type.parameterCount()) |
| 2652 | throw newIllegalArgumentException("bad argument count", leadingArgCount); |
| 2653 | |
| 2654 | MethodHandle invoker = MethodHandles.invoker(type); |
| 2655 | int spreadArgCount = type.parameterCount() - leadingArgCount; |
| 2656 | invoker = invoker.asSpreader(Object[].class, spreadArgCount); |
| 2657 | return invoker; |
| 2658 | } |
| 2659 | |
| 2660 | /** |
| 2661 | * Produces a special <em>invoker method handle</em> which can be used to |
| 2662 | * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}. |
| 2663 | * The resulting invoker will have a type which is |
| 2664 | * exactly equal to the desired type, except that it will accept |
| 2665 | * an additional leading argument of type {@code MethodHandle}. |
| 2666 | * <p> |
| 2667 | * This method is equivalent to the following code (though it may be more efficient): |
| 2668 | * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)} |
| 2669 | * |
| 2670 | * <p style="font-size:smaller;"> |
| 2671 | * <em>Discussion:</em> |
| 2672 | * Invoker method handles can be useful when working with variable method handles |
| 2673 | * of unknown types. |
| 2674 | * For example, to emulate an {@code invokeExact} call to a variable method |
| 2675 | * handle {@code M}, extract its type {@code T}, |
| 2676 | * look up the invoker method {@code X} for {@code T}, |
| 2677 | * and call the invoker method, as {@code X.invoke(T, A...)}. |
| 2678 | * (It would not work to call {@code X.invokeExact}, since the type {@code T} |
| 2679 | * is unknown.) |
| 2680 | * If spreading, collecting, or other argument transformations are required, |
| 2681 | * they can be applied once to the invoker {@code X} and reused on many {@code M} |
| 2682 | * method handle values, as long as they are compatible with the type of {@code X}. |
| 2683 | * <p style="font-size:smaller;"> |
| 2684 | * <em>(Note: The invoker method is not available via the Core Reflection API. |
| 2685 | * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} |
| 2686 | * on the declared {@code invokeExact} or {@code invoke} method will raise an |
| 2687 | * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> |
| 2688 | * <p> |
| 2689 | * This method throws no reflective or security exceptions. |
| 2690 | * @param type the desired target type |
| 2691 | * @return a method handle suitable for invoking any method handle of the given type |
| 2692 | * @throws IllegalArgumentException if the resulting method handle's type would have |
| 2693 | * <a href="MethodHandle.html#maxarity">too many parameters</a> |
| 2694 | */ |
| 2695 | static public |
| 2696 | MethodHandle exactInvoker(MethodType type) { |
| 2697 | return new Transformers.Invoker(type, true /* isExactInvoker */); |
| 2698 | } |
| 2699 | |
| 2700 | /** |
| 2701 | * Produces a special <em>invoker method handle</em> which can be used to |
| 2702 | * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}. |
| 2703 | * The resulting invoker will have a type which is |
| 2704 | * exactly equal to the desired type, except that it will accept |
| 2705 | * an additional leading argument of type {@code MethodHandle}. |
| 2706 | * <p> |
| 2707 | * Before invoking its target, if the target differs from the expected type, |
| 2708 | * the invoker will apply reference casts as |
| 2709 | * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}. |
| 2710 | * Similarly, the return value will be converted as necessary. |
| 2711 | * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle}, |
| 2712 | * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}. |
| 2713 | * <p> |
| 2714 | * This method is equivalent to the following code (though it may be more efficient): |
| 2715 | * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)} |
| 2716 | * <p style="font-size:smaller;"> |
| 2717 | * <em>Discussion:</em> |
| 2718 | * A {@linkplain MethodType#genericMethodType general method type} is one which |
| 2719 | * mentions only {@code Object} arguments and return values. |
| 2720 | * An invoker for such a type is capable of calling any method handle |
| 2721 | * of the same arity as the general type. |
| 2722 | * <p style="font-size:smaller;"> |
| 2723 | * <em>(Note: The invoker method is not available via the Core Reflection API. |
| 2724 | * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} |
| 2725 | * on the declared {@code invokeExact} or {@code invoke} method will raise an |
| 2726 | * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> |
| 2727 | * <p> |
| 2728 | * This method throws no reflective or security exceptions. |
| 2729 | * @param type the desired target type |
| 2730 | * @return a method handle suitable for invoking any method handle convertible to the given type |
| 2731 | * @throws IllegalArgumentException if the resulting method handle's type would have |
| 2732 | * <a href="MethodHandle.html#maxarity">too many parameters</a> |
| 2733 | */ |
| 2734 | static public |
| 2735 | MethodHandle invoker(MethodType type) { |
| 2736 | return new Transformers.Invoker(type, false /* isExactInvoker */); |
| 2737 | } |
| 2738 | |
| 2739 | // BEGIN Android-added: resolver for VarHandle accessor methods. |
| 2740 | static private MethodHandle methodHandleForVarHandleAccessor(VarHandle.AccessMode accessMode, |
| 2741 | MethodType type, |
| 2742 | boolean isExactInvoker) { |
| 2743 | Class<?> refc = VarHandle.class; |
| 2744 | Method method; |
| 2745 | try { |
| 2746 | method = refc.getDeclaredMethod(accessMode.methodName(), Object[].class); |
| 2747 | } catch (NoSuchMethodException e) { |
| 2748 | throw new InternalError("No method for AccessMode " + accessMode, e); |
| 2749 | } |
| 2750 | MethodType methodType = type.insertParameterTypes(0, VarHandle.class); |
| 2751 | int kind = isExactInvoker ? MethodHandle.INVOKE_VAR_HANDLE_EXACT |
| 2752 | : MethodHandle.INVOKE_VAR_HANDLE; |
| 2753 | return new MethodHandleImpl(method.getArtMethod(), kind, methodType); |
| 2754 | } |
| 2755 | // END Android-added: resolver for VarHandle accessor methods. |
| 2756 | |
| 2757 | /** |
| 2758 | * Produces a special <em>invoker method handle</em> which can be used to |
| 2759 | * invoke a signature-polymorphic access mode method on any VarHandle whose |
| 2760 | * associated access mode type is compatible with the given type. |
| 2761 | * The resulting invoker will have a type which is exactly equal to the |
| 2762 | * desired given type, except that it will accept an additional leading |
| 2763 | * argument of type {@code VarHandle}. |
| 2764 | * |
| 2765 | * @param accessMode the VarHandle access mode |
| 2766 | * @param type the desired target type |
| 2767 | * @return a method handle suitable for invoking an access mode method of |
| 2768 | * any VarHandle whose access mode type is of the given type. |
| 2769 | * @since 9 |
| 2770 | */ |
| 2771 | static public |
| 2772 | MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) { |
| 2773 | return methodHandleForVarHandleAccessor(accessMode, type, true /* isExactInvoker */); |
| 2774 | } |
| 2775 | |
| 2776 | /** |
| 2777 | * Produces a special <em>invoker method handle</em> which can be used to |
| 2778 | * invoke a signature-polymorphic access mode method on any VarHandle whose |
| 2779 | * associated access mode type is compatible with the given type. |
| 2780 | * The resulting invoker will have a type which is exactly equal to the |
| 2781 | * desired given type, except that it will accept an additional leading |
| 2782 | * argument of type {@code VarHandle}. |
| 2783 | * <p> |
| 2784 | * Before invoking its target, if the access mode type differs from the |
| 2785 | * desired given type, the invoker will apply reference casts as necessary |
| 2786 | * and box, unbox, or widen primitive values, as if by |
| 2787 | * {@link MethodHandle#asType asType}. Similarly, the return value will be |
| 2788 | * converted as necessary. |
| 2789 | * <p> |
| 2790 | * This method is equivalent to the following code (though it may be more |
| 2791 | * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)} |
| 2792 | * |
| 2793 | * @param accessMode the VarHandle access mode |
| 2794 | * @param type the desired target type |
| 2795 | * @return a method handle suitable for invoking an access mode method of |
| 2796 | * any VarHandle whose access mode type is convertible to the given |
| 2797 | * type. |
| 2798 | * @since 9 |
| 2799 | */ |
| 2800 | static public |
| 2801 | MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) { |
| 2802 | return methodHandleForVarHandleAccessor(accessMode, type, false /* isExactInvoker */); |
| 2803 | } |
| 2804 | |
| 2805 | // Android-changed: Basic invokers are not supported. |
| 2806 | // |
| 2807 | // static /*non-public*/ |
| 2808 | // MethodHandle basicInvoker(MethodType type) { |
| 2809 | // return type.invokers().basicInvoker(); |
| 2810 | // } |
| 2811 | |
| 2812 | /// method handle modification (creation from other method handles) |
| 2813 | |
| 2814 | /** |
| 2815 | * Produces a method handle which adapts the type of the |
| 2816 | * given method handle to a new type by pairwise argument and return type conversion. |
| 2817 | * The original type and new type must have the same number of arguments. |
| 2818 | * The resulting method handle is guaranteed to report a type |
| 2819 | * which is equal to the desired new type. |
| 2820 | * <p> |
| 2821 | * If the original type and new type are equal, returns target. |
| 2822 | * <p> |
| 2823 | * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType}, |
| 2824 | * and some additional conversions are also applied if those conversions fail. |
| 2825 | * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied |
| 2826 | * if possible, before or instead of any conversions done by {@code asType}: |
| 2827 | * <ul> |
| 2828 | * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type, |
| 2829 | * then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast. |
| 2830 | * (This treatment of interfaces follows the usage of the bytecode verifier.) |
| 2831 | * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive, |
| 2832 | * the boolean is converted to a byte value, 1 for true, 0 for false. |
| 2833 | * (This treatment follows the usage of the bytecode verifier.) |
| 2834 | * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive, |
| 2835 | * <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5), |
| 2836 | * and the low order bit of the result is tested, as if by {@code (x & 1) != 0}. |
| 2837 | * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean, |
| 2838 | * then a Java casting conversion (JLS 5.5) is applied. |
| 2839 | * (Specifically, <em>T0</em> will convert to <em>T1</em> by |
| 2840 | * widening and/or narrowing.) |
| 2841 | * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing |
| 2842 | * conversion will be applied at runtime, possibly followed |
| 2843 | * by a Java casting conversion (JLS 5.5) on the primitive value, |
| 2844 | * possibly followed by a conversion from byte to boolean by testing |
| 2845 | * the low-order bit. |
| 2846 | * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, |
| 2847 | * and if the reference is null at runtime, a zero value is introduced. |
| 2848 | * </ul> |
| 2849 | * @param target the method handle to invoke after arguments are retyped |
| 2850 | * @param newType the expected type of the new method handle |
| 2851 | * @return a method handle which delegates to the target after performing |
| 2852 | * any necessary argument conversions, and arranges for any |
| 2853 | * necessary return value conversions |
| 2854 | * @throws NullPointerException if either argument is null |
| 2855 | * @throws WrongMethodTypeException if the conversion cannot be made |
| 2856 | * @see MethodHandle#asType |
| 2857 | */ |
| 2858 | public static |
| 2859 | MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) { |
| 2860 | explicitCastArgumentsChecks(target, newType); |
| 2861 | // use the asTypeCache when possible: |
| 2862 | MethodType oldType = target.type(); |
| 2863 | if (oldType == newType) return target; |
| 2864 | if (oldType.explicitCastEquivalentToAsType(newType)) { |
| 2865 | if (Transformers.Transformer.class.isAssignableFrom(target.getClass())) { |
| 2866 | // The StackFrameReader and StackFrameWriter used to perform transforms on |
| 2867 | // EmulatedStackFrames (in Transformers.java) do not how to perform asType() |
| 2868 | // conversions, but we know here that an explicit cast transform is the same as |
| 2869 | // having called asType() on the method handle. |
| 2870 | return new Transformers.ExplicitCastArguments(target.asFixedArity(), newType); |
| 2871 | } else { |
| 2872 | // Runtime will perform asType() conversion during invocation. |
| 2873 | return target.asFixedArity().asType(newType); |
| 2874 | } |
| 2875 | } |
| 2876 | return new Transformers.ExplicitCastArguments(target, newType); |
| 2877 | } |
| 2878 | |
| 2879 | private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) { |
| 2880 | if (target.type().parameterCount() != newType.parameterCount()) { |
| 2881 | throw new WrongMethodTypeException("cannot explicitly cast " + target + |
| 2882 | " to " + newType); |
| 2883 | } |
| 2884 | } |
| 2885 | |
| 2886 | /** |
| 2887 | * Produces a method handle which adapts the calling sequence of the |
| 2888 | * given method handle to a new type, by reordering the arguments. |
| 2889 | * The resulting method handle is guaranteed to report a type |
| 2890 | * which is equal to the desired new type. |
| 2891 | * <p> |
| 2892 | * The given array controls the reordering. |
| 2893 | * Call {@code #I} the number of incoming parameters (the value |
| 2894 | * {@code newType.parameterCount()}, and call {@code #O} the number |
| 2895 | * of outgoing parameters (the value {@code target.type().parameterCount()}). |
| 2896 | * Then the length of the reordering array must be {@code #O}, |
| 2897 | * and each element must be a non-negative number less than {@code #I}. |
| 2898 | * For every {@code N} less than {@code #O}, the {@code N}-th |
| 2899 | * outgoing argument will be taken from the {@code I}-th incoming |
| 2900 | * argument, where {@code I} is {@code reorder[N]}. |
| 2901 | * <p> |
| 2902 | * No argument or return value conversions are applied. |
| 2903 | * The type of each incoming argument, as determined by {@code newType}, |
| 2904 | * must be identical to the type of the corresponding outgoing parameter |
| 2905 | * or parameters in the target method handle. |
| 2906 | * The return type of {@code newType} must be identical to the return |
| 2907 | * type of the original target. |
| 2908 | * <p> |
| 2909 | * The reordering array need not specify an actual permutation. |
| 2910 | * An incoming argument will be duplicated if its index appears |
| 2911 | * more than once in the array, and an incoming argument will be dropped |
| 2912 | * if its index does not appear in the array. |
| 2913 | * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments}, |
| 2914 | * incoming arguments which are not mentioned in the reordering array |
| 2915 | * are may be any type, as determined only by {@code newType}. |
| 2916 | * <blockquote><pre>{@code |
| 2917 | import static java.lang.invoke.MethodHandles.*; |
| 2918 | import static java.lang.invoke.MethodType.*; |
| 2919 | ... |
| 2920 | MethodType intfn1 = methodType(int.class, int.class); |
| 2921 | MethodType intfn2 = methodType(int.class, int.class, int.class); |
| 2922 | MethodHandle sub = ... (int x, int y) -> (x-y) ...; |
| 2923 | assert(sub.type().equals(intfn2)); |
| 2924 | MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1); |
| 2925 | MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0); |
| 2926 | assert((int)rsub.invokeExact(1, 100) == 99); |
| 2927 | MethodHandle add = ... (int x, int y) -> (x+y) ...; |
| 2928 | assert(add.type().equals(intfn2)); |
| 2929 | MethodHandle twice = permuteArguments(add, intfn1, 0, 0); |
| 2930 | assert(twice.type().equals(intfn1)); |
| 2931 | assert((int)twice.invokeExact(21) == 42); |
| 2932 | * }</pre></blockquote> |
| 2933 | * @param target the method handle to invoke after arguments are reordered |
| 2934 | * @param newType the expected type of the new method handle |
| 2935 | * @param reorder an index array which controls the reordering |
| 2936 | * @return a method handle which delegates to the target after it |
| 2937 | * drops unused arguments and moves and/or duplicates the other arguments |
| 2938 | * @throws NullPointerException if any argument is null |
| 2939 | * @throws IllegalArgumentException if the index array length is not equal to |
| 2940 | * the arity of the target, or if any index array element |
| 2941 | * not a valid index for a parameter of {@code newType}, |
| 2942 | * or if two corresponding parameter types in |
| 2943 | * {@code target.type()} and {@code newType} are not identical, |
| 2944 | */ |
| 2945 | public static |
| 2946 | MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) { |
| 2947 | reorder = reorder.clone(); // get a private copy |
| 2948 | MethodType oldType = target.type(); |
| 2949 | permuteArgumentChecks(reorder, newType, oldType); |
| 2950 | |
| 2951 | return new Transformers.PermuteArguments(newType, target, reorder); |
| 2952 | } |
| 2953 | |
| 2954 | // Android-changed: findFirstDupOrDrop is unused and removed. |
| 2955 | // private static int findFirstDupOrDrop(int[] reorder, int newArity); |
| 2956 | |
| 2957 | private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) { |
| 2958 | if (newType.returnType() != oldType.returnType()) |
| 2959 | throw newIllegalArgumentException("return types do not match", |
| 2960 | oldType, newType); |
| 2961 | if (reorder.length == oldType.parameterCount()) { |
| 2962 | int limit = newType.parameterCount(); |
| 2963 | boolean bad = false; |
| 2964 | for (int j = 0; j < reorder.length; j++) { |
| 2965 | int i = reorder[j]; |
| 2966 | if (i < 0 || i >= limit) { |
| 2967 | bad = true; break; |
| 2968 | } |
| 2969 | Class<?> src = newType.parameterType(i); |
| 2970 | Class<?> dst = oldType.parameterType(j); |
| 2971 | if (src != dst) |
| 2972 | throw newIllegalArgumentException("parameter types do not match after reorder", |
| 2973 | oldType, newType); |
| 2974 | } |
| 2975 | if (!bad) return true; |
| 2976 | } |
| 2977 | throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder)); |
| 2978 | } |
| 2979 | |
| 2980 | /** |
| 2981 | * Produces a method handle of the requested return type which returns the given |
| 2982 | * constant value every time it is invoked. |
| 2983 | * <p> |
| 2984 | * Before the method handle is returned, the passed-in value is converted to the requested type. |
| 2985 | * If the requested type is primitive, widening primitive conversions are attempted, |
| 2986 | * else reference conversions are attempted. |
| 2987 | * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}. |
| 2988 | * @param type the return type of the desired method handle |
| 2989 | * @param value the value to return |
| 2990 | * @return a method handle of the given return type and no arguments, which always returns the given value |
| 2991 | * @throws NullPointerException if the {@code type} argument is null |
| 2992 | * @throws ClassCastException if the value cannot be converted to the required return type |
| 2993 | * @throws IllegalArgumentException if the given type is {@code void.class} |
| 2994 | */ |
| 2995 | public static |
| 2996 | MethodHandle constant(Class<?> type, Object value) { |
| 2997 | if (type.isPrimitive()) { |
| 2998 | if (type == void.class) |
| 2999 | throw newIllegalArgumentException("void type"); |
| 3000 | Wrapper w = Wrapper.forPrimitiveType(type); |
| 3001 | value = w.convert(value, type); |
| 3002 | if (w.zero().equals(value)) |
| 3003 | return zero(w, type); |
| 3004 | return insertArguments(identity(type), 0, value); |
| 3005 | } else { |
| 3006 | if (value == null) |
| 3007 | return zero(Wrapper.OBJECT, type); |
| 3008 | return identity(type).bindTo(value); |
| 3009 | } |
| 3010 | } |
| 3011 | |
| 3012 | /** |
| 3013 | * Produces a method handle which returns its sole argument when invoked. |
| 3014 | * @param type the type of the sole parameter and return value of the desired method handle |
| 3015 | * @return a unary method handle which accepts and returns the given type |
| 3016 | * @throws NullPointerException if the argument is null |
| 3017 | * @throws IllegalArgumentException if the given type is {@code void.class} |
| 3018 | */ |
| 3019 | public static |
| 3020 | MethodHandle identity(Class<?> type) { |
| 3021 | // Android-added: explicit non-null check. |
| 3022 | Objects.requireNonNull(type); |
| 3023 | Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT); |
| 3024 | int pos = btw.ordinal(); |
| 3025 | MethodHandle ident = IDENTITY_MHS[pos]; |
| 3026 | if (ident == null) { |
| 3027 | ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType())); |
| 3028 | } |
| 3029 | if (ident.type().returnType() == type) |
| 3030 | return ident; |
| 3031 | // something like identity(Foo.class); do not bother to intern these |
| 3032 | assert (btw == Wrapper.OBJECT); |
| 3033 | return makeIdentity(type); |
| 3034 | } |
| 3035 | |
| 3036 | /** |
| 3037 | * Produces a constant method handle of the requested return type which |
| 3038 | * returns the default value for that type every time it is invoked. |
| 3039 | * The resulting constant method handle will have no side effects. |
| 3040 | * <p>The returned method handle is equivalent to {@code empty(methodType(type))}. |
| 3041 | * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))}, |
| 3042 | * since {@code explicitCastArguments} converts {@code null} to default values. |
| 3043 | * @param type the expected return type of the desired method handle |
| 3044 | * @return a constant method handle that takes no arguments |
| 3045 | * and returns the default value of the given type (or void, if the type is void) |
| 3046 | * @throws NullPointerException if the argument is null |
| 3047 | * @see MethodHandles#constant |
| 3048 | * @see MethodHandles#empty |
| 3049 | * @see MethodHandles#explicitCastArguments |
| 3050 | * @since 9 |
| 3051 | */ |
