Aurimas Liutikas | dc3f885 | 2024-07-11 10:07:48 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2009 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | package android.hardware; |
| 18 | |
| 19 | import java.util.Calendar; |
| 20 | import java.util.TimeZone; |
| 21 | |
| 22 | /** |
| 23 | * Estimates magnetic field at a given point on |
| 24 | * Earth, and in particular, to compute the magnetic declination from true |
| 25 | * north. |
| 26 | * |
| 27 | * <p>This uses the World Magnetic Model produced by the United States National |
| 28 | * Geospatial-Intelligence Agency. More details about the model can be found at |
| 29 | * <a href="http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml">http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml</a>. |
| 30 | * This class currently uses WMM-2020 which is valid until 2025, but should |
| 31 | * produce acceptable results for several years after that. Future versions of |
| 32 | * Android may use a newer version of the model. |
| 33 | */ |
| 34 | public class GeomagneticField { |
| 35 | // The magnetic field at a given point, in nanoteslas in geodetic |
| 36 | // coordinates. |
| 37 | private float mX; |
| 38 | private float mY; |
| 39 | private float mZ; |
| 40 | |
| 41 | // Geocentric coordinates -- set by computeGeocentricCoordinates. |
| 42 | private float mGcLatitudeRad; |
| 43 | private float mGcLongitudeRad; |
| 44 | private float mGcRadiusKm; |
| 45 | |
| 46 | // Constants from WGS84 (the coordinate system used by GPS) |
| 47 | static private final float EARTH_SEMI_MAJOR_AXIS_KM = 6378.137f; |
| 48 | static private final float EARTH_SEMI_MINOR_AXIS_KM = 6356.7523142f; |
| 49 | static private final float EARTH_REFERENCE_RADIUS_KM = 6371.2f; |
| 50 | |
| 51 | // These coefficients and the formulae used below are from: |
| 52 | // NOAA Technical Report: The US/UK World Magnetic Model for 2020-2025 |
| 53 | static private final float[][] G_COEFF = new float[][]{ |
| 54 | {0.0f}, |
| 55 | {-29404.5f, -1450.7f}, |
| 56 | {-2500.0f, 2982.0f, 1676.8f}, |
| 57 | {1363.9f, -2381.0f, 1236.2f, 525.7f}, |
| 58 | {903.1f, 809.4f, 86.2f, -309.4f, 47.9f}, |
| 59 | {-234.4f, 363.1f, 187.8f, -140.7f, -151.2f, 13.7f}, |
| 60 | {65.9f, 65.6f, 73.0f, -121.5f, -36.2f, 13.5f, -64.7f}, |
| 61 | {80.6f, -76.8f, -8.3f, 56.5f, 15.8f, 6.4f, -7.2f, 9.8f}, |
| 62 | {23.6f, 9.8f, -17.5f, -0.4f, -21.1f, 15.3f, 13.7f, -16.5f, -0.3f}, |
| 63 | {5.0f, 8.2f, 2.9f, -1.4f, -1.1f, -13.3f, 1.1f, 8.9f, -9.3f, -11.9f}, |
| 64 | {-1.9f, -6.2f, -0.1f, 1.7f, -0.9f, 0.6f, -0.9f, 1.9f, 1.4f, -2.4f, -3.9f}, |
| 65 | {3.0f, -1.4f, -2.5f, 2.4f, -0.9f, 0.3f, -0.7f, -0.1f, 1.4f, -0.6f, 0.2f, 3.1f}, |
| 66 | {-2.0f, -0.1f, 0.5f, 1.3f, -1.2f, 0.7f, 0.3f, 0.5f, -0.2f, -0.5f, 0.1f, -1.1f, -0.3f}}; |
| 67 | |
| 68 | static private final float[][] H_COEFF = new float[][]{ |
| 69 | {0.0f}, |
| 70 | {0.0f, 4652.9f}, |
| 71 | {0.0f, -2991.6f, -734.8f}, |
| 72 | {0.0f, -82.2f, 241.8f, -542.9f}, |
| 73 | {0.0f, 282.0f, -158.4f, 199.8f, -350.1f}, |
| 74 | {0.0f, 47.7f, 208.4f, -121.3f, 32.2f, 99.1f}, |