| 3052 | public static MethodHandle zero(Class<?> type) { |
| 3053 | Objects.requireNonNull(type); |
| 3054 | return type.isPrimitive() ? zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type); |
| 3055 | } |
| 3056 | |
| 3057 | private static MethodHandle identityOrVoid(Class<?> type) { |
| 3058 | return type == void.class ? zero(type) : identity(type); |
| 3059 | } |
| 3060 | |
| 3061 | /** |
| 3062 | * Produces a method handle of the requested type which ignores any arguments, does nothing, |
| 3063 | * and returns a suitable default depending on the return type. |
| 3064 | * That is, it returns a zero primitive value, a {@code null}, or {@code void}. |
| 3065 | * <p>The returned method handle is equivalent to |
| 3066 | * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}. |
| 3067 | * |
| 3068 | * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as |
| 3069 | * {@code guardWithTest(pred, target, empty(target.type())}. |
| 3070 | * @param type the type of the desired method handle |
| 3071 | * @return a constant method handle of the given type, which returns a default value of the given return type |
| 3072 | * @throws NullPointerException if the argument is null |
| 3073 | * @see MethodHandles#zero |
| 3074 | * @see MethodHandles#constant |
| 3075 | * @since 9 |
| 3076 | */ |
| 3077 | public static MethodHandle empty(MethodType type) { |
| 3078 | Objects.requireNonNull(type); |
| 3079 | return dropArguments(zero(type.returnType()), 0, type.parameterList()); |
| 3080 | } |
| 3081 | |
| 3082 | private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT]; |
| 3083 | private static MethodHandle makeIdentity(Class<?> ptype) { |
| 3084 | // Android-changed: Android implementation using identity() functions and transformers. |
| 3085 | // MethodType mtype = methodType(ptype, ptype); |
| 3086 | // LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype)); |
| 3087 | // return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY); |
| 3088 | if (ptype.isPrimitive()) { |
| 3089 | try { |
| 3090 | final MethodType mt = methodType(ptype, ptype); |
| 3091 | return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, "identity", mt); |
| 3092 | } catch (NoSuchMethodException | IllegalAccessException e) { |
| 3093 | throw new AssertionError(e); |
| 3094 | } |
| 3095 | } else { |
| 3096 | return new Transformers.ReferenceIdentity(ptype); |
| 3097 | } |
| 3098 | } |
| 3099 | |
| 3100 | // Android-added: helper methods for identity(). |
| 3101 | /** @hide */ public static byte identity(byte val) { return val; } |
| 3102 | /** @hide */ public static boolean identity(boolean val) { return val; } |
| 3103 | /** @hide */ public static char identity(char val) { return val; } |
| 3104 | /** @hide */ public static short identity(short val) { return val; } |
| 3105 | /** @hide */ public static int identity(int val) { return val; } |
| 3106 | /** @hide */ public static long identity(long val) { return val; } |
| 3107 | /** @hide */ public static float identity(float val) { return val; } |
| 3108 | /** @hide */ public static double identity(double val) { return val; } |
| 3109 | |
| 3110 | private static MethodHandle zero(Wrapper btw, Class<?> rtype) { |
| 3111 | int pos = btw.ordinal(); |
| 3112 | MethodHandle zero = ZERO_MHS[pos]; |
| 3113 | if (zero == null) { |
| 3114 | zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType())); |
| 3115 | } |
| 3116 | if (zero.type().returnType() == rtype) |
| 3117 | return zero; |
| 3118 | assert(btw == Wrapper.OBJECT); |
| 3119 | return makeZero(rtype); |
| 3120 | } |
| 3121 | private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT]; |
| 3122 | private static MethodHandle makeZero(Class<?> rtype) { |
| 3123 | // Android-changed: use Android specific implementation. |
| 3124 | // MethodType mtype = methodType(rtype); |
| 3125 | // LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype)); |
| 3126 | // return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO); |
| 3127 | return new Transformers.ZeroValue(rtype); |
| 3128 | } |
| 3129 | |
| 3130 | private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) { |
| 3131 | // Simulate a CAS, to avoid racy duplication of results. |
| 3132 | MethodHandle prev = cache[pos]; |
| 3133 | if (prev != null) return prev; |
| 3134 | return cache[pos] = value; |
| 3135 | } |
| 3136 | |
| 3137 | /** |
| 3138 | * Provides a target method handle with one or more <em>bound arguments</em> |
| 3139 | * in advance of the method handle's invocation. |
| 3140 | * The formal parameters to the target corresponding to the bound |
| 3141 | * arguments are called <em>bound parameters</em>. |
| 3142 | * Returns a new method handle which saves away the bound arguments. |
| 3143 | * When it is invoked, it receives arguments for any non-bound parameters, |
| 3144 | * binds the saved arguments to their corresponding parameters, |
| 3145 | * and calls the original target. |
| 3146 | * <p> |
| 3147 | * The type of the new method handle will drop the types for the bound |
| 3148 | * parameters from the original target type, since the new method handle |
| 3149 | * will no longer require those arguments to be supplied by its callers. |
| 3150 | * <p> |
| 3151 | * Each given argument object must match the corresponding bound parameter type. |
| 3152 | * If a bound parameter type is a primitive, the argument object |
| 3153 | * must be a wrapper, and will be unboxed to produce the primitive value. |
| 3154 | * <p> |
| 3155 | * The {@code pos} argument selects which parameters are to be bound. |
| 3156 | * It may range between zero and <i>N-L</i> (inclusively), |
| 3157 | * where <i>N</i> is the arity of the target method handle |
| 3158 | * and <i>L</i> is the length of the values array. |
| 3159 | * @param target the method handle to invoke after the argument is inserted |
| 3160 | * @param pos where to insert the argument (zero for the first) |
| 3161 | * @param values the series of arguments to insert |
| 3162 | * @return a method handle which inserts an additional argument, |
| 3163 | * before calling the original method handle |
| 3164 | * @throws NullPointerException if the target or the {@code values} array is null |
| 3165 | * @see MethodHandle#bindTo |
| 3166 | */ |
| 3167 | public static |
| 3168 | MethodHandle insertArguments(MethodHandle target, int pos, Object... values) { |
| 3169 | int insCount = values.length; |
| 3170 | Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos); |
| 3171 | if (insCount == 0) { |
| 3172 | return target; |
| 3173 | } |
| 3174 | |
| 3175 | // Throw ClassCastExceptions early if we can't cast any of the provided values |
| 3176 | // to the required type. |
| 3177 | for (int i = 0; i < insCount; i++) { |
| 3178 | final Class<?> ptype = ptypes[pos + i]; |
| 3179 | if (!ptype.isPrimitive()) { |
| 3180 | ptypes[pos + i].cast(values[i]); |
| 3181 | } else { |
| 3182 | // Will throw a ClassCastException if something terrible happens. |
| 3183 | values[i] = Wrapper.forPrimitiveType(ptype).convert(values[i], ptype); |
| 3184 | } |
| 3185 | } |
| 3186 | |
| 3187 | return new Transformers.InsertArguments(target, pos, values); |
| 3188 | } |
| 3189 | |
| 3190 | // Android-changed: insertArgumentPrimitive is unused. |
| 3191 | // |
| 3192 | // private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos, |
| 3193 | // Class<?> ptype, Object value) { |
| 3194 | // Wrapper w = Wrapper.forPrimitiveType(ptype); |
| 3195 | // // perform unboxing and/or primitive conversion |
| 3196 | // value = w.convert(value, ptype); |
| 3197 | // switch (w) { |
| 3198 | // case INT: return result.bindArgumentI(pos, (int)value); |
| 3199 | // case LONG: return result.bindArgumentJ(pos, (long)value); |
| 3200 | // case FLOAT: return result.bindArgumentF(pos, (float)value); |
| 3201 | // case DOUBLE: return result.bindArgumentD(pos, (double)value); |
| 3202 | // default: return result.bindArgumentI(pos, ValueConversions.widenSubword(value)); |
| 3203 | // } |
| 3204 | // } |
| 3205 | |
| 3206 | private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException { |
| 3207 | MethodType oldType = target.type(); |
| 3208 | int outargs = oldType.parameterCount(); |
| 3209 | int inargs = outargs - insCount; |
| 3210 | if (inargs < 0) |
| 3211 | throw newIllegalArgumentException("too many values to insert"); |
| 3212 | if (pos < 0 || pos > inargs) |
| 3213 | throw newIllegalArgumentException("no argument type to append"); |
| 3214 | return oldType.ptypes(); |
| 3215 | } |
| 3216 | |
| 3217 | // Android-changed: inclusive language preference for 'placeholder'. |
| 3218 | /** |
| 3219 | * Produces a method handle which will discard some placeholder arguments |
| 3220 | * before calling some other specified <i>target</i> method handle. |
| 3221 | * The type of the new method handle will be the same as the target's type, |
| 3222 | * except it will also include the placeholder argument types, |
| 3223 | * at some given position. |
| 3224 | * <p> |
| 3225 | * The {@code pos} argument may range between zero and <i>N</i>, |
| 3226 | * where <i>N</i> is the arity of the target. |
| 3227 | * If {@code pos} is zero, the placeholder arguments will precede |
| 3228 | * the target's real arguments; if {@code pos} is <i>N</i> |
| 3229 | * they will come after. |
| 3230 | * <p> |
| 3231 | * <b>Example:</b> |
| 3232 | * <blockquote><pre>{@code |
| 3233 | import static java.lang.invoke.MethodHandles.*; |
| 3234 | import static java.lang.invoke.MethodType.*; |
| 3235 | ... |
| 3236 | MethodHandle cat = lookup().findVirtual(String.class, |
| 3237 | "concat", methodType(String.class, String.class)); |
| 3238 | assertEquals("xy", (String) cat.invokeExact("x", "y")); |
| 3239 | MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class); |
| 3240 | MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2)); |
| 3241 | assertEquals(bigType, d0.type()); |
| 3242 | assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z")); |
| 3243 | * }</pre></blockquote> |
| 3244 | * <p> |
| 3245 | * This method is also equivalent to the following code: |
| 3246 | * <blockquote><pre> |
| 3247 | * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))} |
| 3248 | * </pre></blockquote> |
| 3249 | * @param target the method handle to invoke after the arguments are dropped |
| 3250 | * @param valueTypes the type(s) of the argument(s) to drop |
| 3251 | * @param pos position of first argument to drop (zero for the leftmost) |
| 3252 | * @return a method handle which drops arguments of the given types, |
| 3253 | * before calling the original method handle |
| 3254 | * @throws NullPointerException if the target is null, |
| 3255 | * or if the {@code valueTypes} list or any of its elements is null |
| 3256 | * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, |
| 3257 | * or if {@code pos} is negative or greater than the arity of the target, |
| 3258 | * or if the new method handle's type would have too many parameters |
| 3259 | */ |
| 3260 | public static |
| 3261 | MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) { |
| 3262 | return dropArguments0(target, pos, copyTypes(valueTypes.toArray())); |
| 3263 | } |
| 3264 | |
| 3265 | private static List<Class<?>> copyTypes(Object[] array) { |
| 3266 | return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class)); |
| 3267 | } |
| 3268 | |
| 3269 | private static |
| 3270 | MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) { |
| 3271 | MethodType oldType = target.type(); // get NPE |
| 3272 | int dropped = dropArgumentChecks(oldType, pos, valueTypes); |
| 3273 | MethodType newType = oldType.insertParameterTypes(pos, valueTypes); |
| 3274 | if (dropped == 0) return target; |
| 3275 | // Android-changed: transformer implementation. |
| 3276 | // BoundMethodHandle result = target.rebind(); |
| 3277 | // LambdaForm lform = result.form; |
| 3278 | // int insertFormArg = 1 + pos; |
| 3279 | // for (Class<?> ptype : valueTypes) { |
| 3280 | // lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype)); |
| 3281 | // } |
| 3282 | // result = result.copyWith(newType, lform); |
| 3283 | // return result; |
| 3284 | return new Transformers.DropArguments(newType, target, pos, dropped); |
| 3285 | } |
| 3286 | |
| 3287 | private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) { |
| 3288 | int dropped = valueTypes.size(); |
| 3289 | MethodType.checkSlotCount(dropped); |
| 3290 | int outargs = oldType.parameterCount(); |
| 3291 | int inargs = outargs + dropped; |
| 3292 | if (pos < 0 || pos > outargs) |
| 3293 | throw newIllegalArgumentException("no argument type to remove" |
| 3294 | + Arrays.asList(oldType, pos, valueTypes, inargs, outargs) |
| 3295 | ); |
| 3296 | return dropped; |
| 3297 | } |
| 3298 | |
| 3299 | // Android-changed: inclusive language preference for 'placeholder'. |
| 3300 | /** |
| 3301 | * Produces a method handle which will discard some placeholder arguments |
| 3302 | * before calling some other specified <i>target</i> method handle. |
| 3303 | * The type of the new method handle will be the same as the target's type, |
| 3304 | * except it will also include the placeholder argument types, |
| 3305 | * at some given position. |
| 3306 | * <p> |
| 3307 | * The {@code pos} argument may range between zero and <i>N</i>, |
| 3308 | * where <i>N</i> is the arity of the target. |
| 3309 | * If {@code pos} is zero, the placeholder arguments will precede |
| 3310 | * the target's real arguments; if {@code pos} is <i>N</i> |
| 3311 | * they will come after. |
| 3312 | * @apiNote |
| 3313 | * <blockquote><pre>{@code |
| 3314 | import static java.lang.invoke.MethodHandles.*; |
| 3315 | import static java.lang.invoke.MethodType.*; |
| 3316 | ... |
| 3317 | MethodHandle cat = lookup().findVirtual(String.class, |
| 3318 | "concat", methodType(String.class, String.class)); |
| 3319 | assertEquals("xy", (String) cat.invokeExact("x", "y")); |
| 3320 | MethodHandle d0 = dropArguments(cat, 0, String.class); |
| 3321 | assertEquals("yz", (String) d0.invokeExact("x", "y", "z")); |
| 3322 | MethodHandle d1 = dropArguments(cat, 1, String.class); |
| 3323 | assertEquals("xz", (String) d1.invokeExact("x", "y", "z")); |
| 3324 | MethodHandle d2 = dropArguments(cat, 2, String.class); |
| 3325 | assertEquals("xy", (String) d2.invokeExact("x", "y", "z")); |
| 3326 | MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class); |
| 3327 | assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z")); |
| 3328 | * }</pre></blockquote> |
| 3329 | * <p> |
| 3330 | * This method is also equivalent to the following code: |
| 3331 | * <blockquote><pre> |
| 3332 | * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))} |
| 3333 | * </pre></blockquote> |
| 3334 | * @param target the method handle to invoke after the arguments are dropped |
| 3335 | * @param valueTypes the type(s) of the argument(s) to drop |
| 3336 | * @param pos position of first argument to drop (zero for the leftmost) |
| 3337 | * @return a method handle which drops arguments of the given types, |
| 3338 | * before calling the original method handle |
| 3339 | * @throws NullPointerException if the target is null, |
| 3340 | * or if the {@code valueTypes} array or any of its elements is null |
| 3341 | * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, |
| 3342 | * or if {@code pos} is negative or greater than the arity of the target, |
| 3343 | * or if the new method handle's type would have |
| 3344 | * <a href="MethodHandle.html#maxarity">too many parameters</a> |
| 3345 | */ |
| 3346 | public static |
| 3347 | MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) { |
| 3348 | return dropArguments0(target, pos, copyTypes(valueTypes)); |
| 3349 | } |
| 3350 | |
| 3351 | // private version which allows caller some freedom with error handling |
| 3352 | private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos, |
| 3353 | boolean nullOnFailure) { |
| 3354 | newTypes = copyTypes(newTypes.toArray()); |
| 3355 | List<Class<?>> oldTypes = target.type().parameterList(); |
| 3356 | int match = oldTypes.size(); |
| 3357 | if (skip != 0) { |
| 3358 | if (skip < 0 || skip > match) { |
| 3359 | throw newIllegalArgumentException("illegal skip", skip, target); |
| 3360 | } |
| 3361 | oldTypes = oldTypes.subList(skip, match); |
| 3362 | match -= skip; |
| 3363 | } |
| 3364 | List<Class<?>> addTypes = newTypes; |
| 3365 | int add = addTypes.size(); |
| 3366 | if (pos != 0) { |
| 3367 | if (pos < 0 || pos > add) { |
| 3368 | throw newIllegalArgumentException("illegal pos", pos, newTypes); |
| 3369 | } |
| 3370 | addTypes = addTypes.subList(pos, add); |
| 3371 | add -= pos; |
| 3372 | assert(addTypes.size() == add); |
| 3373 | } |
| 3374 | // Do not add types which already match the existing arguments. |
| 3375 | if (match > add || !oldTypes.equals(addTypes.subList(0, match))) { |
| 3376 | if (nullOnFailure) { |
| 3377 | return null; |
| 3378 | } |
| 3379 | throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes); |
| 3380 | } |
| 3381 | addTypes = addTypes.subList(match, add); |
| 3382 | add -= match; |
| 3383 | assert(addTypes.size() == add); |
| 3384 | // newTypes: ( P*[pos], M*[match], A*[add] ) |
| 3385 | // target: ( S*[skip], M*[match] ) |
| 3386 | MethodHandle adapter = target; |
| 3387 | if (add > 0) { |
| 3388 | adapter = dropArguments0(adapter, skip+ match, addTypes); |
| 3389 | } |
| 3390 | // adapter: (S*[skip], M*[match], A*[add] ) |
| 3391 | if (pos > 0) { |
| 3392 | adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos)); |
| 3393 | } |
| 3394 | // adapter: (S*[skip], P*[pos], M*[match], A*[add] ) |
| 3395 | return adapter; |
| 3396 | } |
| 3397 | |
| 3398 | // Android-changed: inclusive language preference for 'placeholder'. |
| 3399 | /** |
| 3400 | * Adapts a target method handle to match the given parameter type list. If necessary, adds placeholder arguments. Some |
| 3401 | * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter |
| 3402 | * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The |
| 3403 | * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before |
| 3404 | * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by |
| 3405 | * {@link #dropArguments(MethodHandle, int, Class[])}. |
| 3406 | * <p> |
| 3407 | * The resulting handle will have the same return type as the target handle. |
| 3408 | * <p> |
| 3409 | * In more formal terms, assume these two type lists:<ul> |
| 3410 | * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as |
| 3411 | * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list, |
| 3412 | * {@code newTypes}. |
| 3413 | * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as |
| 3414 | * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's |
| 3415 | * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching |
| 3416 | * sub-list. |
| 3417 | * </ul> |
| 3418 | * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type |
| 3419 | * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by |
| 3420 | * {@link #dropArguments(MethodHandle, int, Class[])}. |
| 3421 | * |
| 3422 | * @apiNote |
| 3423 | * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be |
| 3424 | * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows: |
| 3425 | * <blockquote><pre>{@code |
| 3426 | import static java.lang.invoke.MethodHandles.*; |
| 3427 | import static java.lang.invoke.MethodType.*; |
| 3428 | ... |
| 3429 | ... |
| 3430 | MethodHandle h0 = constant(boolean.class, true); |
| 3431 | MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); |
| 3432 | MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class); |
| 3433 | MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList()); |
| 3434 | if (h1.type().parameterCount() < h2.type().parameterCount()) |
| 3435 | h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0); // lengthen h1 |
| 3436 | else |
| 3437 | h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0); // lengthen h2 |
| 3438 | MethodHandle h3 = guardWithTest(h0, h1, h2); |
| 3439 | assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c")); |
| 3440 | * }</pre></blockquote> |
| 3441 | * @param target the method handle to adapt |
| 3442 | * @param skip number of targets parameters to disregard (they will be unchanged) |
| 3443 | * @param newTypes the list of types to match {@code target}'s parameter type list to |
| 3444 | * @param pos place in {@code newTypes} where the non-skipped target parameters must occur |
| 3445 | * @return a possibly adapted method handle |
| 3446 | * @throws NullPointerException if either argument is null |
| 3447 | * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class}, |
| 3448 | * or if {@code skip} is negative or greater than the arity of the target, |
| 3449 | * or if {@code pos} is negative or greater than the newTypes list size, |
| 3450 | * or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position |
| 3451 | * {@code pos}. |
| 3452 | * @since 9 |
| 3453 | */ |
| 3454 | public static |
| 3455 | MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) { |
| 3456 | Objects.requireNonNull(target); |
| 3457 | Objects.requireNonNull(newTypes); |
| 3458 | return dropArgumentsToMatch(target, skip, newTypes, pos, false); |
| 3459 | } |
| 3460 | |
| 3461 | /** |
| 3462 | * Drop the return value of the target handle (if any). |
| 3463 | * The returned method handle will have a {@code void} return type. |
| 3464 | * |
| 3465 | * @param target the method handle to adapt |
| 3466 | * @return a possibly adapted method handle |
| 3467 | * @throws NullPointerException if {@code target} is null |
| 3468 | * @since 16 |
| 3469 | */ |
| 3470 | public static MethodHandle dropReturn(MethodHandle target) { |
| 3471 | Objects.requireNonNull(target); |
| 3472 | MethodType oldType = target.type(); |
| 3473 | Class<?> oldReturnType = oldType.returnType(); |
| 3474 | if (oldReturnType == void.class) |
| 3475 | return target; |
| 3476 | |
| 3477 | MethodType newType = oldType.changeReturnType(void.class); |
| 3478 | // Android-changed: no support for BoundMethodHandle or LambdaForm. |
| 3479 | // BoundMethodHandle result = target.rebind(); |
| 3480 | // LambdaForm lform = result.editor().filterReturnForm(V_TYPE, true); |
| 3481 | // result = result.copyWith(newType, lform); |
| 3482 | // return result; |
| 3483 | return target.asType(newType); |
| 3484 | } |
| 3485 | |
| 3486 | /** |
| 3487 | * Adapts a target method handle by pre-processing |
| 3488 | * one or more of its arguments, each with its own unary filter function, |
| 3489 | * and then calling the target with each pre-processed argument |
| 3490 | * replaced by the result of its corresponding filter function. |
| 3491 | * <p> |
| 3492 | * The pre-processing is performed by one or more method handles, |
| 3493 | * specified in the elements of the {@code filters} array. |
| 3494 | * The first element of the filter array corresponds to the {@code pos} |
| 3495 | * argument of the target, and so on in sequence. |
| 3496 | * The filter functions are invoked in left to right order. |
| 3497 | * <p> |
| 3498 | * Null arguments in the array are treated as identity functions, |
| 3499 | * and the corresponding arguments left unchanged. |
| 3500 | * (If there are no non-null elements in the array, the original target is returned.) |
| 3501 | * Each filter is applied to the corresponding argument of the adapter. |
| 3502 | * <p> |
| 3503 | * If a filter {@code F} applies to the {@code N}th argument of |
| 3504 | * the target, then {@code F} must be a method handle which |
| 3505 | * takes exactly one argument. The type of {@code F}'s sole argument |
| 3506 | * replaces the corresponding argument type of the target |
| 3507 | * in the resulting adapted method handle. |
| 3508 | * The return type of {@code F} must be identical to the corresponding |
| 3509 | * parameter type of the target. |
| 3510 | * <p> |
| 3511 | * It is an error if there are elements of {@code filters} |
| 3512 | * (null or not) |
| 3513 | * which do not correspond to argument positions in the target. |
| 3514 | * <p><b>Example:</b> |
| 3515 | * <blockquote><pre>{@code |
| 3516 | import static java.lang.invoke.MethodHandles.*; |
| 3517 | import static java.lang.invoke.MethodType.*; |
| 3518 | ... |
| 3519 | MethodHandle cat = lookup().findVirtual(String.class, |
| 3520 | "concat", methodType(String.class, String.class)); |
| 3521 | MethodHandle upcase = lookup().findVirtual(String.class, |
| 3522 | "toUpperCase", methodType(String.class)); |
| 3523 | assertEquals("xy", (String) cat.invokeExact("x", "y")); |
| 3524 | MethodHandle f0 = filterArguments(cat, 0, upcase); |
| 3525 | assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy |
| 3526 | MethodHandle f1 = filterArguments(cat, 1, upcase); |
| 3527 | assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY |
| 3528 | MethodHandle f2 = filterArguments(cat, 0, upcase, upcase); |
| 3529 | assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY |
| 3530 | * }</pre></blockquote> |
| 3531 | * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} |
| 3532 | * denotes the return type of both the {@code target} and resulting adapter. |
| 3533 | * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values |
| 3534 | * of the parameters and arguments that precede and follow the filter position |
| 3535 | * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and |
| 3536 | * values of the filtered parameters and arguments; they also represent the |
| 3537 | * return types of the {@code filter[i]} handles. The latter accept arguments |
| 3538 | * {@code v[i]} of type {@code V[i]}, which also appear in the signature of |
| 3539 | * the resulting adapter. |
| 3540 | * <blockquote><pre>{@code |
| 3541 | * T target(P... p, A[i]... a[i], B... b); |
| 3542 | * A[i] filter[i](V[i]); |
| 3543 | * T adapter(P... p, V[i]... v[i], B... b) { |
| 3544 | * return target(p..., filter[i](v[i])..., b...); |
| 3545 | * } |
| 3546 | * }</pre></blockquote> |
| 3547 | * <p> |
| 3548 | * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector |
| 3549 | * variable-arity method handle}, even if the original target method handle was. |
| 3550 | * |
| 3551 | * @param target the method handle to invoke after arguments are filtered |
| 3552 | * @param pos the position of the first argument to filter |
| 3553 | * @param filters method handles to call initially on filtered arguments |
| 3554 | * @return method handle which incorporates the specified argument filtering logic |
| 3555 | * @throws NullPointerException if the target is null |
| 3556 | * or if the {@code filters} array is null |
| 3557 | * @throws IllegalArgumentException if a non-null element of {@code filters} |
| 3558 | * does not match a corresponding argument type of target as described above, |
| 3559 | * or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}, |
| 3560 | * or if the resulting method handle's type would have |
| 3561 | * <a href="MethodHandle.html#maxarity">too many parameters</a> |
| 3562 | */ |
| 3563 | public static |
| 3564 | MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) { |
| 3565 | filterArgumentsCheckArity(target, pos, filters); |
| 3566 | MethodHandle adapter = target; |
| 3567 | // Android-changed: transformer implementation. |
| 3568 | // process filters in reverse order so that the invocation of |
| 3569 | // the resulting adapter will invoke the filters in left-to-right order |
| 3570 | // for (int i = filters.length - 1; i >= 0; --i) { |
| 3571 | // MethodHandle filter = filters[i]; |
| 3572 | // if (filter == null) continue; // ignore null elements of filters |
| 3573 | // adapter = filterArgument(adapter, pos + i, filter); |
| 3574 | // } |
| 3575 | // return adapter; |
| 3576 | boolean hasNonNullFilter = false; |
| 3577 | for (int i = 0; i < filters.length; ++i) { |
| 3578 | MethodHandle filter = filters[i]; |
| 3579 | if (filter != null) { |
| 3580 | hasNonNullFilter = true; |
| 3581 | filterArgumentChecks(target, i + pos, filter); |
| 3582 | } |
| 3583 | } |
| 3584 | if (!hasNonNullFilter) { |
| 3585 | return target; |
| 3586 | } |
| 3587 | return new Transformers.FilterArguments(target, pos, filters); |
| 3588 | } |
| 3589 | |
| 3590 | /*non-public*/ static |
| 3591 | MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) { |
| 3592 | filterArgumentChecks(target, pos, filter); |
| 3593 | // Android-changed: use Transformer implementation. |
| 3594 | // MethodType targetType = target.type(); |
| 3595 | // MethodType filterType = filter.type(); |
| 3596 | // BoundMethodHandle result = target.rebind(); |
| 3597 | // Class<?> newParamType = filterType.parameterType(0); |
| 3598 | // LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType)); |
| 3599 | // MethodType newType = targetType.changeParameterType(pos, newParamType); |
| 3600 | // result = result.copyWithExtendL(newType, lform, filter); |
| 3601 | // return result; |
| 3602 | return new Transformers.FilterArguments(target, pos, filter); |
| 3603 | } |
| 3604 | |
| 3605 | private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) { |
| 3606 | MethodType targetType = target.type(); |
| 3607 | int maxPos = targetType.parameterCount(); |
| 3608 | if (pos + filters.length > maxPos) |
| 3609 | throw newIllegalArgumentException("too many filters"); |
| 3610 | } |
| 3611 | |
| 3612 | private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { |
| 3613 | MethodType targetType = target.type(); |
| 3614 | MethodType filterType = filter.type(); |
| 3615 | if (filterType.parameterCount() != 1 |
| 3616 | || filterType.returnType() != targetType.parameterType(pos)) |
| 3617 | throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); |
| 3618 | } |
| 3619 | |
| 3620 | /** |
| 3621 | * Adapts a target method handle by pre-processing |
| 3622 | * a sub-sequence of its arguments with a filter (another method handle). |
| 3623 | * The pre-processed arguments are replaced by the result (if any) of the |
| 3624 | * filter function. |
| 3625 | * The target is then called on the modified (usually shortened) argument list. |
| 3626 | * <p> |
| 3627 | * If the filter returns a value, the target must accept that value as |
| 3628 | * its argument in position {@code pos}, preceded and/or followed by |
| 3629 | * any arguments not passed to the filter. |
| 3630 | * If the filter returns void, the target must accept all arguments |
| 3631 | * not passed to the filter. |
| 3632 | * No arguments are reordered, and a result returned from the filter |
| 3633 | * replaces (in order) the whole subsequence of arguments originally |
| 3634 | * passed to the adapter. |
| 3635 | * <p> |
| 3636 | * The argument types (if any) of the filter |
| 3637 | * replace zero or one argument types of the target, at position {@code pos}, |
| 3638 | * in the resulting adapted method handle. |
| 3639 | * The return type of the filter (if any) must be identical to the |
| 3640 | * argument type of the target at position {@code pos}, and that target argument |
| 3641 | * is supplied by the return value of the filter. |
| 3642 | * <p> |
| 3643 | * In all cases, {@code pos} must be greater than or equal to zero, and |
| 3644 | * {@code pos} must also be less than or equal to the target's arity. |
| 3645 | * <p><b>Example:</b> |
| 3646 | * <blockquote><pre>{@code |
| 3647 | import static java.lang.invoke.MethodHandles.*; |
| 3648 | import static java.lang.invoke.MethodType.*; |
| 3649 | ... |
| 3650 | MethodHandle deepToString = publicLookup() |
| 3651 | .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class)); |
| 3652 | |
| 3653 | MethodHandle ts1 = deepToString.asCollector(String[].class, 1); |
| 3654 | assertEquals("[strange]", (String) ts1.invokeExact("strange")); |
| 3655 | |
| 3656 | MethodHandle ts2 = deepToString.asCollector(String[].class, 2); |
| 3657 | assertEquals("[up, down]", (String) ts2.invokeExact("up", "down")); |
| 3658 | |
| 3659 | MethodHandle ts3 = deepToString.asCollector(String[].class, 3); |
| 3660 | MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2); |
| 3661 | assertEquals("[top, [up, down], strange]", |
| 3662 | (String) ts3_ts2.invokeExact("top", "up", "down", "strange")); |
| 3663 | |
| 3664 | MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1); |
| 3665 | assertEquals("[top, [up, down], [strange]]", |
| 3666 | (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange")); |
| 3667 | |
| 3668 | MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3); |
| 3669 | assertEquals("[top, [[up, down, strange], charm], bottom]", |
| 3670 | (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom")); |
| 3671 | * }</pre></blockquote> |
| 3672 | * <p> Here is pseudocode for the resulting adapter: |
| 3673 | * <blockquote><pre>{@code |
| 3674 | * T target(A...,V,C...); |
| 3675 | * V filter(B...); |
| 3676 | * T adapter(A... a,B... b,C... c) { |
| 3677 | * V v = filter(b...); |
| 3678 | * return target(a...,v,c...); |
| 3679 | * } |
| 3680 | * // and if the filter has no arguments: |
| 3681 | * T target2(A...,V,C...); |
| 3682 | * V filter2(); |
| 3683 | * T adapter2(A... a,C... c) { |
| 3684 | * V v = filter2(); |
| 3685 | * return target2(a...,v,c...); |
| 3686 | * } |
| 3687 | * // and if the filter has a void return: |
| 3688 | * T target3(A...,C...); |
| 3689 | * void filter3(B...); |
| 3690 | * void adapter3(A... a,B... b,C... c) { |
| 3691 | * filter3(b...); |
| 3692 | * return target3(a...,c...); |
| 3693 | * } |
| 3694 | * }</pre></blockquote> |
| 3695 | * <p> |
| 3696 | * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to |
| 3697 | * one which first "folds" the affected arguments, and then drops them, in separate |
| 3698 | * steps as follows: |
| 3699 | * <blockquote><pre>{@code |
| 3700 | * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2 |
| 3701 | * mh = MethodHandles.foldArguments(mh, coll); //step 1 |
| 3702 | * }</pre></blockquote> |
| 3703 | * If the target method handle consumes no arguments besides than the result |
| 3704 | * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)} |
| 3705 | * is equivalent to {@code filterReturnValue(coll, mh)}. |
| 3706 | * If the filter method handle {@code coll} consumes one argument and produces |
| 3707 | * a non-void result, then {@code collectArguments(mh, N, coll)} |
| 3708 | * is equivalent to {@code filterArguments(mh, N, coll)}. |
| 3709 | * Other equivalences are possible but would require argument permutation. |
| 3710 | * |
| 3711 | * @param target the method handle to invoke after filtering the subsequence of arguments |
| 3712 | * @param pos the position of the first adapter argument to pass to the filter, |
| 3713 | * and/or the target argument which receives the result of the filter |
| 3714 | * @param filter method handle to call on the subsequence of arguments |
| 3715 | * @return method handle which incorporates the specified argument subsequence filtering logic |
| 3716 | * @throws NullPointerException if either argument is null |
| 3717 | * @throws IllegalArgumentException if the return type of {@code filter} |
| 3718 | * is non-void and is not the same as the {@code pos} argument of the target, |
| 3719 | * or if {@code pos} is not between 0 and the target's arity, inclusive, |
| 3720 | * or if the resulting method handle's type would have |
| 3721 | * <a href="MethodHandle.html#maxarity">too many parameters</a> |
| 3722 | * @see MethodHandles#foldArguments |
| 3723 | * @see MethodHandles#filterArguments |
| 3724 | * @see MethodHandles#filterReturnValue |
| 3725 | */ |
| 3726 | public static |
| 3727 | MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) { |
| 3728 | MethodType newType = collectArgumentsChecks(target, pos, filter); |
| 3729 | return new Transformers.CollectArguments(target, filter, pos, newType); |
| 3730 | } |
| 3731 | |
| 3732 | private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { |
| 3733 | MethodType targetType = target.type(); |
| 3734 | MethodType filterType = filter.type(); |
| 3735 | Class<?> rtype = filterType.returnType(); |
| 3736 | List<Class<?>> filterArgs = filterType.parameterList(); |
| 3737 | if (rtype == void.class) { |
| 3738 | return targetType.insertParameterTypes(pos, filterArgs); |
| 3739 | } |
| 3740 | if (rtype != targetType.parameterType(pos)) { |
| 3741 | throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); |
| 3742 | } |
| 3743 | return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs); |
| 3744 | } |
| 3745 | |
| 3746 | /** |
| 3747 | * Adapts a target method handle by post-processing |
| 3748 | * its return value (if any) with a filter (another method handle). |
| 3749 | * The result of the filter is returned from the adapter. |
| 3750 | * <p> |
| 3751 | * If the target returns a value, the filter must accept that value as |
| 3752 | * its only argument. |
| 3753 | * If the target returns void, the filter must accept no arguments. |
| 3754 | * <p> |
| 3755 | * The return type of the filter |
| 3756 | * replaces the return type of the target |
| 3757 | * in the resulting adapted method handle. |
| 3758 | * The argument type of the filter (if any) must be identical to the |
| 3759 | * return type of the target. |
| 3760 | * <p><b>Example:</b> |
| 3761 | * <blockquote><pre>{@code |
| 3762 | import static java.lang.invoke.MethodHandles.*; |
| 3763 | import static java.lang.invoke.MethodType.*; |
| 3764 | ... |
| 3765 | MethodHandle cat = lookup().findVirtual(String.class, |
| 3766 | "concat", methodType(String.class, String.class)); |
| 3767 | MethodHandle length = lookup().findVirtual(String.class, |
| 3768 | "length", methodType(int.class)); |
| 3769 | System.out.println((String) cat.invokeExact("x", "y")); // xy |
| 3770 | MethodHandle f0 = filterReturnValue(cat, length); |
| 3771 | System.out.println((int) f0.invokeExact("x", "y")); // 2 |
| 3772 | * }</pre></blockquote> |
| 3773 | * <p>Here is pseudocode for the resulting adapter. In the code, |
| 3774 | * {@code T}/{@code t} represent the result type and value of the |
| 3775 | * {@code target}; {@code V}, the result type of the {@code filter}; and |
| 3776 | * {@code A}/{@code a}, the types and values of the parameters and arguments |
| 3777 | * of the {@code target} as well as the resulting adapter. |
| 3778 | * <blockquote><pre>{@code |
| 3779 | * T target(A...); |
| 3780 | * V filter(T); |
| 3781 | * V adapter(A... a) { |
| 3782 | * T t = target(a...); |
| 3783 | * return filter(t); |
| 3784 | * } |
| 3785 | * // and if the target has a void return: |
| 3786 | * void target2(A...); |
| 3787 | * V filter2(); |
| 3788 | * V adapter2(A... a) { |
| 3789 | * target2(a...); |
| 3790 | * return filter2(); |
| 3791 | * } |
| 3792 | * // and if the filter has a void return: |
| 3793 | * T target3(A...); |
| 3794 | * void filter3(V); |
| 3795 | * void adapter3(A... a) { |
| 3796 | * T t = target3(a...); |
| 3797 | * filter3(t); |
| 3798 | * } |
| 3799 | * }</pre></blockquote> |
| 3800 | * <p> |
| 3801 | * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector |
| 3802 | * variable-arity method handle}, even if the original target method handle was. |
| 3803 | * @param target the method handle to invoke before filtering the return value |
| 3804 | * @param filter method handle to call on the return value |
| 3805 | * @return method handle which incorporates the specified return value filtering logic |
| 3806 | * @throws NullPointerException if either argument is null |
| 3807 | * @throws IllegalArgumentException if the argument list of {@code filter} |
| 3808 | * does not match the return type of target as described above |
| 3809 | */ |
| 3810 | public static |
| 3811 | MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) { |
| 3812 | MethodType targetType = target.type(); |
| 3813 | MethodType filterType = filter.type(); |
| 3814 | filterReturnValueChecks(targetType, filterType); |
| 3815 | // Android-changed: use a transformer. |
| 3816 | // BoundMethodHandle result = target.rebind(); |
| 3817 | // BasicType rtype = BasicType.basicType(filterType.returnType()); |
| 3818 | // LambdaForm lform = result.editor().filterReturnForm(rtype, false); |
| 3819 | // MethodType newType = targetType.changeReturnType(filterType.returnType()); |
| 3820 | // result = result.copyWithExtendL(newType, lform, filter); |
| 3821 | // return result; |
| 3822 | return new Transformers.FilterReturnValue(target, filter); |
| 3823 | } |
| 3824 | |
| 3825 | private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException { |
| 3826 | Class<?> rtype = targetType.returnType(); |
| 3827 | int filterValues = filterType.parameterCount(); |
| 3828 | if (filterValues == 0 |
| 3829 | ? (rtype != void.class) |
| 3830 | : (rtype != filterType.parameterType(0) || filterValues != 1)) |
| 3831 | throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); |
| 3832 | } |
| 3833 | |
| 3834 | /** |
| 3835 | * Adapts a target method handle by pre-processing |
| 3836 | * some of its arguments, and then calling the target with |
| 3837 | * the result of the pre-processing, inserted into the original |
| 3838 | * sequence of arguments. |
| 3839 | * <p> |
| 3840 | * The pre-processing is performed by {@code combiner}, a second method handle. |
| 3841 | * Of the arguments passed to the adapter, the first {@code N} arguments |
| 3842 | * are copied to the combiner, which is then called. |
| 3843 | * (Here, {@code N} is defined as the parameter count of the combiner.) |
| 3844 | * After this, control passes to the target, with any result |
| 3845 | * from the combiner inserted before the original {@code N} incoming |
| 3846 | * arguments. |
| 3847 | * <p> |
| 3848 | * If the combiner returns a value, the first parameter type of the target |
| 3849 | * must be identical with the return type of the combiner, and the next |
| 3850 | * {@code N} parameter types of the target must exactly match the parameters |
| 3851 | * of the combiner. |
| 3852 | * <p> |
| 3853 | * If the combiner has a void return, no result will be inserted, |
| 3854 | * and the first {@code N} parameter types of the target |
| 3855 | * must exactly match the parameters of the combiner. |
| 3856 | * <p> |
| 3857 | * The resulting adapter is the same type as the target, except that the |
| 3858 | * first parameter type is dropped, |
| 3859 | * if it corresponds to the result of the combiner. |
| 3860 | * <p> |
| 3861 | * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments |
| 3862 | * that either the combiner or the target does not wish to receive. |
| 3863 | * If some of the incoming arguments are destined only for the combiner, |
| 3864 | * consider using {@link MethodHandle#asCollector asCollector} instead, since those |
| 3865 | * arguments will not need to be live on the stack on entry to the |
| 3866 | * target.) |
| 3867 | * <p><b>Example:</b> |
| 3868 | * <blockquote><pre>{@code |
| 3869 | import static java.lang.invoke.MethodHandles.*; |
| 3870 | import static java.lang.invoke.MethodType.*; |
| 3871 | ... |
| 3872 | MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, |
| 3873 | "println", methodType(void.class, String.class)) |
| 3874 | .bindTo(System.out); |
| 3875 | MethodHandle cat = lookup().findVirtual(String.class, |
| 3876 | "concat", methodType(String.class, String.class)); |
| 3877 | assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); |
| 3878 | MethodHandle catTrace = foldArguments(cat, trace); |
| 3879 | // also prints "boo": |
| 3880 | assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum")); |
| 3881 | * }</pre></blockquote> |
| 3882 | * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} |
| 3883 | * represents the result type of the {@code target} and resulting adapter. |
| 3884 | * {@code V}/{@code v} represent the type and value of the parameter and argument |
| 3885 | * of {@code target} that precedes the folding position; {@code V} also is |
| 3886 | * the result type of the {@code combiner}. {@code A}/{@code a} denote the |
| 3887 | * types and values of the {@code N} parameters and arguments at the folding |
| 3888 | * position. {@code B}/{@code b} represent the types and values of the |
| 3889 | * {@code target} parameters and arguments that follow the folded parameters |
| 3890 | * and arguments. |
| 3891 | * <blockquote><pre>{@code |
| 3892 | * // there are N arguments in A... |
| 3893 | * T target(V, A[N]..., B...); |
| 3894 | * V combiner(A...); |
| 3895 | * T adapter(A... a, B... b) { |
| 3896 | * V v = combiner(a...); |
| 3897 | * return target(v, a..., b...); |
| 3898 | * } |
| 3899 | * // and if the combiner has a void return: |
| 3900 | * T target2(A[N]..., B...); |
| 3901 | * void combiner2(A...); |
| 3902 | * T adapter2(A... a, B... b) { |
| 3903 | * combiner2(a...); |
| 3904 | * return target2(a..., b...); |
| 3905 | * } |
| 3906 | * }</pre></blockquote> |
| 3907 | * <p> |
| 3908 | * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector |
| 3909 | * variable-arity method handle}, even if the original target method handle was. |
| 3910 | * @param target the method handle to invoke after arguments are combined |
| 3911 | * @param combiner method handle to call initially on the incoming arguments |
| 3912 | * @return method handle which incorporates the specified argument folding logic |
| 3913 | * @throws NullPointerException if either argument is null |
| 3914 | * @throws IllegalArgumentException if {@code combiner}'s return type |
| 3915 | * is non-void and not the same as the first argument type of |
| 3916 | * the target, or if the initial {@code N} argument types |
| 3917 | * of the target |
| 3918 | * (skipping one matching the {@code combiner}'s return type) |
| 3919 | * are not identical with the argument types of {@code combiner} |
| 3920 | */ |
| 3921 | public static |
| 3922 | MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) { |
| 3923 | return foldArguments(target, 0, combiner); |
| 3924 | } |
| 3925 | |
| 3926 | /** |
| 3927 | * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then |
| 3928 | * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just |
| 3929 | * before the folded arguments. |
| 3930 | * <p> |
| 3931 | * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the |
| 3932 | * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a |
| 3933 | * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position |
| 3934 | * 0. |
| 3935 | * |
| 3936 | * @apiNote Example: |
| 3937 | * <blockquote><pre>{@code |
| 3938 | import static java.lang.invoke.MethodHandles.*; |
| 3939 | import static java.lang.invoke.MethodType.*; |
| 3940 | ... |
| 3941 | MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, |
| 3942 | "println", methodType(void.class, String.class)) |
| 3943 | .bindTo(System.out); |
| 3944 | MethodHandle cat = lookup().findVirtual(String.class, |
| 3945 | "concat", methodType(String.class, String.class)); |
| 3946 | assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); |
| 3947 | MethodHandle catTrace = foldArguments(cat, 1, trace); |
| 3948 | // also prints "jum": |
| 3949 | assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum")); |
| 3950 | * }</pre></blockquote> |
| 3951 | * <p>Here is pseudocode for the resulting adapter. In the code, {@code T} |
| 3952 | * represents the result type of the {@code target} and resulting adapter. |
| 3953 | * {@code V}/{@code v} represent the type and value of the parameter and argument |
| 3954 | * of {@code target} that precedes the folding position; {@code V} also is |
| 3955 | * the result type of the {@code combiner}. {@code A}/{@code a} denote the |
| 3956 | * types and values of the {@code N} parameters and arguments at the folding |
| 3957 | * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types |
| 3958 | * and values of the {@code target} parameters and arguments that precede and |
| 3959 | * follow the folded parameters and arguments starting at {@code pos}, |
| 3960 | * respectively. |
| 3961 | * <blockquote><pre>{@code |
| 3962 | * // there are N arguments in A... |
| 3963 | * T target(Z..., V, A[N]..., B...); |
| 3964 | * V combiner(A...); |
| 3965 | * T adapter(Z... z, A... a, B... b) { |
| 3966 | * V v = combiner(a...); |
| 3967 | * return target(z..., v, a..., b...); |
| 3968 | * } |
| 3969 | * // and if the combiner has a void return: |
| 3970 | * T target2(Z..., A[N]..., B...); |
| 3971 | * void combiner2(A...); |
| 3972 | * T adapter2(Z... z, A... a, B... b) { |
| 3973 | * combiner2(a...); |
| 3974 | * return target2(z..., a..., b...); |
| 3975 | * } |
| 3976 | * }</pre></blockquote> |
| 3977 | * <p> |
| 3978 | * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector |
| 3979 | * variable-arity method handle}, even if the original target method handle was. |
| 3980 | * |
| 3981 | * @param target the method handle to invoke after arguments are combined |
| 3982 | * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code |
| 3983 | * 0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}. |
| 3984 | * @param combiner method handle to call initially on the incoming arguments |
| 3985 | * @return method handle which incorporates the specified argument folding logic |
| 3986 | * @throws NullPointerException if either argument is null |
| 3987 | * @throws IllegalArgumentException if either of the following two conditions holds: |
| 3988 | * (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position |
| 3989 | * {@code pos} of the target signature; |
| 3990 | * (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching |
| 3991 | * the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}. |
| 3992 | * |
| 3993 | * @see #foldArguments(MethodHandle, MethodHandle) |
| 3994 | * @since 9 |
| 3995 | */ |
| 3996 | public static |
| 3997 | MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) { |
| 3998 | MethodType targetType = target.type(); |
| 3999 | MethodType combinerType = combiner.type(); |
| 4000 | Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType); |
| 4001 | // Android-changed: // Android-changed: transformer implementation. |
| 4002 | // BoundMethodHandle result = target.rebind(); |
| 4003 | // boolean dropResult = rtype == void.class; |
| 4004 | // LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType()); |
| 4005 | // MethodType newType = targetType; |
| 4006 | // if (!dropResult) { |
| 4007 | // newType = newType.dropParameterTypes(pos, pos + 1); |
| 4008 | // } |
| 4009 | // result = result.copyWithExtendL(newType, lform, combiner); |
| 4010 | // return result; |
| 4011 | |
| 4012 | return new Transformers.FoldArguments(target, pos, combiner); |
| 4013 | } |
| 4014 | |
| 4015 | private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) { |
| 4016 | int foldArgs = combinerType.parameterCount(); |
| 4017 | Class<?> rtype = combinerType.returnType(); |
| 4018 | int foldVals = rtype == void.class ? 0 : 1; |
| 4019 | int afterInsertPos = foldPos + foldVals; |
| 4020 | boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs); |
| 4021 | if (ok) { |
| 4022 | for (int i = 0; i < foldArgs; i++) { |
| 4023 | if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) { |
| 4024 | ok = false; |
| 4025 | break; |
| 4026 | } |
| 4027 | } |
| 4028 | } |
| 4029 | if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) |
| 4030 | ok = false; |
| 4031 | if (!ok) |
| 4032 | throw misMatchedTypes("target and combiner types", targetType, combinerType); |
| 4033 | return rtype; |
| 4034 | } |
| 4035 | |
| 4036 | /** |
| 4037 | * Makes a method handle which adapts a target method handle, |
| 4038 | * by guarding it with a test, a boolean-valued method handle. |
| 4039 | * If the guard fails, a fallback handle is called instead. |
| 4040 | * All three method handles must have the same corresponding |
| 4041 | * argument and return types, except that the return type |
| 4042 | * of the test must be boolean, and the test is allowed |
| 4043 | * to have fewer arguments than the other two method handles. |
| 4044 | * <p> Here is pseudocode for the resulting adapter: |
| 4045 | * <blockquote><pre>{@code |
| 4046 | * boolean test(A...); |
| 4047 | * T target(A...,B...); |
| 4048 | * T fallback(A...,B...); |
| 4049 | * T adapter(A... a,B... b) { |
| 4050 | * if (test(a...)) |
| 4051 | * return target(a..., b...); |
| 4052 | * else |
| 4053 | * return fallback(a..., b...); |
| 4054 | * } |
| 4055 | * }</pre></blockquote> |
| 4056 | * Note that the test arguments ({@code a...} in the pseudocode) cannot |
| 4057 | * be modified by execution of the test, and so are passed unchanged |
| 4058 | * from the caller to the target or fallback as appropriate. |
| 4059 | * @param test method handle used for test, must return boolean |
| 4060 | * @param target method handle to call if test passes |
| 4061 | * @param fallback method handle to call if test fails |
| 4062 | * @return method handle which incorporates the specified if/then/else logic |
| 4063 | * @throws NullPointerException if any argument is null |
| 4064 | * @throws IllegalArgumentException if {@code test} does not return boolean, |
| 4065 | * or if all three method types do not match (with the return |
| 4066 | * type of {@code test} changed to match that of the target). |
| 4067 | */ |
| 4068 | public static |
| 4069 | MethodHandle guardWithTest(MethodHandle test, |
| 4070 | MethodHandle target, |
| 4071 | MethodHandle fallback) { |
| 4072 | MethodType gtype = test.type(); |
| 4073 | MethodType ttype = target.type(); |
| 4074 | MethodType ftype = fallback.type(); |
| 4075 | if (!ttype.equals(ftype)) |
| 4076 | throw misMatchedTypes("target and fallback types", ttype, ftype); |
| 4077 | if (gtype.returnType() != boolean.class) |
| 4078 | throw newIllegalArgumentException("guard type is not a predicate "+gtype); |
| 4079 | List<Class<?>> targs = ttype.parameterList(); |
| 4080 | List<Class<?>> gargs = gtype.parameterList(); |
| 4081 | if (!targs.equals(gargs)) { |
| 4082 | int gpc = gargs.size(), tpc = targs.size(); |
| 4083 | if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs)) |
| 4084 | throw misMatchedTypes("target and test types", ttype, gtype); |
| 4085 | test = dropArguments(test, gpc, targs.subList(gpc, tpc)); |
| 4086 | gtype = test.type(); |
| 4087 | } |
| 4088 | |
| 4089 | return new Transformers.GuardWithTest(test, target, fallback); |
| 4090 | } |
| 4091 | |
| 4092 | static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) { |
| 4093 | return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2); |
| 4094 | } |
| 4095 | |
| 4096 | /** |
| 4097 | * Makes a method handle which adapts a target method handle, |
| 4098 | * by running it inside an exception handler. |
| 4099 | * If the target returns normally, the adapter returns that value. |
| 4100 | * If an exception matching the specified type is thrown, the fallback |
| 4101 | * handle is called instead on the exception, plus the original arguments. |
| 4102 | * <p> |
| 4103 | * The target and handler must have the same corresponding |
| 4104 | * argument and return types, except that handler may omit trailing arguments |
| 4105 | * (similarly to the predicate in {@link #guardWithTest guardWithTest}). |
| 4106 | * Also, the handler must have an extra leading parameter of {@code exType} or a supertype. |
| 4107 | * <p> |
| 4108 | * Here is pseudocode for the resulting adapter. In the code, {@code T} |
| 4109 | * represents the return type of the {@code target} and {@code handler}, |
| 4110 | * and correspondingly that of the resulting adapter; {@code A}/{@code a}, |
| 4111 | * the types and values of arguments to the resulting handle consumed by |
| 4112 | * {@code handler}; and {@code B}/{@code b}, those of arguments to the |
| 4113 | * resulting handle discarded by {@code handler}. |
| 4114 | * <blockquote><pre>{@code |
| 4115 | * T target(A..., B...); |
| 4116 | * T handler(ExType, A...); |
| 4117 | * T adapter(A... a, B... b) { |
| 4118 | * try { |
| 4119 | * return target(a..., b...); |
| 4120 | * } catch (ExType ex) { |
| 4121 | * return handler(ex, a...); |
| 4122 | * } |
| 4123 | * } |
| 4124 | * }</pre></blockquote> |
| 4125 | * Note that the saved arguments ({@code a...} in the pseudocode) cannot |
| 4126 | * be modified by execution of the target, and so are passed unchanged |
| 4127 | * from the caller to the handler, if the handler is invoked. |
| 4128 | * <p> |
| 4129 | * The target and handler must return the same type, even if the handler |
| 4130 | * always throws. (This might happen, for instance, because the handler |
| 4131 | * is simulating a {@code finally} clause). |
| 4132 | * To create such a throwing handler, compose the handler creation logic |
| 4133 | * with {@link #throwException throwException}, |
| 4134 | * in order to create a method handle of the correct return type. |
| 4135 | * @param target method handle to call |
| 4136 | * @param exType the type of exception which the handler will catch |
| 4137 | * @param handler method handle to call if a matching exception is thrown |
| 4138 | * @return method handle which incorporates the specified try/catch logic |
| 4139 | * @throws NullPointerException if any argument is null |
| 4140 | * @throws IllegalArgumentException if {@code handler} does not accept |
| 4141 | * the given exception type, or if the method handle types do |
| 4142 | * not match in their return types and their |
| 4143 | * corresponding parameters |
| 4144 | * @see MethodHandles#tryFinally(MethodHandle, MethodHandle) |
| 4145 | */ |
| 4146 | public static |
| 4147 | MethodHandle catchException(MethodHandle target, |
| 4148 | Class<? extends Throwable> exType, |
| 4149 | MethodHandle handler) { |
| 4150 | MethodType ttype = target.type(); |
| 4151 | MethodType htype = handler.type(); |
| 4152 | if (!Throwable.class.isAssignableFrom(exType)) |
| 4153 | throw new ClassCastException(exType.getName()); |
| 4154 | if (htype.parameterCount() < 1 || |
| 4155 | !htype.parameterType(0).isAssignableFrom(exType)) |
| 4156 | throw newIllegalArgumentException("handler does not accept exception type "+exType); |
| 4157 | if (htype.returnType() != ttype.returnType()) |
| 4158 | throw misMatchedTypes("target and handler return types", ttype, htype); |
| 4159 | handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true); |
| 4160 | if (handler == null) { |
| 4161 | throw misMatchedTypes("target and handler types", ttype, htype); |
| 4162 | } |
| 4163 | // Android-changed: use Transformer implementation. |
| 4164 | // return MethodHandleImpl.makeGuardWithCatch(target, exType, handler); |
| 4165 | return new Transformers.CatchException(target, handler, exType); |
| 4166 | } |
| 4167 | |
| 4168 | /** |
| 4169 | * Produces a method handle which will throw exceptions of the given {@code exType}. |
| 4170 | * The method handle will accept a single argument of {@code exType}, |
| 4171 | * and immediately throw it as an exception. |
| 4172 | * The method type will nominally specify a return of {@code returnType}. |
| 4173 | * The return type may be anything convenient: It doesn't matter to the |
| 4174 | * method handle's behavior, since it will never return normally. |
| 4175 | * @param returnType the return type of the desired method handle |
| 4176 | * @param exType the parameter type of the desired method handle |
| 4177 | * @return method handle which can throw the given exceptions |
| 4178 | * @throws NullPointerException if either argument is null |
| 4179 | */ |
| 4180 | public static |
| 4181 | MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) { |
| 4182 | if (!Throwable.class.isAssignableFrom(exType)) |
| 4183 | throw new ClassCastException(exType.getName()); |
| 4184 | // Android-changed: use Transformer implementation. |
| 4185 | // return MethodHandleImpl.throwException(methodType(returnType, exType)); |
| 4186 | return new Transformers.AlwaysThrow(returnType, exType); |
| 4187 | } |
| 4188 | |
| 4189 | /** |
| 4190 | * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each |
| 4191 | * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and |
| 4192 | * delivers the loop's result, which is the return value of the resulting handle. |
| 4193 | * <p> |
| 4194 | * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop |
| 4195 | * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration |
| 4196 | * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in |
| 4197 | * terms of method handles, each clause will specify up to four independent actions:<ul> |
| 4198 | * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}. |
| 4199 | * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}. |
| 4200 | * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit. |
| 4201 | * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value. |
| 4202 | * </ul> |
| 4203 | * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}. |
| 4204 | * The values themselves will be {@code (v...)}. When we speak of "parameter lists", we will usually |
| 4205 | * be referring to types, but in some contexts (describing execution) the lists will be of actual values. |
| 4206 | * <p> |
| 4207 | * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in |
| 4208 | * this case. See below for a detailed description. |
| 4209 | * <p> |
| 4210 | * <em>Parameters optional everywhere:</em> |
| 4211 | * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}. |
| 4212 | * As an exception, the init functions cannot take any {@code v} parameters, |
| 4213 | * because those values are not yet computed when the init functions are executed. |
| 4214 | * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take. |
| 4215 | * In fact, any clause function may take no arguments at all. |
| 4216 | * <p> |
| 4217 | * <em>Loop parameters:</em> |
| 4218 | * A clause function may take all the iteration variable values it is entitled to, in which case |
| 4219 | * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>, |
| 4220 | * with their types and values notated as {@code (A...)} and {@code (a...)}. |
| 4221 | * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed. |
| 4222 | * (Since init functions do not accept iteration variables {@code v}, any parameter to an |
| 4223 | * init function is automatically a loop parameter {@code a}.) |
| 4224 | * As with iteration variables, clause functions are allowed but not required to accept loop parameters. |
| 4225 | * These loop parameters act as loop-invariant values visible across the whole loop. |
| 4226 | * <p> |
| 4227 | * <em>Parameters visible everywhere:</em> |
| 4228 | * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full |
| 4229 | * list {@code (v... a...)} of current iteration variable values and incoming loop parameters. |
| 4230 | * The init functions can observe initial pre-loop state, in the form {@code (a...)}. |
| 4231 | * Most clause functions will not need all of this information, but they will be formally connected to it |
| 4232 | * as if by {@link #dropArguments}. |
| 4233 | * <a id="astar"></a> |
| 4234 | * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full |
| 4235 | * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}). |
| 4236 | * In that notation, the general form of an init function parameter list |
| 4237 | * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}. |
| 4238 | * <p> |
| 4239 | * <em>Checking clause structure:</em> |
| 4240 | * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the |
| 4241 | * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must" |
| 4242 | * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not |
| 4243 | * met by the inputs to the loop combinator. |
| 4244 | * <p> |
| 4245 | * <em>Effectively identical sequences:</em> |
| 4246 | * <a id="effid"></a> |
| 4247 | * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B} |
| 4248 | * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}. |
| 4249 | * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical" |
| 4250 | * as a whole if the set contains a longest list, and all members of the set are effectively identical to |
| 4251 | * that longest list. |
| 4252 | * For example, any set of type sequences of the form {@code (V*)} is effectively identical, |
| 4253 | * and the same is true if more sequences of the form {@code (V... A*)} are added. |
| 4254 | * <p> |
| 4255 | * <em>Step 0: Determine clause structure.</em><ol type="a"> |
| 4256 | * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element. |
| 4257 | * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements. |
| 4258 | * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length |
| 4259 | * four. Padding takes place by appending elements to the array. |
| 4260 | * <li>Clauses with all {@code null}s are disregarded. |
| 4261 | * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini". |
| 4262 | * </ol> |
| 4263 | * <p> |
| 4264 | * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a"> |
| 4265 | * <li>The iteration variable type for each clause is determined using the clause's init and step return types. |
| 4266 | * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is |
| 4267 | * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's |
| 4268 | * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's |
| 4269 | * iteration variable type. |
| 4270 | * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}. |
| 4271 | * <li>This list of types is called the "iteration variable types" ({@code (V...)}). |
| 4272 | * </ol> |
| 4273 | * <p> |
| 4274 | * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul> |
| 4275 | * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}). |
| 4276 | * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types. |
| 4277 | * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.) |
| 4278 | * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types. |
| 4279 | * (These types will be checked in step 2, along with all the clause function types.) |
| 4280 | * <li>Omitted clause functions are ignored. (Equivalently, they are deemed to have empty parameter lists.) |
| 4281 | * <li>All of the collected parameter lists must be effectively identical. |
| 4282 | * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}). |
| 4283 | * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence. |
| 4284 | * <li>The combined list consisting of iteration variable types followed by the external parameter types is called |
| 4285 | * the "internal parameter list". |
| 4286 | * </ul> |
| 4287 | * <p> |
| 4288 | * <em>Step 1C: Determine loop return type.</em><ol type="a"> |
| 4289 | * <li>Examine fini function return types, disregarding omitted fini functions. |
| 4290 | * <li>If there are no fini functions, the loop return type is {@code void}. |
| 4291 | * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return |
| 4292 | * type. |
| 4293 | * </ol> |
| 4294 | * <p> |
| 4295 | * <em>Step 1D: Check other types.</em><ol type="a"> |
| 4296 | * <li>There must be at least one non-omitted pred function. |
| 4297 | * <li>Every non-omitted pred function must have a {@code boolean} return type. |
| 4298 | * </ol> |
| 4299 | * <p> |
| 4300 | * <em>Step 2: Determine parameter lists.</em><ol type="a"> |
| 4301 | * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}. |
| 4302 | * <li>The parameter list for init functions will be adjusted to the external parameter list. |
| 4303 | * (Note that their parameter lists are already effectively identical to this list.) |
| 4304 | * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be |
| 4305 | * effectively identical to the internal parameter list {@code (V... A...)}. |
| 4306 | * </ol> |
| 4307 | * <p> |
| 4308 | * <em>Step 3: Fill in omitted functions.</em><ol type="a"> |
| 4309 | * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable |
| 4310 | * type. |
| 4311 | * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration |
| 4312 | * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void} |
| 4313 | * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.) |
| 4314 | * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far |
| 4315 | * as this clause is concerned. Note that in such cases the corresponding fini function is unreachable.) |
| 4316 | * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the |
| 4317 | * loop return type. |
| 4318 | * </ol> |
| 4319 | * <p> |
| 4320 | * <em>Step 4: Fill in missing parameter types.</em><ol type="a"> |
| 4321 | * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)}, |
| 4322 | * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list. |
| 4323 | * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter |
| 4324 | * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list, |
| 4325 | * pad out the end of the list. |
| 4326 | * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}. |
| 4327 | * </ol> |
| 4328 | * <p> |
| 4329 | * <em>Final observations.</em><ol type="a"> |
| 4330 | * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments. |
| 4331 | * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have. |
| 4332 | * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have. |
| 4333 | * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of |
| 4334 | * (non-{@code void}) iteration variables {@code V} followed by loop parameters. |
| 4335 | * <li>Each pair of init and step functions agrees in their return type {@code V}. |
| 4336 | * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables. |
| 4337 | * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters. |
| 4338 | * </ol> |
| 4339 | * <p> |
| 4340 | * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property: |
| 4341 | * <ul> |
| 4342 | * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}. |
| 4343 | * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters. |
| 4344 | * (Only one {@code Pn} has to be non-{@code null}.) |
| 4345 | * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}. |
| 4346 | * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types. |
| 4347 | * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}. |
| 4348 | * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}. |
| 4349 | * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine |
| 4350 | * the resulting loop handle's parameter types {@code (A...)}. |
| 4351 | * </ul> |
| 4352 | * In this example, the loop handle parameters {@code (A...)} were derived from the step functions, |
| 4353 | * which is natural if most of the loop computation happens in the steps. For some loops, |
| 4354 | * the burden of computation might be heaviest in the pred functions, and so the pred functions |
| 4355 | * might need to accept the loop parameter values. For loops with complex exit logic, the fini |
| 4356 | * functions might need to accept loop parameters, and likewise for loops with complex entry logic, |
| 4357 | * where the init functions will need the extra parameters. For such reasons, the rules for |
| 4358 | * determining these parameters are as symmetric as possible, across all clause parts. |
| 4359 | * In general, the loop parameters function as common invariant values across the whole |
| 4360 | * loop, while the iteration variables function as common variant values, or (if there is |
| 4361 | * no step function) as internal loop invariant temporaries. |
| 4362 | * <p> |
| 4363 | * <em>Loop execution.</em><ol type="a"> |
| 4364 | * <li>When the loop is called, the loop input values are saved in locals, to be passed to |
| 4365 | * every clause function. These locals are loop invariant. |
| 4366 | * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)}) |
| 4367 | * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals. |
| 4368 | * These locals will be loop varying (unless their steps behave as identity functions, as noted above). |
| 4369 | * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of |
| 4370 | * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)} |
| 4371 | * (in argument order). |
| 4372 | * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function |
| 4373 | * returns {@code false}. |
| 4374 | * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the |
| 4375 | * sequence {@code (v...)} of loop variables. |
| 4376 | * The updated value is immediately visible to all subsequent function calls. |
| 4377 | * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value |
| 4378 | * (of type {@code R}) is returned from the loop as a whole. |
| 4379 | * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit |
| 4380 | * except by throwing an exception. |
| 4381 | * </ol> |
| 4382 | * <p> |
| 4383 | * <em>Usage tips.</em> |
| 4384 | * <ul> |
| 4385 | * <li>Although each step function will receive the current values of <em>all</em> the loop variables, |
| 4386 | * sometimes a step function only needs to observe the current value of its own variable. |
| 4387 | * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}. |
| 4388 | * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}. |
| 4389 | * <li>Loop variables are not required to vary; they can be loop invariant. A clause can create |
| 4390 | * a loop invariant by a suitable init function with no step, pred, or fini function. This may be |
| 4391 | * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable. |
| 4392 | * <li>If some of the clause functions are virtual methods on an instance, the instance |
| 4393 | * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause |
| 4394 | * like {@code new MethodHandle[]{identity(ObjType.class)}}. In that case, the instance reference |
| 4395 | * will be the first iteration variable value, and it will be easy to use virtual |
| 4396 | * methods as clause parts, since all of them will take a leading instance reference matching that value. |
| 4397 | * </ul> |
| 4398 | * <p> |
| 4399 | * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types |
| 4400 | * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop; |
| 4401 | * and {@code R} is the common result type of all finalizers as well as of the resulting loop. |
| 4402 | * <blockquote><pre>{@code |
| 4403 | * V... init...(A...); |
| 4404 | * boolean pred...(V..., A...); |
| 4405 | * V... step...(V..., A...); |
| 4406 | * R fini...(V..., A...); |
| 4407 | * R loop(A... a) { |
| 4408 | * V... v... = init...(a...); |
| 4409 | * for (;;) { |
| 4410 | * for ((v, p, s, f) in (v..., pred..., step..., fini...)) { |
| 4411 | * v = s(v..., a...); |
| 4412 | * if (!p(v..., a...)) { |
| 4413 | * return f(v..., a...); |
| 4414 | * } |
| 4415 | * } |
| 4416 | * } |
| 4417 | * } |
| 4418 | * }</pre></blockquote> |
| 4419 | * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded |
| 4420 | * to their full length, even though individual clause functions may neglect to take them all. |
| 4421 | * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}. |
| 4422 | * |
| 4423 | * @apiNote Example: |
| 4424 | * <blockquote><pre>{@code |
| 4425 | * // iterative implementation of the factorial function as a loop handle |
| 4426 | * static int one(int k) { return 1; } |
| 4427 | * static int inc(int i, int acc, int k) { return i + 1; } |
| 4428 | * static int mult(int i, int acc, int k) { return i * acc; } |
| 4429 | * static boolean pred(int i, int acc, int k) { return i < k; } |
| 4430 | * static int fin(int i, int acc, int k) { return acc; } |
| 4431 | * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods |
| 4432 | * // null initializer for counter, should initialize to 0 |
| 4433 | * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; |
| 4434 | * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; |
| 4435 | * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); |
| 4436 | * assertEquals(120, loop.invoke(5)); |
| 4437 | * }</pre></blockquote> |
| 4438 | * The same example, dropping arguments and using combinators: |
| 4439 | * <blockquote><pre>{@code |
| 4440 | * // simplified implementation of the factorial function as a loop handle |
| 4441 | * static int inc(int i) { return i + 1; } // drop acc, k |
| 4442 | * static int mult(int i, int acc) { return i * acc; } //drop k |
| 4443 | * static boolean cmp(int i, int k) { return i < k; } |
| 4444 | * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods |
| 4445 | * // null initializer for counter, should initialize to 0 |
| 4446 | * MethodHandle MH_one = MethodHandles.constant(int.class, 1); |
| 4447 | * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc |
| 4448 | * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i |
| 4449 | * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; |
| 4450 | * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; |
| 4451 | * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); |
| 4452 | * assertEquals(720, loop.invoke(6)); |
| 4453 | * }</pre></blockquote> |
| 4454 | * A similar example, using a helper object to hold a loop parameter: |
| 4455 | * <blockquote><pre>{@code |
| 4456 | * // instance-based implementation of the factorial function as a loop handle |
| 4457 | * static class FacLoop { |
| 4458 | * final int k; |
| 4459 | * FacLoop(int k) { this.k = k; } |
| 4460 | * int inc(int i) { return i + 1; } |
| 4461 | * int mult(int i, int acc) { return i * acc; } |
| 4462 | * boolean pred(int i) { return i < k; } |
| 4463 | * int fin(int i, int acc) { return acc; } |
| 4464 | * } |
| 4465 | * // assume MH_FacLoop is a handle to the constructor |
| 4466 | * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods |
| 4467 | * // null initializer for counter, should initialize to 0 |
| 4468 | * MethodHandle MH_one = MethodHandles.constant(int.class, 1); |
| 4469 | * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop}; |
| 4470 | * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; |
| 4471 | * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; |
| 4472 | * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause); |
| 4473 | * assertEquals(5040, loop.invoke(7)); |
| 4474 | * }</pre></blockquote> |
| 4475 | * |
| 4476 | * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above. |
| 4477 | * |
| 4478 | * @return a method handle embodying the looping behavior as defined by the arguments. |
| 4479 | * |
| 4480 | * @throws IllegalArgumentException in case any of the constraints described above is violated. |
| 4481 | * |
| 4482 | * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle) |
| 4483 | * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle) |
| 4484 | * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle) |
| 4485 | * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle) |
| 4486 | * @since 9 |
| 4487 | */ |
| 4488 | public static MethodHandle loop(MethodHandle[]... clauses) { |
| 4489 | // Step 0: determine clause structure. |
| 4490 | loopChecks0(clauses); |
| 4491 | |
| 4492 | List<MethodHandle> init = new ArrayList<>(); |
| 4493 | List<MethodHandle> step = new ArrayList<>(); |
| 4494 | List<MethodHandle> pred = new ArrayList<>(); |
| 4495 | List<MethodHandle> fini = new ArrayList<>(); |
| 4496 | |
| 4497 | Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> { |
| 4498 | init.add(clause[0]); // all clauses have at least length 1 |
| 4499 | step.add(clause.length <= 1 ? null : clause[1]); |
| 4500 | pred.add(clause.length <= 2 ? null : clause[2]); |
| 4501 | fini.add(clause.length <= 3 ? null : clause[3]); |
| 4502 | }); |
| 4503 | |
| 4504 | assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1; |
| 4505 | final int nclauses = init.size(); |
| 4506 | |
| 4507 | // Step 1A: determine iteration variables (V...). |
| 4508 | final List<Class<?>> iterationVariableTypes = new ArrayList<>(); |
| 4509 | for (int i = 0; i < nclauses; ++i) { |
| 4510 | MethodHandle in = init.get(i); |
| 4511 | MethodHandle st = step.get(i); |
| 4512 | if (in == null && st == null) { |
| 4513 | iterationVariableTypes.add(void.class); |
| 4514 | } else if (in != null && st != null) { |
| 4515 | loopChecks1a(i, in, st); |
| 4516 | iterationVariableTypes.add(in.type().returnType()); |
| 4517 | } else { |
| 4518 | iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType()); |
| 4519 | } |
| 4520 | } |
| 4521 | final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class). |
| 4522 | collect(Collectors.toList()); |
| 4523 | |
| 4524 | // Step 1B: determine loop parameters (A...). |
| 4525 | final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size()); |
| 4526 | loopChecks1b(init, commonSuffix); |
| 4527 | |
| 4528 | // Step 1C: determine loop return type. |
| 4529 | // Step 1D: check other types. |
| 4530 | // local variable required here; see JDK-8223553 |
| 4531 | Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type) |
| 4532 | .map(MethodType::returnType); |
| 4533 | final Class<?> loopReturnType = cstream.findFirst().orElse(void.class); |
| 4534 | loopChecks1cd(pred, fini, loopReturnType); |
| 4535 | |
| 4536 | // Step 2: determine parameter lists. |
| 4537 | final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix); |
| 4538 | commonParameterSequence.addAll(commonSuffix); |
| 4539 | loopChecks2(step, pred, fini, commonParameterSequence); |
| 4540 | |
| 4541 | // Step 3: fill in omitted functions. |
| 4542 | for (int i = 0; i < nclauses; ++i) { |
| 4543 | Class<?> t = iterationVariableTypes.get(i); |
| 4544 | if (init.get(i) == null) { |
| 4545 | init.set(i, empty(methodType(t, commonSuffix))); |
| 4546 | } |
| 4547 | if (step.get(i) == null) { |
| 4548 | step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i)); |
| 4549 | } |
| 4550 | if (pred.get(i) == null) { |
| 4551 | pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence)); |
| 4552 | } |
| 4553 | if (fini.get(i) == null) { |
| 4554 | fini.set(i, empty(methodType(t, commonParameterSequence))); |
| 4555 | } |
| 4556 | } |
| 4557 | |
| 4558 | // Step 4: fill in missing parameter types. |
| 4559 | // Also convert all handles to fixed-arity handles. |
| 4560 | List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix)); |
| 4561 | List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence)); |
| 4562 | List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence)); |
| 4563 | List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence)); |
| 4564 | |
| 4565 | assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList). |
| 4566 | allMatch(pl -> pl.equals(commonSuffix)); |
| 4567 | assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList). |
| 4568 | allMatch(pl -> pl.equals(commonParameterSequence)); |
| 4569 | |
| 4570 | // Android-changed: transformer implementation. |
| 4571 | // return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini); |
| 4572 | return new Transformers.Loop(loopReturnType, |
| 4573 | commonSuffix, |
| 4574 | finit.toArray(MethodHandle[]::new), |
| 4575 | fstep.toArray(MethodHandle[]::new), |
| 4576 | fpred.toArray(MethodHandle[]::new), |
| 4577 | ffini.toArray(MethodHandle[]::new)); |
| 4578 | } |
| 4579 | |
| 4580 | private static void loopChecks0(MethodHandle[][] clauses) { |
| 4581 | if (clauses == null || clauses.length == 0) { |
| 4582 | throw newIllegalArgumentException("null or no clauses passed"); |
| 4583 | } |
| 4584 | if (Stream.of(clauses).anyMatch(Objects::isNull)) { |
| 4585 | throw newIllegalArgumentException("null clauses are not allowed"); |
| 4586 | } |
| 4587 | if (Stream.of(clauses).anyMatch(c -> c.length > 4)) { |
| 4588 | throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements."); |
| 4589 | } |
| 4590 | } |
| 4591 | |
| 4592 | private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) { |
| 4593 | if (in.type().returnType() != st.type().returnType()) { |
| 4594 | throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(), |
| 4595 | st.type().returnType()); |
| 4596 | } |
| 4597 | } |
| 4598 | |
| 4599 | private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) { |
| 4600 | final List<Class<?>> empty = List.of(); |
| 4601 | final List<Class<?>> longest = mhs.filter(Objects::nonNull). |
| 4602 | // take only those that can contribute to a common suffix because they are longer than the prefix |
| 4603 | map(MethodHandle::type). |
| 4604 | filter(t -> t.parameterCount() > skipSize). |
| 4605 | map(MethodType::parameterList). |
| 4606 | reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty); |
| 4607 | return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size()); |
| 4608 | } |
| 4609 | |
| 4610 | private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) { |
| 4611 | final List<Class<?>> empty = List.of(); |
| 4612 | return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty); |
| 4613 | } |
| 4614 | |
| 4615 | private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) { |
| 4616 | final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize); |
| 4617 | final List<Class<?>> longest2 = longestParameterList(init.stream(), 0); |
| 4618 | return longestParameterList(Arrays.asList(longest1, longest2)); |
| 4619 | } |
| 4620 | |
| 4621 | private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) { |
| 4622 | if (init.stream().filter(Objects::nonNull).map(MethodHandle::type). |
| 4623 | anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) { |
| 4624 | throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init + |
| 4625 | " (common suffix: " + commonSuffix + ")"); |
| 4626 | } |
| 4627 | } |
| 4628 | |
| 4629 | private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) { |
| 4630 | if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). |
| 4631 | anyMatch(t -> t != loopReturnType)) { |
| 4632 | throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " + |
| 4633 | loopReturnType + ")"); |
| 4634 | } |
| 4635 | |
| 4636 | if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) { |
| 4637 | throw newIllegalArgumentException("no predicate found", pred); |
| 4638 | } |
| 4639 | if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). |
| 4640 | anyMatch(t -> t != boolean.class)) { |
| 4641 | throw newIllegalArgumentException("predicates must have boolean return type", pred); |
| 4642 | } |
| 4643 | } |
| 4644 | |
| 4645 | private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) { |
| 4646 | if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type). |
| 4647 | anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) { |
| 4648 | throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step + |
| 4649 | "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")"); |
| 4650 | } |
| 4651 | } |
| 4652 | |
| 4653 | private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) { |
| 4654 | return hs.stream().map(h -> { |
| 4655 | int pc = h.type().parameterCount(); |
| 4656 | int tpsize = targetParams.size(); |
| 4657 | return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h; |
| 4658 | }).collect(Collectors.toList()); |
| 4659 | } |
| 4660 | |
| 4661 | private static List<MethodHandle> fixArities(List<MethodHandle> hs) { |
| 4662 | return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList()); |
| 4663 | } |
| 4664 | |
| 4665 | /** |
| 4666 | * Constructs a {@code while} loop from an initializer, a body, and a predicate. |
| 4667 | * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. |
| 4668 | * <p> |
| 4669 | * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this |
| 4670 | * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate |
| 4671 | * evaluates to {@code true}). |
| 4672 | * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case). |
| 4673 | * <p> |
| 4674 | * The {@code init} handle describes the initial value of an additional optional loop-local variable. |
| 4675 | * In each iteration, this loop-local variable, if present, will be passed to the {@code body} |
| 4676 | * and updated with the value returned from its invocation. The result of loop execution will be |
| 4677 | * the final value of the additional loop-local variable (if present). |
| 4678 | * <p> |
| 4679 | * The following rules hold for these argument handles:<ul> |
| 4680 | * <li>The {@code body} handle must not be {@code null}; its type must be of the form |
| 4681 | * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. |
| 4682 | * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, |
| 4683 | * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} |
| 4684 | * is quietly dropped from the parameter list, leaving {@code (A...)V}.) |
| 4685 | * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>. |
| 4686 | * It will constrain the parameter lists of the other loop parts. |
| 4687 | * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter |
| 4688 | * list {@code (A...)} is called the <em>external parameter list</em>. |
| 4689 | * <li>The body return type {@code V}, if non-{@code void}, determines the type of an |
| 4690 | * additional state variable of the loop. |
| 4691 | * The body must both accept and return a value of this type {@code V}. |
| 4692 | * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. |
| 4693 | * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be |
| 4694 | * <a href="MethodHandles.html#effid">effectively identical</a> |
| 4695 | * to the external parameter list {@code (A...)}. |
| 4696 | * <li>If {@code init} is {@code null}, the loop variable will be initialized to its |
| 4697 | * {@linkplain #empty default value}. |
| 4698 | * <li>The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. |
| 4699 | * Its parameter list (either empty or of the form {@code (V A*)}) must be |
| 4700 | * effectively identical to the internal parameter list. |
| 4701 | * </ul> |
| 4702 | * <p> |
| 4703 | * The resulting loop handle's result type and parameter signature are determined as follows:<ul> |
| 4704 | * <li>The loop handle's result type is the result type {@code V} of the body. |
| 4705 | * <li>The loop handle's parameter types are the types {@code (A...)}, |
| 4706 | * from the external parameter list. |
| 4707 | * </ul> |
| 4708 | * <p> |
| 4709 | * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of |
| 4710 | * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument |
| 4711 | * passed to the loop. |
| 4712 | * <blockquote><pre>{@code |
| 4713 | * V init(A...); |
| 4714 | * boolean pred(V, A...); |
| 4715 | * V body(V, A...); |
| 4716 | * V whileLoop(A... a...) { |
| 4717 | * V v = init(a...); |
| 4718 | * while (pred(v, a...)) { |
| 4719 | * v = body(v, a...); |
| 4720 | * } |
| 4721 | * return v; |
| 4722 | * } |
| 4723 | * }</pre></blockquote> |
| 4724 | * |
| 4725 | * @apiNote Example: |
| 4726 | * <blockquote><pre>{@code |
| 4727 | * // implement the zip function for lists as a loop handle |
| 4728 | * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); } |
| 4729 | * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); } |
| 4730 | * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) { |
| 4731 | * zip.add(a.next()); |
| 4732 | * zip.add(b.next()); |
| 4733 | * return zip; |
| 4734 | * } |
| 4735 | * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods |
| 4736 | * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep); |
| 4737 | * List<String> a = Arrays.asList("a", "b", "c", "d"); |
| 4738 | * List<String> b = Arrays.asList("e", "f", "g", "h"); |
| 4739 | * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h"); |
| 4740 | * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator())); |
| 4741 | * }</pre></blockquote> |
| 4742 | * |
| 4743 | * |
| 4744 | * @apiNote The implementation of this method can be expressed as follows: |
| 4745 | * <blockquote><pre>{@code |
| 4746 | * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { |
| 4747 | * MethodHandle fini = (body.type().returnType() == void.class |
| 4748 | * ? null : identity(body.type().returnType())); |
| 4749 | * MethodHandle[] |
| 4750 | * checkExit = { null, null, pred, fini }, |
| 4751 | * varBody = { init, body }; |
| 4752 | * return loop(checkExit, varBody); |
| 4753 | * } |
| 4754 | * }</pre></blockquote> |
| 4755 | * |
| 4756 | * @param init optional initializer, providing the initial value of the loop variable. |
| 4757 | * May be {@code null}, implying a default initial value. See above for other constraints. |
| 4758 | * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See |
| 4759 | * above for other constraints. |
| 4760 | * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. |
| 4761 | * See above for other constraints. |
| 4762 | * |
| 4763 | * @return a method handle implementing the {@code while} loop as described by the arguments. |
| 4764 | * @throws IllegalArgumentException if the rules for the arguments are violated. |
| 4765 | * @throws NullPointerException if {@code pred} or {@code body} are {@code null}. |
| 4766 | * |
| 4767 | * @see #loop(MethodHandle[][]) |
| 4768 | * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle) |
| 4769 | * @since 9 |
| 4770 | */ |
| 4771 | public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { |
| 4772 | whileLoopChecks(init, pred, body); |
| 4773 | MethodHandle fini = identityOrVoid(body.type().returnType()); |
| 4774 | MethodHandle[] checkExit = { null, null, pred, fini }; |
| 4775 | MethodHandle[] varBody = { init, body }; |
| 4776 | return loop(checkExit, varBody); |
| 4777 | } |
| 4778 | |
| 4779 | /** |
| 4780 | * Constructs a {@code do-while} loop from an initializer, a body, and a predicate. |
| 4781 | * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. |
| 4782 | * <p> |
| 4783 | * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this |
| 4784 | * method will, in each iteration, first execute its body and then evaluate the predicate. |
| 4785 | * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body. |
| 4786 | * <p> |
| 4787 | * The {@code init} handle describes the initial value of an additional optional loop-local variable. |
| 4788 | * In each iteration, this loop-local variable, if present, will be passed to the {@code body} |
| 4789 | * and updated with the value returned from its invocation. The result of loop execution will be |
| 4790 | * the final value of the additional loop-local variable (if present). |
| 4791 | * <p> |
| 4792 | * The following rules hold for these argument handles:<ul> |
| 4793 | * <li>The {@code body} handle must not be {@code null}; its type must be of the form |
| 4794 | * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. |
| 4795 | * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, |
| 4796 | * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} |
| 4797 | * is quietly dropped from the parameter list, leaving {@code (A...)V}.) |
| 4798 | * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>. |
| 4799 | * It will constrain the parameter lists of the other loop parts. |
| 4800 | * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter |
| 4801 | * list {@code (A...)} is called the <em>external parameter list</em>. |
| 4802 | * <li>The body return type {@code V}, if non-{@code void}, determines the type of an |
| 4803 | * additional state variable of the loop. |
| 4804 | * The body must both accept and return a value of this type {@code V}. |
| 4805 | * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. |
| 4806 | * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be |
| 4807 | * <a href="MethodHandles.html#effid">effectively identical</a> |
| 4808 | * to the external parameter list {@code (A...)}. |
| 4809 | * <li>If {@code init} is {@code null}, the loop variable will be initialized to its |
| 4810 | * {@linkplain #empty default value}. |
| 4811 | * <li>The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. |
| 4812 | * Its parameter list (either empty or of the form {@code (V A*)}) must be |
| 4813 | * effectively identical to the internal parameter list. |
| 4814 | * </ul> |
| 4815 | * <p> |
| 4816 | * The resulting loop handle's result type and parameter signature are determined as follows:<ul> |
| 4817 | * <li>The loop handle's result type is the result type {@code V} of the body. |
| 4818 | * <li>The loop handle's parameter types are the types {@code (A...)}, |
| 4819 | * from the external parameter list. |
| 4820 | * </ul> |
| 4821 | * <p> |
| 4822 | * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of |
| 4823 | * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument |
| 4824 | * passed to the loop. |
| 4825 | * <blockquote><pre>{@code |
| 4826 | * V init(A...); |
| 4827 | * boolean pred(V, A...); |
| 4828 | * V body(V, A...); |
| 4829 | * V doWhileLoop(A... a...) { |
| 4830 | * V v = init(a...); |
| 4831 | * do { |
| 4832 | * v = body(v, a...); |
| 4833 | * } while (pred(v, a...)); |
| 4834 | * return v; |
| 4835 | * } |
| 4836 | * }</pre></blockquote> |
| 4837 | * |
| 4838 | * @apiNote Example: |
| 4839 | * <blockquote><pre>{@code |
| 4840 | * // int i = 0; while (i < limit) { ++i; } return i; => limit |
| 4841 | * static int zero(int limit) { return 0; } |
| 4842 | * static int step(int i, int limit) { return i + 1; } |
| 4843 | * static boolean pred(int i, int limit) { return i < limit; } |
| 4844 | * // assume MH_zero, MH_step, and MH_pred are handles to the above methods |
| 4845 | * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred); |
| 4846 | * assertEquals(23, loop.invoke(23)); |
| 4847 | * }</pre></blockquote> |
| 4848 | * |
| 4849 | * |
| 4850 | * @apiNote The implementation of this method can be expressed as follows: |
| 4851 | * <blockquote><pre>{@code |
| 4852 | * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { |
| 4853 | * MethodHandle fini = (body.type().returnType() == void.class |
| 4854 | * ? null : identity(body.type().returnType())); |
| 4855 | * MethodHandle[] clause = { init, body, pred, fini }; |
| 4856 | * return loop(clause); |
| 4857 | * } |
| 4858 | * }</pre></blockquote> |
| 4859 | * |
| 4860 | * @param init optional initializer, providing the initial value of the loop variable. |
| 4861 | * May be {@code null}, implying a default initial value. See above for other constraints. |
| 4862 | * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. |
| 4863 | * See above for other constraints. |
| 4864 | * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See |
| 4865 | * above for other constraints. |
| 4866 | * |
| 4867 | * @return a method handle implementing the {@code while} loop as described by the arguments. |
| 4868 | * @throws IllegalArgumentException if the rules for the arguments are violated. |
| 4869 | * @throws NullPointerException if {@code pred} or {@code body} are {@code null}. |
| 4870 | * |
| 4871 | * @see #loop(MethodHandle[][]) |
| 4872 | * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle) |
| 4873 | * @since 9 |
| 4874 | */ |
| 4875 | public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { |
| 4876 | whileLoopChecks(init, pred, body); |
| 4877 | MethodHandle fini = identityOrVoid(body.type().returnType()); |
| 4878 | MethodHandle[] clause = {init, body, pred, fini }; |
| 4879 | return loop(clause); |
| 4880 | } |
| 4881 | |
| 4882 | private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) { |
| 4883 | Objects.requireNonNull(pred); |
| 4884 | Objects.requireNonNull(body); |
| 4885 | MethodType bodyType = body.type(); |
| 4886 | Class<?> returnType = bodyType.returnType(); |
| 4887 | List<Class<?>> innerList = bodyType.parameterList(); |
| 4888 | List<Class<?>> outerList = innerList; |
| 4889 | if (returnType == void.class) { |
| 4890 | // OK |
| 4891 | } else if (innerList.size() == 0 || innerList.get(0) != returnType) { |
| 4892 | // leading V argument missing => error |
| 4893 | MethodType expected = bodyType.insertParameterTypes(0, returnType); |
| 4894 | throw misMatchedTypes("body function", bodyType, expected); |
| 4895 | } else { |
| 4896 | outerList = innerList.subList(1, innerList.size()); |
| 4897 | } |
| 4898 | MethodType predType = pred.type(); |
| 4899 | if (predType.returnType() != boolean.class || |
| 4900 | !predType.effectivelyIdenticalParameters(0, innerList)) { |
| 4901 | throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList)); |
| 4902 | } |
| 4903 | if (init != null) { |
| 4904 | MethodType initType = init.type(); |
| 4905 | if (initType.returnType() != returnType || |
| 4906 | !initType.effectivelyIdenticalParameters(0, outerList)) { |
| 4907 | throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); |
| 4908 | } |
| 4909 | } |
| 4910 | } |
| 4911 | |
| 4912 | /** |
| 4913 | * Constructs a loop that runs a given number of iterations. |
| 4914 | * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. |
| 4915 | * <p> |
| 4916 | * The number of iterations is determined by the {@code iterations} handle evaluation result. |
| 4917 | * The loop counter {@code i} is an extra loop iteration variable of type {@code int}. |
| 4918 | * It will be initialized to 0 and incremented by 1 in each iteration. |
| 4919 | * <p> |
| 4920 | * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable |
| 4921 | * of that type is also present. This variable is initialized using the optional {@code init} handle, |
| 4922 | * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. |
| 4923 | * <p> |
| 4924 | * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. |
| 4925 | * A non-{@code void} value returned from the body (of type {@code V}) updates the leading |
| 4926 | * iteration variable. |
| 4927 | * The result of the loop handle execution will be the final {@code V} value of that variable |
| 4928 | * (or {@code void} if there is no {@code V} variable). |
| 4929 | * <p> |
| 4930 | * The following rules hold for the argument handles:<ul> |
| 4931 | * <li>The {@code iterations} handle must not be {@code null}, and must return |
| 4932 | * the type {@code int}, referred to here as {@code I} in parameter type lists. |
| 4933 | * <li>The {@code body} handle must not be {@code null}; its type must be of the form |
| 4934 | * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. |
| 4935 | * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, |
| 4936 | * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} |
| 4937 | * is quietly dropped from the parameter list, leaving {@code (I A...)V}.) |
| 4938 | * <li>The parameter list {@code (V I A...)} of the body contributes to a list |
| 4939 | * of types called the <em>internal parameter list</em>. |
| 4940 | * It will constrain the parameter lists of the other loop parts. |
| 4941 | * <li>As a special case, if the body contributes only {@code V} and {@code I} types, |
| 4942 | * with no additional {@code A} types, then the internal parameter list is extended by |
| 4943 | * the argument types {@code A...} of the {@code iterations} handle. |
| 4944 | * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter |
| 4945 | * list {@code (A...)} is called the <em>external parameter list</em>. |
| 4946 | * <li>The body return type {@code V}, if non-{@code void}, determines the type of an |
| 4947 | * additional state variable of the loop. |
| 4948 | * The body must both accept a leading parameter and return a value of this type {@code V}. |
| 4949 | * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. |
| 4950 | * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be |
| 4951 | * <a href="MethodHandles.html#effid">effectively identical</a> |
| 4952 | * to the external parameter list {@code (A...)}. |
| 4953 | * <li>If {@code init} is {@code null}, the loop variable will be initialized to its |
| 4954 | * {@linkplain #empty default value}. |
| 4955 | * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be |
| 4956 | * effectively identical to the external parameter list {@code (A...)}. |
| 4957 | * </ul> |
| 4958 | * <p> |
| 4959 | * The resulting loop handle's result type and parameter signature are determined as follows:<ul> |
| 4960 | * <li>The loop handle's result type is the result type {@code V} of the body. |
| 4961 | * <li>The loop handle's parameter types are the types {@code (A...)}, |
| 4962 | * from the external parameter list. |
| 4963 | * </ul> |
| 4964 | * <p> |
| 4965 | * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of |
| 4966 | * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent |
| 4967 | * arguments passed to the loop. |
| 4968 | * <blockquote><pre>{@code |
| 4969 | * int iterations(A...); |
| 4970 | * V init(A...); |
| 4971 | * V body(V, int, A...); |
| 4972 | * V countedLoop(A... a...) { |
| 4973 | * int end = iterations(a...); |
| 4974 | * V v = init(a...); |
| 4975 | * for (int i = 0; i < end; ++i) { |
| 4976 | * v = body(v, i, a...); |
| 4977 | * } |
| 4978 | * return v; |
| 4979 | * } |
| 4980 | * }</pre></blockquote> |
| 4981 | * |
| 4982 | * @apiNote Example with a fully conformant body method: |
| 4983 | * <blockquote><pre>{@code |
| 4984 | * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; |
| 4985 | * // => a variation on a well known theme |
| 4986 | * static String step(String v, int counter, String init) { return "na " + v; } |
| 4987 | * // assume MH_step is a handle to the method above |
| 4988 | * MethodHandle fit13 = MethodHandles.constant(int.class, 13); |
| 4989 | * MethodHandle start = MethodHandles.identity(String.class); |
| 4990 | * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step); |
| 4991 | * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!")); |
| 4992 | * }</pre></blockquote> |
| 4993 | * |
| 4994 | * @apiNote Example with the simplest possible body method type, |
| 4995 | * and passing the number of iterations to the loop invocation: |
| 4996 | * <blockquote><pre>{@code |
| 4997 | * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; |
| 4998 | * // => a variation on a well known theme |
| 4999 | * static String step(String v, int counter ) { return "na " + v; } |
| 5000 | * // assume MH_step is a handle to the method above |
| 5001 | * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class); |
| 5002 | * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class); |
| 5003 | * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i) -> "na " + v |
| 5004 | * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!")); |
| 5005 | * }</pre></blockquote> |
| 5006 | * |
| 5007 | * @apiNote Example that treats the number of iterations, string to append to, and string to append |
| 5008 | * as loop parameters: |
| 5009 | * <blockquote><pre>{@code |
| 5010 | * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; |
| 5011 | * // => a variation on a well known theme |
| 5012 | * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; } |
| 5013 | * // assume MH_step is a handle to the method above |
| 5014 | * MethodHandle count = MethodHandles.identity(int.class); |
| 5015 | * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class); |
| 5016 | * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i, _, pre, _) -> pre + " " + v |
| 5017 | * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!")); |
| 5018 | * }</pre></blockquote> |
| 5019 | * |
| 5020 | * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)} |
| 5021 | * to enforce a loop type: |
| 5022 | * <blockquote><pre>{@code |
| 5023 | * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; |
| 5024 | * // => a variation on a well known theme |
| 5025 | * static String step(String v, int counter, String pre) { return pre + " " + v; } |
| 5026 | * // assume MH_step is a handle to the method above |
| 5027 | * MethodType loopType = methodType(String.class, String.class, int.class, String.class); |
| 5028 | * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class), 0, loopType.parameterList(), 1); |
| 5029 | * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2); |
| 5030 | * MethodHandle body = MethodHandles.dropArgumentsToMatch(MH_step, 2, loopType.parameterList(), 0); |
| 5031 | * MethodHandle loop = MethodHandles.countedLoop(count, start, body); // (v, i, pre, _, _) -> pre + " " + v |
| 5032 | * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!")); |
| 5033 | * }</pre></blockquote> |
| 5034 | * |
| 5035 | * @apiNote The implementation of this method can be expressed as follows: |
| 5036 | * <blockquote><pre>{@code |
| 5037 | * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { |
| 5038 | * return countedLoop(empty(iterations.type()), iterations, init, body); |
| 5039 | * } |
| 5040 | * }</pre></blockquote> |
| 5041 | * |
| 5042 | * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's |
| 5043 | * result type must be {@code int}. See above for other constraints. |
| 5044 | * @param init optional initializer, providing the initial value of the loop variable. |
| 5045 | * May be {@code null}, implying a default initial value. See above for other constraints. |
| 5046 | * @param body body of the loop, which may not be {@code null}. |
| 5047 | * It controls the loop parameters and result type in the standard case (see above for details). |
| 5048 | * It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), |
| 5049 | * and may accept any number of additional types. |
| 5050 | * See above for other constraints. |
| 5051 | * |
| 5052 | * @return a method handle representing the loop. |
| 5053 | * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}. |
| 5054 | * @throws IllegalArgumentException if any argument violates the rules formulated above. |
| 5055 | * |
| 5056 | * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle) |
| 5057 | * @since 9 |
| 5058 | */ |
| 5059 | public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { |
| 5060 | return countedLoop(empty(iterations.type()), iterations, init, body); |
| 5061 | } |
| 5062 | |
| 5063 | /** |
| 5064 | * Constructs a loop that counts over a range of numbers. |
| 5065 | * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. |
| 5066 | * <p> |
| 5067 | * The loop counter {@code i} is a loop iteration variable of type {@code int}. |
| 5068 | * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive) |
| 5069 | * values of the loop counter. |
| 5070 | * The loop counter will be initialized to the {@code int} value returned from the evaluation of the |
| 5071 | * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1. |
| 5072 | * <p> |
| 5073 | * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable |
| 5074 | * of that type is also present. This variable is initialized using the optional {@code init} handle, |
| 5075 | * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. |
| 5076 | * <p> |
| 5077 | * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. |
| 5078 | * A non-{@code void} value returned from the body (of type {@code V}) updates the leading |
| 5079 | * iteration variable. |
| 5080 | * The result of the loop handle execution will be the final {@code V} value of that variable |
| 5081 | * (or {@code void} if there is no {@code V} variable). |
| 5082 | * <p> |
| 5083 | * The following rules hold for the argument handles:<ul> |
| 5084 | * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return |
| 5085 | * the common type {@code int}, referred to here as {@code I} in parameter type lists. |
| 5086 | * <li>The {@code body} handle must not be {@code null}; its type must be of the form |
| 5087 | * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. |
| 5088 | * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, |
| 5089 | * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} |
| 5090 | * is quietly dropped from the parameter list, leaving {@code (I A...)V}.) |
| 5091 | * <li>The parameter list {@code (V I A...)} of the body contributes to a list |
| 5092 | * of types called the <em>internal parameter list</em>. |
| 5093 | * It will constrain the parameter lists of the other loop parts. |
| 5094 | * <li>As a special case, if the body contributes only {@code V} and {@code I} types, |
| 5095 | * with no additional {@code A} types, then the internal parameter list is extended by |
| 5096 | * the argument types {@code A...} of the {@code end} handle. |
| 5097 | * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter |
| 5098 | * list {@code (A...)} is called the <em>external parameter list</em>. |
| 5099 | * <li>The body return type {@code V}, if non-{@code void}, determines the type of an |
| 5100 | * additional state variable of the loop. |
| 5101 | * The body must both accept a leading parameter and return a value of this type {@code V}. |
| 5102 | * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. |
| 5103 | * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be |
| 5104 | * <a href="MethodHandles.html#effid">effectively identical</a> |
| 5105 | * to the external parameter list {@code (A...)}. |
| 5106 | * <li>If {@code init} is {@code null}, the loop variable will be initialized to its |
| 5107 | * {@linkplain #empty default value}. |
| 5108 | * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be |
| 5109 | * effectively identical to the external parameter list {@code (A...)}. |
| 5110 | * <li>Likewise, the parameter list of {@code end} must be effectively identical |
| 5111 | * to the external parameter list. |
| 5112 | * </ul> |
| 5113 | * <p> |
| 5114 | * The resulting loop handle's result type and parameter signature are determined as follows:<ul> |
| 5115 | * <li>The loop handle's result type is the result type {@code V} of the body. |
| 5116 | * <li>The loop handle's parameter types are the types {@code (A...)}, |
| 5117 | * from the external parameter list. |
| 5118 | * </ul> |
| 5119 | * <p> |
| 5120 | * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of |
| 5121 | * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent |
| 5122 | * arguments passed to the loop. |
| 5123 | * <blockquote><pre>{@code |
| 5124 | * int start(A...); |
| 5125 | * int end(A...); |
| 5126 | * V init(A...); |
| 5127 | * V body(V, int, A...); |
| 5128 | * V countedLoop(A... a...) { |
| 5129 | * int e = end(a...); |
| 5130 | * int s = start(a...); |
| 5131 | * V v = init(a...); |
| 5132 | * for (int i = s; i < e; ++i) { |
| 5133 | * v = body(v, i, a...); |
| 5134 | * } |
| 5135 | * return v; |
| 5136 | * } |
| 5137 | * }</pre></blockquote> |
| 5138 | * |
| 5139 | * @apiNote The implementation of this method can be expressed as follows: |
| 5140 | * <blockquote><pre>{@code |
| 5141 | * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { |
| 5142 | * MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class); |
| 5143 | * // assume MH_increment and MH_predicate are handles to implementation-internal methods with |
| 5144 | * // the following semantics: |
| 5145 | * // MH_increment: (int limit, int counter) -> counter + 1 |
| 5146 | * // MH_predicate: (int limit, int counter) -> counter < limit |
| 5147 | * Class<?> counterType = start.type().returnType(); // int |
| 5148 | * Class<?> returnType = body.type().returnType(); |
| 5149 | * MethodHandle incr = MH_increment, pred = MH_predicate, retv = null; |
| 5150 | * if (returnType != void.class) { // ignore the V variable |
| 5151 | * incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) |
| 5152 | * pred = dropArguments(pred, 1, returnType); // ditto |
| 5153 | * retv = dropArguments(identity(returnType), 0, counterType); // ignore limit |
| 5154 | * } |
| 5155 | * body = dropArguments(body, 0, counterType); // ignore the limit variable |
| 5156 | * MethodHandle[] |
| 5157 | * loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v |
| 5158 | * bodyClause = { init, body }, // v = init(); v = body(v, i) |
| 5159 | * indexVar = { start, incr }; // i = start(); i = i + 1 |
| 5160 | * return loop(loopLimit, bodyClause, indexVar); |
| 5161 | * } |
| 5162 | * }</pre></blockquote> |
| 5163 | * |
| 5164 | * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}. |
| 5165 | * See above for other constraints. |
| 5166 | * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to |
| 5167 | * {@code end-1}). The result type must be {@code int}. See above for other constraints. |
| 5168 | * @param init optional initializer, providing the initial value of the loop variable. |
| 5169 | * May be {@code null}, implying a default initial value. See above for other constraints. |
| 5170 | * @param body body of the loop, which may not be {@code null}. |
| 5171 | * It controls the loop parameters and result type in the standard case (see above for details). |
| 5172 | * It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), |
| 5173 | * and may accept any number of additional types. |
| 5174 | * See above for other constraints. |
| 5175 | * |
| 5176 | * @return a method handle representing the loop. |
| 5177 | * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}. |
| 5178 | * @throws IllegalArgumentException if any argument violates the rules formulated above. |
| 5179 | * |
| 5180 | * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle) |
| 5181 | * @since 9 |
| 5182 | */ |
| 5183 | public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { |
| 5184 | countedLoopChecks(start, end, init, body); |
| 5185 | Class<?> counterType = start.type().returnType(); // int, but who's counting? |
| 5186 | Class<?> limitType = end.type().returnType(); // yes, int again |
| 5187 | Class<?> returnType = body.type().returnType(); |
| 5188 | // Android-changed: getConstantHandle is in MethodHandles. |
| 5189 | // MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep); |
| 5190 | // MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred); |
| 5191 | MethodHandle incr = getConstantHandle(MH_countedLoopStep); |
| 5192 | MethodHandle pred = getConstantHandle(MH_countedLoopPred); |
| 5193 | MethodHandle retv = null; |
| 5194 | if (returnType != void.class) { |
| 5195 | incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) |
| 5196 | pred = dropArguments(pred, 1, returnType); // ditto |
| 5197 | retv = dropArguments(identity(returnType), 0, counterType); |
| 5198 | } |
| 5199 | body = dropArguments(body, 0, counterType); // ignore the limit variable |
| 5200 | MethodHandle[] |
| 5201 | loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v |
| 5202 | bodyClause = { init, body }, // v = init(); v = body(v, i) |
| 5203 | indexVar = { start, incr }; // i = start(); i = i + 1 |
| 5204 | return loop(loopLimit, bodyClause, indexVar); |
| 5205 | } |
| 5206 | |
| 5207 | private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { |
| 5208 | Objects.requireNonNull(start); |
| 5209 | Objects.requireNonNull(end); |
| 5210 | Objects.requireNonNull(body); |
| 5211 | Class<?> counterType = start.type().returnType(); |
| 5212 | if (counterType != int.class) { |
| 5213 | MethodType expected = start.type().changeReturnType(int.class); |
| 5214 | throw misMatchedTypes("start function", start.type(), expected); |
| 5215 | } else if (end.type().returnType() != counterType) { |
| 5216 | MethodType expected = end.type().changeReturnType(counterType); |
| 5217 | throw misMatchedTypes("end function", end.type(), expected); |
| 5218 | } |
| 5219 | MethodType bodyType = body.type(); |
| 5220 | Class<?> returnType = bodyType.returnType(); |
| 5221 | List<Class<?>> innerList = bodyType.parameterList(); |
| 5222 | // strip leading V value if present |
| 5223 | int vsize = (returnType == void.class ? 0 : 1); |
| 5224 | if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) { |
| 5225 | // argument list has no "V" => error |
| 5226 | MethodType expected = bodyType.insertParameterTypes(0, returnType); |
| 5227 | throw misMatchedTypes("body function", bodyType, expected); |
| 5228 | } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) { |
| 5229 | // missing I type => error |
| 5230 | MethodType expected = bodyType.insertParameterTypes(vsize, counterType); |
| 5231 | throw misMatchedTypes("body function", bodyType, expected); |
| 5232 | } |
| 5233 | List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size()); |
| 5234 | if (outerList.isEmpty()) { |
| 5235 | // special case; take lists from end handle |
| 5236 | outerList = end.type().parameterList(); |
| 5237 | innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList(); |
| 5238 | } |
| 5239 | MethodType expected = methodType(counterType, outerList); |
| 5240 | if (!start.type().effectivelyIdenticalParameters(0, outerList)) { |
| 5241 | throw misMatchedTypes("start parameter types", start.type(), expected); |
| 5242 | } |
| 5243 | if (end.type() != start.type() && |
| 5244 | !end.type().effectivelyIdenticalParameters(0, outerList)) { |
| 5245 | throw misMatchedTypes("end parameter types", end.type(), expected); |
| 5246 | } |
| 5247 | if (init != null) { |
| 5248 | MethodType initType = init.type(); |
| 5249 | if (initType.returnType() != returnType || |
| 5250 | !initType.effectivelyIdenticalParameters(0, outerList)) { |
| 5251 | throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); |
| 5252 | } |
| 5253 | } |
| 5254 | } |
| 5255 | |
| 5256 | /** |
| 5257 | * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}. |
| 5258 | * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. |
| 5259 | * <p> |
| 5260 | * The iterator itself will be determined by the evaluation of the {@code iterator} handle. |
| 5261 | * Each value it produces will be stored in a loop iteration variable of type {@code T}. |
| 5262 | * <p> |
| 5263 | * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable |
| 5264 | * of that type is also present. This variable is initialized using the optional {@code init} handle, |
| 5265 | * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. |
| 5266 | * <p> |
| 5267 | * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. |
| 5268 | * A non-{@code void} value returned from the body (of type {@code V}) updates the leading |
| 5269 | * iteration variable. |
| 5270 | * The result of the loop handle execution will be the final {@code V} value of that variable |
| 5271 | * (or {@code void} if there is no {@code V} variable). |
| 5272 | * <p> |
| 5273 | * The following rules hold for the argument handles:<ul> |
| 5274 | * <li>The {@code body} handle must not be {@code null}; its type must be of the form |
| 5275 | * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}. |
| 5276 | * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, |
| 5277 | * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V} |
| 5278 | * is quietly dropped from the parameter list, leaving {@code (T A...)V}.) |
| 5279 | * <li>The parameter list {@code (V T A...)} of the body contributes to a list |
| 5280 | * of types called the <em>internal parameter list</em>. |
| 5281 | * It will constrain the parameter lists of the other loop parts. |
| 5282 | * <li>As a special case, if the body contributes only {@code V} and {@code T} types, |
| 5283 | * with no additional {@code A} types, then the internal parameter list is extended by |
| 5284 | * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the |
| 5285 | * single type {@code Iterable} is added and constitutes the {@code A...} list. |
| 5286 | * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter |
| 5287 | * list {@code (A...)} is called the <em>external parameter list</em>. |
| 5288 | * <li>The body return type {@code V}, if non-{@code void}, determines the type of an |
| 5289 | * additional state variable of the loop. |
| 5290 | * The body must both accept a leading parameter and return a value of this type {@code V}. |
| 5291 | * <li>If {@code init} is non-{@code null}, it must have return type {@code V}. |
| 5292 | * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be |
| 5293 | * <a href="MethodHandles.html#effid">effectively identical</a> |
| 5294 | * to the external parameter list {@code (A...)}. |
| 5295 | * <li>If {@code init} is {@code null}, the loop variable will be initialized to its |
| 5296 | * {@linkplain #empty default value}. |
| 5297 | * <li>If the {@code iterator} handle is non-{@code null}, it must have the return |
| 5298 | * type {@code java.util.Iterator} or a subtype thereof. |
| 5299 | * The iterator it produces when the loop is executed will be assumed |
| 5300 | * to yield values which can be converted to type {@code T}. |
| 5301 | * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be |
| 5302 | * effectively identical to the external parameter list {@code (A...)}. |
| 5303 | * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves |
| 5304 | * like {@link java.lang.Iterable#iterator()}. In that case, the internal parameter list |
| 5305 | * {@code (V T A...)} must have at least one {@code A} type, and the default iterator |
| 5306 | * handle parameter is adjusted to accept the leading {@code A} type, as if by |
| 5307 | * the {@link MethodHandle#asType asType} conversion method. |
| 5308 | * The leading {@code A} type must be {@code Iterable} or a subtype thereof. |
| 5309 | * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}. |
| 5310 | * </ul> |
| 5311 | * <p> |
| 5312 | * The type {@code T} may be either a primitive or reference. |
| 5313 | * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator}, |
| 5314 | * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object} |
| 5315 | * as if by the {@link MethodHandle#asType asType} conversion method. |
| 5316 | * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur |
| 5317 | * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}. |
| 5318 | * <p> |
| 5319 | * The resulting loop handle's result type and parameter signature are determined as follows:<ul> |
| 5320 | * <li>The loop handle's result type is the result type {@code V} of the body. |
| 5321 | * <li>The loop handle's parameter types are the types {@code (A...)}, |
| 5322 | * from the external parameter list. |
| 5323 | * </ul> |
| 5324 | * <p> |
| 5325 | * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of |
| 5326 | * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the |
| 5327 | * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop. |
| 5328 | * <blockquote><pre>{@code |
| 5329 | * Iterator<T> iterator(A...); // defaults to Iterable::iterator |
| 5330 | * V init(A...); |
| 5331 | * V body(V,T,A...); |
| 5332 | * V iteratedLoop(A... a...) { |
| 5333 | * Iterator<T> it = iterator(a...); |
| 5334 | * V v = init(a...); |
| 5335 | * while (it.hasNext()) { |
| 5336 | * T t = it.next(); |
| 5337 | * v = body(v, t, a...); |
| 5338 | * } |
| 5339 | * return v; |
| 5340 | * } |
| 5341 | * }</pre></blockquote> |
| 5342 | * |
| 5343 | * @apiNote Example: |
| 5344 | * <blockquote><pre>{@code |
| 5345 | * // get an iterator from a list |
| 5346 | * static List<String> reverseStep(List<String> r, String e) { |
| 5347 | * r.add(0, e); |
| 5348 | * return r; |
| 5349 | * } |
| 5350 | * static List<String> newArrayList() { return new ArrayList<>(); } |
| 5351 | * // assume MH_reverseStep and MH_newArrayList are handles to the above methods |
| 5352 | * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep); |
| 5353 | * List<String> list = Arrays.asList("a", "b", "c", "d", "e"); |
| 5354 | * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a"); |
| 5355 | * assertEquals(reversedList, (List<String>) loop.invoke(list)); |
| 5356 | * }</pre></blockquote> |
| 5357 | * |
| 5358 | * @apiNote The implementation of this method can be expressed approximately as follows: |
| 5359 | * <blockquote><pre>{@code |
| 5360 | * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { |
| 5361 | * // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable |
| 5362 | * Class<?> returnType = body.type().returnType(); |
| 5363 | * Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); |
| 5364 | * MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype)); |
| 5365 | * MethodHandle retv = null, step = body, startIter = iterator; |
| 5366 | * if (returnType != void.class) { |
| 5367 | * // the simple thing first: in (I V A...), drop the I to get V |
| 5368 | * retv = dropArguments(identity(returnType), 0, Iterator.class); |
| 5369 | * // body type signature (V T A...), internal loop types (I V A...) |
| 5370 | * step = swapArguments(body, 0, 1); // swap V <-> T |
| 5371 | * } |
| 5372 | * if (startIter == null) startIter = MH_getIter; |
| 5373 | * MethodHandle[] |
| 5374 | * iterVar = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext()) |
| 5375 | * bodyClause = { init, filterArguments(step, 0, nextVal) }; // v = body(v, t, a) |
| 5376 | * return loop(iterVar, bodyClause); |
| 5377 | * } |
| 5378 | * }</pre></blockquote> |
| 5379 | * |
| 5380 | * @param iterator an optional handle to return the iterator to start the loop. |
| 5381 | * If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype. |
| 5382 | * See above for other constraints. |
| 5383 | * @param init optional initializer, providing the initial value of the loop variable. |
| 5384 | * May be {@code null}, implying a default initial value. See above for other constraints. |
| 5385 | * @param body body of the loop, which may not be {@code null}. |
| 5386 | * It controls the loop parameters and result type in the standard case (see above for details). |
| 5387 | * It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values), |
| 5388 | * and may accept any number of additional types. |
| 5389 | * See above for other constraints. |
| 5390 | * |
| 5391 | * @return a method handle embodying the iteration loop functionality. |
| 5392 | * @throws NullPointerException if the {@code body} handle is {@code null}. |
| 5393 | * @throws IllegalArgumentException if any argument violates the above requirements. |
| 5394 | * |
| 5395 | * @since 9 |
| 5396 | */ |
| 5397 | public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { |
| 5398 | Class<?> iterableType = iteratedLoopChecks(iterator, init, body); |
| 5399 | Class<?> returnType = body.type().returnType(); |
| 5400 | // Android-changed: getConstantHandle is in MethodHandles. |
| 5401 | // MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred); |
| 5402 | // MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext); |
| 5403 | MethodHandle hasNext = getConstantHandle(MH_iteratePred); |
| 5404 | MethodHandle nextRaw = getConstantHandle(MH_iterateNext); |
| 5405 | MethodHandle startIter; |
| 5406 | MethodHandle nextVal; |
| 5407 | { |
| 5408 | MethodType iteratorType; |
| 5409 | if (iterator == null) { |
| 5410 | // derive argument type from body, if available, else use Iterable |
| 5411 | // Android-changed: getConstantHandle is in MethodHandles. |
| 5412 | // startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator); |
| 5413 | startIter = getConstantHandle(MH_initIterator); |
| 5414 | iteratorType = startIter.type().changeParameterType(0, iterableType); |
| 5415 | } else { |
| 5416 | // force return type to the internal iterator class |
| 5417 | iteratorType = iterator.type().changeReturnType(Iterator.class); |
| 5418 | startIter = iterator; |
| 5419 | } |
| 5420 | Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); |
| 5421 | MethodType nextValType = nextRaw.type().changeReturnType(ttype); |
| 5422 | |
| 5423 | // perform the asType transforms under an exception transformer, as per spec.: |
| 5424 | try { |
| 5425 | startIter = startIter.asType(iteratorType); |
| 5426 | nextVal = nextRaw.asType(nextValType); |
| 5427 | } catch (WrongMethodTypeException ex) { |
| 5428 | throw new IllegalArgumentException(ex); |
| 5429 | } |
| 5430 | } |
| 5431 | |
| 5432 | MethodHandle retv = null, step = body; |
| 5433 | if (returnType != void.class) { |
| 5434 | // the simple thing first: in (I V A...), drop the I to get V |
| 5435 | retv = dropArguments(identity(returnType), 0, Iterator.class); |
| 5436 | // body type signature (V T A...), internal loop types (I V A...) |
| 5437 | step = swapArguments(body, 0, 1); // swap V <-> T |
| 5438 | } |
| 5439 | |
| 5440 | MethodHandle[] |
| 5441 | iterVar = { startIter, null, hasNext, retv }, |
| 5442 | bodyClause = { init, filterArgument(step, 0, nextVal) }; |
| 5443 | return loop(iterVar, bodyClause); |
| 5444 | } |
| 5445 | |
| 5446 | private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) { |
| 5447 | Objects.requireNonNull(body); |
| 5448 | MethodType bodyType = body.type(); |
| 5449 | Class<?> returnType = bodyType.returnType(); |
| 5450 | List<Class<?>> internalParamList = bodyType.parameterList(); |
| 5451 | // strip leading V value if present |
| 5452 | int vsize = (returnType == void.class ? 0 : 1); |
| 5453 | if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) { |
| 5454 | // argument list has no "V" => error |
| 5455 | MethodType expected = bodyType.insertParameterTypes(0, returnType); |
| 5456 | throw misMatchedTypes("body function", bodyType, expected); |
| 5457 | } else if (internalParamList.size() <= vsize) { |
| 5458 | // missing T type => error |
| 5459 | MethodType expected = bodyType.insertParameterTypes(vsize, Object.class); |
| 5460 | throw misMatchedTypes("body function", bodyType, expected); |
| 5461 | } |
| 5462 | List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size()); |
| 5463 | Class<?> iterableType = null; |
| 5464 | if (iterator != null) { |
| 5465 | // special case; if the body handle only declares V and T then |
| 5466 | // the external parameter list is obtained from iterator handle |
| 5467 | if (externalParamList.isEmpty()) { |
| 5468 | externalParamList = iterator.type().parameterList(); |
| 5469 | } |
| 5470 | MethodType itype = iterator.type(); |
| 5471 | if (!Iterator.class.isAssignableFrom(itype.returnType())) { |
| 5472 | throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type"); |
| 5473 | } |
| 5474 | if (!itype.effectivelyIdenticalParameters(0, externalParamList)) { |
| 5475 | MethodType expected = methodType(itype.returnType(), externalParamList); |
| 5476 | throw misMatchedTypes("iterator parameters", itype, expected); |
| 5477 | } |
| 5478 | } else { |
| 5479 | if (externalParamList.isEmpty()) { |
| 5480 | // special case; if the iterator handle is null and the body handle |
| 5481 | // only declares V and T then the external parameter list consists |
| 5482 | // of Iterable |
| 5483 | externalParamList = Arrays.asList(Iterable.class); |
| 5484 | iterableType = Iterable.class; |
| 5485 | } else { |
| 5486 | // special case; if the iterator handle is null and the external |
| 5487 | // parameter list is not empty then the first parameter must be |
| 5488 | // assignable to Iterable |
| 5489 | iterableType = externalParamList.get(0); |
| 5490 | if (!Iterable.class.isAssignableFrom(iterableType)) { |
| 5491 | throw newIllegalArgumentException( |
| 5492 | "inferred first loop argument must inherit from Iterable: " + iterableType); |
| 5493 | } |
| 5494 | } |
| 5495 | } |
| 5496 | if (init != null) { |
| 5497 | MethodType initType = init.type(); |
| 5498 | if (initType.returnType() != returnType || |
| 5499 | !initType.effectivelyIdenticalParameters(0, externalParamList)) { |
| 5500 | throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList)); |
| 5501 | } |
| 5502 | } |
| 5503 | return iterableType; // help the caller a bit |
| 5504 | } |
| 5505 | |
| 5506 | /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) { |
| 5507 | // there should be a better way to uncross my wires |
| 5508 | int arity = mh.type().parameterCount(); |
| 5509 | int[] order = new int[arity]; |
| 5510 | for (int k = 0; k < arity; k++) order[k] = k; |
| 5511 | order[i] = j; order[j] = i; |
| 5512 | Class<?>[] types = mh.type().parameterArray(); |
| 5513 | Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti; |
| 5514 | MethodType swapType = methodType(mh.type().returnType(), types); |
| 5515 | return permuteArguments(mh, swapType, order); |
| 5516 | } |
| 5517 | |
| 5518 | /** |
| 5519 | * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block. |
| 5520 | * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception |
| 5521 | * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The |
| 5522 | * exception will be rethrown, unless {@code cleanup} handle throws an exception first. The |
| 5523 | * value returned from the {@code cleanup} handle's execution will be the result of the execution of the |
| 5524 | * {@code try-finally} handle. |
| 5525 | * <p> |
| 5526 | * The {@code cleanup} handle will be passed one or two additional leading arguments. |
| 5527 | * The first is the exception thrown during the |
| 5528 | * execution of the {@code target} handle, or {@code null} if no exception was thrown. |
| 5529 | * The second is the result of the execution of the {@code target} handle, or, if it throws an exception, |
| 5530 | * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder. |
| 5531 | * The second argument is not present if the {@code target} handle has a {@code void} return type. |
| 5532 | * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists |
| 5533 | * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.) |
| 5534 | * <p> |
| 5535 | * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except |
| 5536 | * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or |
| 5537 | * two extra leading parameters:<ul> |
| 5538 | * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and |
| 5539 | * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry |
| 5540 | * the result from the execution of the {@code target} handle. |
| 5541 | * This parameter is not present if the {@code target} returns {@code void}. |
| 5542 | * </ul> |
| 5543 | * <p> |
| 5544 | * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of |
| 5545 | * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting |
| 5546 | * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by |
| 5547 | * the cleanup. |
| 5548 | * <blockquote><pre>{@code |
| 5549 | * V target(A..., B...); |
| 5550 | * V cleanup(Throwable, V, A...); |
| 5551 | * V adapter(A... a, B... b) { |
| 5552 | * V result = (zero value for V); |
| 5553 | * Throwable throwable = null; |
| 5554 | * try { |
| 5555 | * result = target(a..., b...); |
| 5556 | * } catch (Throwable t) { |
| 5557 | * throwable = t; |
| 5558 | * throw t; |
| 5559 | * } finally { |
| 5560 | * result = cleanup(throwable, result, a...); |
| 5561 | * } |
| 5562 | * return result; |
| 5563 | * } |
| 5564 | * }</pre></blockquote> |
| 5565 | * <p> |
| 5566 | * Note that the saved arguments ({@code a...} in the pseudocode) cannot |
| 5567 | * be modified by execution of the target, and so are passed unchanged |
| 5568 | * from the caller to the cleanup, if it is invoked. |
| 5569 | * <p> |
| 5570 | * The target and cleanup must return the same type, even if the cleanup |
| 5571 | * always throws. |
| 5572 | * To create such a throwing cleanup, compose the cleanup logic |
| 5573 | * with {@link #throwException throwException}, |
| 5574 | * in order to create a method handle of the correct return type. |
| 5575 | * <p> |
| 5576 | * Note that {@code tryFinally} never converts exceptions into normal returns. |
| 5577 | * In rare cases where exceptions must be converted in that way, first wrap |
| 5578 | * the target with {@link #catchException(MethodHandle, Class, MethodHandle)} |
| 5579 | * to capture an outgoing exception, and then wrap with {@code tryFinally}. |
| 5580 | * <p> |
| 5581 | * It is recommended that the first parameter type of {@code cleanup} be |
| 5582 | * declared {@code Throwable} rather than a narrower subtype. This ensures |
| 5583 | * {@code cleanup} will always be invoked with whatever exception that |
| 5584 | * {@code target} throws. Declaring a narrower type may result in a |
| 5585 | * {@code ClassCastException} being thrown by the {@code try-finally} |
| 5586 | * handle if the type of the exception thrown by {@code target} is not |
| 5587 | * assignable to the first parameter type of {@code cleanup}. Note that |
| 5588 | * various exception types of {@code VirtualMachineError}, |
| 5589 | * {@code LinkageError}, and {@code RuntimeException} can in principle be |
| 5590 | * thrown by almost any kind of Java code, and a finally clause that |
| 5591 | * catches (say) only {@code IOException} would mask any of the others |
| 5592 | * behind a {@code ClassCastException}. |
| 5593 | * |
| 5594 | * @param target the handle whose execution is to be wrapped in a {@code try} block. |
| 5595 | * @param cleanup the handle that is invoked in the finally block. |
| 5596 | * |
| 5597 | * @return a method handle embodying the {@code try-finally} block composed of the two arguments. |
| 5598 | * @throws NullPointerException if any argument is null |
| 5599 | * @throws IllegalArgumentException if {@code cleanup} does not accept |
| 5600 | * the required leading arguments, or if the method handle types do |
| 5601 | * not match in their return types and their |
| 5602 | * corresponding trailing parameters |
| 5603 | * |
| 5604 | * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle) |
| 5605 | * @since 9 |
| 5606 | */ |
| 5607 | public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) { |
| 5608 | List<Class<?>> targetParamTypes = target.type().parameterList(); |
| 5609 | Class<?> rtype = target.type().returnType(); |
| 5610 | |
| 5611 | tryFinallyChecks(target, cleanup); |
| 5612 | |
| 5613 | // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments. |
| 5614 | // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the |
| 5615 | // target parameter list. |
| 5616 | cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0); |
| 5617 | |
| 5618 | // Ensure that the intrinsic type checks the instance thrown by the |
| 5619 | // target against the first parameter of cleanup |
| 5620 | cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class)); |
| 5621 | |
| 5622 | // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case. |
| 5623 | // Android-changed: use Transformer implementation. |
| 5624 | // return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes); |
| 5625 | return new Transformers.TryFinally(target.asFixedArity(), cleanup.asFixedArity()); |
| 5626 | } |
| 5627 | |
| 5628 | private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) { |
| 5629 | Class<?> rtype = target.type().returnType(); |
| 5630 | if (rtype != cleanup.type().returnType()) { |
| 5631 | throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype); |
| 5632 | } |
| 5633 | MethodType cleanupType = cleanup.type(); |
| 5634 | if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) { |
| 5635 | throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class); |
| 5636 | } |
| 5637 | if (rtype != void.class && cleanupType.parameterType(1) != rtype) { |
| 5638 | throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype); |
| 5639 | } |
| 5640 | // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the |
| 5641 | // target parameter list. |
| 5642 | int cleanupArgIndex = rtype == void.class ? 1 : 2; |
| 5643 | if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) { |
| 5644 | throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix", |
| 5645 | cleanup.type(), target.type()); |
| 5646 | } |
| 5647 | } |
| 5648 | |
| 5649 | /** |
| 5650 | * Creates a table switch method handle, which can be used to switch over a set of target |
| 5651 | * method handles, based on a given target index, called selector. |
| 5652 | * <p> |
| 5653 | * For a selector value of {@code n}, where {@code n} falls in the range {@code [0, N)}, |
| 5654 | * and where {@code N} is the number of target method handles, the table switch method |
| 5655 | * handle will invoke the n-th target method handle from the list of target method handles. |
| 5656 | * <p> |
| 5657 | * For a selector value that does not fall in the range {@code [0, N)}, the table switch |
| 5658 | * method handle will invoke the given fallback method handle. |
| 5659 | * <p> |
| 5660 | * All method handles passed to this method must have the same type, with the additional |
| 5661 | * requirement that the leading parameter be of type {@code int}. The leading parameter |
| 5662 | * represents the selector. |
| 5663 | * <p> |
| 5664 | * Any trailing parameters present in the type will appear on the returned table switch |
| 5665 | * method handle as well. Any arguments assigned to these parameters will be forwarded, |
| 5666 | * together with the selector value, to the selected method handle when invoking it. |
| 5667 | * |
| 5668 | * @apiNote Example: |
| 5669 | * The cases each drop the {@code selector} value they are given, and take an additional |
| 5670 | * {@code String} argument, which is concatenated (using {@link String#concat(String)}) |
| 5671 | * to a specific constant label string for each case: |
| 5672 | * <blockquote><pre>{@code |
| 5673 | * MethodHandles.Lookup lookup = MethodHandles.lookup(); |
| 5674 | * MethodHandle caseMh = lookup.findVirtual(String.class, "concat", |
| 5675 | * MethodType.methodType(String.class, String.class)); |
| 5676 | * caseMh = MethodHandles.dropArguments(caseMh, 0, int.class); |
| 5677 | * |
| 5678 | * MethodHandle caseDefault = MethodHandles.insertArguments(caseMh, 1, "default: "); |
| 5679 | * MethodHandle case0 = MethodHandles.insertArguments(caseMh, 1, "case 0: "); |
| 5680 | * MethodHandle case1 = MethodHandles.insertArguments(caseMh, 1, "case 1: "); |
| 5681 | * |
| 5682 | * MethodHandle mhSwitch = MethodHandles.tableSwitch( |
| 5683 | * caseDefault, |
| 5684 | * case0, |
| 5685 | * case1 |
| 5686 | * ); |
| 5687 | * |
| 5688 | * assertEquals("default: data", (String) mhSwitch.invokeExact(-1, "data")); |
| 5689 | * assertEquals("case 0: data", (String) mhSwitch.invokeExact(0, "data")); |
| 5690 | * assertEquals("case 1: data", (String) mhSwitch.invokeExact(1, "data")); |
| 5691 | * assertEquals("default: data", (String) mhSwitch.invokeExact(2, "data")); |
| 5692 | * }</pre></blockquote> |
| 5693 | * |
| 5694 | * @param fallback the fallback method handle that is called when the selector is not |
| 5695 | * within the range {@code [0, N)}. |
| 5696 | * @param targets array of target method handles. |
| 5697 | * @return the table switch method handle. |
| 5698 | * @throws NullPointerException if {@code fallback}, the {@code targets} array, or any |
| 5699 | * any of the elements of the {@code targets} array are |
| 5700 | * {@code null}. |
| 5701 | * @throws IllegalArgumentException if the {@code targets} array is empty, if the leading |
| 5702 | * parameter of the fallback handle or any of the target |
| 5703 | * handles is not {@code int}, or if the types of |
| 5704 | * the fallback handle and all of target handles are |
| 5705 | * not the same. |
| 5706 | */ |
| 5707 | public static MethodHandle tableSwitch(MethodHandle fallback, MethodHandle... targets) { |
| 5708 | Objects.requireNonNull(fallback); |
| 5709 | Objects.requireNonNull(targets); |
| 5710 | targets = targets.clone(); |
| 5711 | MethodType type = tableSwitchChecks(fallback, targets); |
| 5712 | // Android-changed: use a Transformer for the implementation. |
| 5713 | // return MethodHandleImpl.makeTableSwitch(type, fallback, targets); |
| 5714 | return new Transformers.TableSwitch(type, fallback, targets); |
| 5715 | } |
| 5716 | |
| 5717 | private static MethodType tableSwitchChecks(MethodHandle defaultCase, MethodHandle[] caseActions) { |
| 5718 | if (caseActions.length == 0) |
| 5719 | throw new IllegalArgumentException("Not enough cases: " + Arrays.toString(caseActions)); |
| 5720 | |
| 5721 | MethodType expectedType = defaultCase.type(); |
| 5722 | |
| 5723 | if (!(expectedType.parameterCount() >= 1) || expectedType.parameterType(0) != int.class) |
| 5724 | throw new IllegalArgumentException( |
| 5725 | "Case actions must have int as leading parameter: " + Arrays.toString(caseActions)); |
| 5726 | |
| 5727 | for (MethodHandle mh : caseActions) { |
| 5728 | Objects.requireNonNull(mh); |
| 5729 | // Android-changed: MethodType's not interned. |
| 5730 | // if (mh.type() != expectedType) |
| 5731 | if (!mh.type().equals(expectedType)) |
| 5732 | throw new IllegalArgumentException( |
| 5733 | "Case actions must have the same type: " + Arrays.toString(caseActions)); |
| 5734 | } |
| 5735 | |
| 5736 | return expectedType; |
| 5737 | } |
| 5738 | |
| 5739 | // BEGIN Android-added: Code from OpenJDK's MethodHandleImpl. |
| 5740 | |
| 5741 | /** |
| 5742 | * This method is bound as the predicate in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle, |
| 5743 | * MethodHandle) counting loops}. |
| 5744 | * |
| 5745 | * @param limit the upper bound of the parameter, statically bound at loop creation time. |
| 5746 | * @param counter the counter parameter, passed in during loop execution. |
| 5747 | * |
| 5748 | * @return whether the counter has reached the limit. |
| 5749 | * @hide |
| 5750 | */ |
| 5751 | public static boolean countedLoopPredicate(int limit, int counter) { |
| 5752 | return counter < limit; |
| 5753 | } |
| 5754 | |
| 5755 | /** |
| 5756 | * This method is bound as the step function in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle, |
| 5757 | * MethodHandle) counting loops} to increment the counter. |
| 5758 | * |
| 5759 | * @param limit the upper bound of the loop counter (ignored). |
| 5760 | * @param counter the loop counter. |
| 5761 | * |
| 5762 | * @return the loop counter incremented by 1. |
| 5763 | * @hide |
| 5764 | */ |
| 5765 | public static int countedLoopStep(int limit, int counter) { |
| 5766 | return counter + 1; |
| 5767 | } |
| 5768 | |
| 5769 | /** |
| 5770 | * This is bound to initialize the loop-local iterator in {@linkplain MethodHandles#iteratedLoop iterating loops}. |
| 5771 | * |
| 5772 | * @param it the {@link Iterable} over which the loop iterates. |
| 5773 | * |
| 5774 | * @return an {@link Iterator} over the argument's elements. |
| 5775 | * @hide |
| 5776 | */ |
| 5777 | public static Iterator<?> initIterator(Iterable<?> it) { |
| 5778 | return it.iterator(); |
| 5779 | } |
| 5780 | |
| 5781 | /** |
| 5782 | * This method is bound as the predicate in {@linkplain MethodHandles#iteratedLoop iterating loops}. |
| 5783 | * |
| 5784 | * @param it the iterator to be checked. |
| 5785 | * |
| 5786 | * @return {@code true} iff there are more elements to iterate over. |
| 5787 | * @hide |
| 5788 | */ |
| 5789 | public static boolean iteratePredicate(Iterator<?> it) { |
| 5790 | return it.hasNext(); |
| 5791 | } |
| 5792 | |
| 5793 | /** |
| 5794 | * This method is bound as the step for retrieving the current value from the iterator in {@linkplain |
| 5795 | * MethodHandles#iteratedLoop iterating loops}. |
| 5796 | * |
| 5797 | * @param it the iterator. |
| 5798 | * |
| 5799 | * @return the next element from the iterator. |
| 5800 | * @hide |
| 5801 | */ |
| 5802 | public static Object iterateNext(Iterator<?> it) { |
| 5803 | return it.next(); |
| 5804 | } |
| 5805 | |
| 5806 | // Indexes into constant method handles: |
| 5807 | static final int |
| 5808 | MH_cast = 0, |
| 5809 | MH_selectAlternative = 1, |
| 5810 | MH_copyAsPrimitiveArray = 2, |
| 5811 | MH_fillNewTypedArray = 3, |
| 5812 | MH_fillNewArray = 4, |
| 5813 | MH_arrayIdentity = 5, |
| 5814 | MH_countedLoopPred = 6, |
| 5815 | MH_countedLoopStep = 7, |
| 5816 | MH_initIterator = 8, |
| 5817 | MH_iteratePred = 9, |
| 5818 | MH_iterateNext = 10, |
| 5819 | MH_Array_newInstance = 11, |
| 5820 | MH_LIMIT = 12; |
| 5821 | |
| 5822 | static MethodHandle getConstantHandle(int idx) { |
| 5823 | MethodHandle handle = HANDLES[idx]; |
| 5824 | if (handle != null) { |
| 5825 | return handle; |
| 5826 | } |
| 5827 | return setCachedHandle(idx, makeConstantHandle(idx)); |
| 5828 | } |
| 5829 | |
| 5830 | private static synchronized MethodHandle setCachedHandle(int idx, final MethodHandle method) { |
| 5831 | // Simulate a CAS, to avoid racy duplication of results. |
| 5832 | MethodHandle prev = HANDLES[idx]; |
| 5833 | if (prev != null) { |
| 5834 | return prev; |
| 5835 | } |
| 5836 | HANDLES[idx] = method; |
| 5837 | return method; |
| 5838 | } |
| 5839 | |
| 5840 | // Local constant method handles: |
| 5841 | private static final @Stable MethodHandle[] HANDLES = new MethodHandle[MH_LIMIT]; |
| 5842 | |
| 5843 | private static MethodHandle makeConstantHandle(int idx) { |
| 5844 | try { |
| 5845 | // Android-added: local IMPL_LOOKUP. |
| 5846 | final Lookup IMPL_LOOKUP = MethodHandles.Lookup.IMPL_LOOKUP; |
| 5847 | switch (idx) { |
| 5848 | // Android-removed: not-used. |
| 5849 | /* |
| 5850 | case MH_cast: |
| 5851 | return IMPL_LOOKUP.findVirtual(Class.class, "cast", |
| 5852 | MethodType.methodType(Object.class, Object.class)); |
| 5853 | case MH_copyAsPrimitiveArray: |
| 5854 | return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "copyAsPrimitiveArray", |
| 5855 | MethodType.methodType(Object.class, Wrapper.class, Object[].class)); |
| 5856 | case MH_arrayIdentity: |
| 5857 | return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "identity", |
| 5858 | MethodType.methodType(Object[].class, Object[].class)); |
| 5859 | case MH_fillNewArray: |
| 5860 | return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewArray", |
| 5861 | MethodType.methodType(Object[].class, Integer.class, Object[].class)); |
| 5862 | case MH_fillNewTypedArray: |
| 5863 | return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewTypedArray", |
| 5864 | MethodType.methodType(Object[].class, Object[].class, Integer.class, Object[].class)); |
| 5865 | case MH_selectAlternative: |
| 5866 | return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "selectAlternative", |
| 5867 | MethodType.methodType(MethodHandle.class, boolean.class, MethodHandle.class, MethodHandle.class)); |
| 5868 | */ |
| 5869 | case MH_countedLoopPred: |
| 5870 | // Android-changed: methods moved to this file. |
| 5871 | // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopPredicate", |
| 5872 | // MethodType.methodType(boolean.class, int.class, int.class)); |
| 5873 | return IMPL_LOOKUP.findStatic(MethodHandles.class, "countedLoopPredicate", |
| 5874 | MethodType.methodType(boolean.class, int.class, int.class)); |
| 5875 | case MH_countedLoopStep: |
| 5876 | // Android-changed: methods moved to this file. |
| 5877 | // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopStep", |
| 5878 | // MethodType.methodType(int.class, int.class, int.class)); |
| 5879 | return IMPL_LOOKUP.findStatic(MethodHandles.class, "countedLoopStep", |
| 5880 | MethodType.methodType(int.class, int.class, int.class)); |
| 5881 | case MH_initIterator: |
| 5882 | // Android-changed: methods moved to this file. |
| 5883 | // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "initIterator", |
| 5884 | // MethodType.methodType(Iterator.class, Iterable.class)); |
| 5885 | return IMPL_LOOKUP.findStatic(MethodHandles.class, "initIterator", |
| 5886 | MethodType.methodType(Iterator.class, Iterable.class)); |
| 5887 | case MH_iteratePred: |
| 5888 | // Android-changed: methods moved to this file. |
| 5889 | // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iteratePredicate", |
| 5890 | // MethodType.methodType(boolean.class, Iterator.class)); |
| 5891 | return IMPL_LOOKUP.findStatic(MethodHandles.class, "iteratePredicate", |
| 5892 | MethodType.methodType(boolean.class, Iterator.class)); |
| 5893 | case MH_iterateNext: |
| 5894 | // Android-changed: methods moved to this file. |
| 5895 | // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iterateNext", |
| 5896 | // MethodType.methodType(Object.class, Iterator.class)); |
| 5897 | return IMPL_LOOKUP.findStatic(MethodHandles.class, "iterateNext", |
| 5898 | MethodType.methodType(Object.class, Iterator.class)); |
| 5899 | // Android-removed: not-used. |
| 5900 | /* |
| 5901 | case MH_Array_newInstance: |
| 5902 | return IMPL_LOOKUP.findStatic(Array.class, "newInstance", |
| 5903 | MethodType.methodType(Object.class, Class.class, int.class)); |
| 5904 | */ |
| 5905 | } |
| 5906 | } catch (ReflectiveOperationException ex) { |
| 5907 | throw newInternalError(ex); |
| 5908 | } |
| 5909 | |
| 5910 | throw newInternalError("Unknown function index: " + idx); |
| 5911 | } |
| 5912 | // END Android-added: Code from OpenJDK's MethodHandleImpl. |
| 5913 | } |