| 75 | {0.0f, -19.1f, 25.0f, 52.7f, -64.4f, 9.0f, 68.1f}, |
| 76 | {0.0f, -51.4f, -16.8f, 2.3f, 23.5f, -2.2f, -27.2f, -1.9f}, |
| 77 | {0.0f, 8.4f, -15.3f, 12.8f, -11.8f, 14.9f, 3.6f, -6.9f, 2.8f}, |
| 78 | {0.0f, -23.3f, 11.1f, 9.8f, -5.1f, -6.2f, 7.8f, 0.4f, -1.5f, 9.7f}, |
| 79 | {0.0f, 3.4f, -0.2f, 3.5f, 4.8f, -8.6f, -0.1f, -4.2f, -3.4f, -0.1f, -8.8f}, |
| 80 | {0.0f, 0.0f, 2.6f, -0.5f, -0.4f, 0.6f, -0.2f, -1.7f, -1.6f, -3.0f, -2.0f, -2.6f}, |
| 81 | {0.0f, -1.2f, 0.5f, 1.3f, -1.8f, 0.1f, 0.7f, -0.1f, 0.6f, 0.2f, -0.9f, 0.0f, 0.5f}}; |
| 82 | |
| 83 | static private final float[][] DELTA_G = new float[][]{ |
| 84 | {0.0f}, |
| 85 | {6.7f, 7.7f}, |
| 86 | {-11.5f, -7.1f, -2.2f}, |
| 87 | {2.8f, -6.2f, 3.4f, -12.2f}, |
| 88 | {-1.1f, -1.6f, -6.0f, 5.4f, -5.5f}, |
| 89 | {-0.3f, 0.6f, -0.7f, 0.1f, 1.2f, 1.0f}, |
| 90 | {-0.6f, -0.4f, 0.5f, 1.4f, -1.4f, 0.0f, 0.8f}, |
| 91 | {-0.1f, -0.3f, -0.1f, 0.7f, 0.2f, -0.5f, -0.8f, 1.0f}, |
| 92 | {-0.1f, 0.1f, -0.1f, 0.5f, -0.1f, 0.4f, 0.5f, 0.0f, 0.4f}, |
| 93 | {-0.1f, -0.2f, 0.0f, 0.4f, -0.3f, 0.0f, 0.3f, 0.0f, 0.0f, -0.4f}, |
| 94 | {0.0f, 0.0f, 0.0f, 0.2f, -0.1f, -0.2f, 0.0f, -0.1f, -0.2f, -0.1f, 0.0f}, |
| 95 | {0.0f, -0.1f, 0.0f, 0.0f, 0.0f, -0.1f, 0.0f, 0.0f, -0.1f, -0.1f, -0.1f, -0.1f}, |
| 96 | {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.1f}}; |
| 97 | |
| 98 | static private final float[][] DELTA_H = new float[][]{ |
| 99 | {0.0f}, |
| 100 | {0.0f, -25.1f}, |
| 101 | {0.0f, -30.2f, -23.9f}, |
| 102 | {0.0f, 5.7f, -1.0f, 1.1f}, |
| 103 | {0.0f, 0.2f, 6.9f, 3.7f, -5.6f}, |
| 104 | {0.0f, 0.1f, 2.5f, -0.9f, 3.0f, 0.5f}, |
| 105 | {0.0f, 0.1f, -1.8f, -1.4f, 0.9f, 0.1f, 1.0f}, |
| 106 | {0.0f, 0.5f, 0.6f, -0.7f, -0.2f, -1.2f, 0.2f, 0.3f}, |
| 107 | {0.0f, -0.3f, 0.7f, -0.2f, 0.5f, -0.3f, -0.5f, 0.4f, 0.1f}, |
| 108 | {0.0f, -0.3f, 0.2f, -0.4f, 0.4f, 0.1f, 0.0f, -0.2f, 0.5f, 0.2f}, |
| 109 | {0.0f, 0.0f, 0.1f, -0.3f, 0.1f, -0.2f, 0.1f, 0.0f, -0.1f, 0.2f, 0.0f}, |
| 110 | {0.0f, 0.0f, 0.1f, 0.0f, 0.2f, 0.0f, 0.0f, 0.1f, 0.0f, -0.1f, 0.0f, 0.0f}, |
| 111 | {0.0f, 0.0f, 0.0f, -0.1f, 0.1f, 0.0f, 0.0f, 0.0f, 0.1f, 0.0f, 0.0f, 0.0f, -0.1f}}; |
| 112 | |
| 113 | static private final long BASE_TIME = new Calendar.Builder() |
| 114 | .setTimeZone(TimeZone.getTimeZone("UTC")) |
| 115 | .setDate(2020, Calendar.JANUARY, 1) |
| 116 | .build() |
| 117 | .getTimeInMillis(); |
| 118 | |
| 119 | // The ratio between the Gauss-normalized associated Legendre functions and |
| 120 | // the Schmid quasi-normalized ones. Compute these once staticly since they |
| 121 | // don't depend on input variables at all. |
| 122 | static private final float[][] SCHMIDT_QUASI_NORM_FACTORS = |
| 123 | computeSchmidtQuasiNormFactors(G_COEFF.length); |
| 124 | |
| 125 | /** |
| 126 | * Estimate the magnetic field at a given point and time. |
| 127 | * |
| 128 | * @param gdLatitudeDeg |
| 129 | * Latitude in WGS84 geodetic coordinates -- positive is east. |
| 130 | * @param gdLongitudeDeg |
| 131 | * Longitude in WGS84 geodetic coordinates -- positive is north. |
| 132 | * @param altitudeMeters |
| 133 | * Altitude in WGS84 geodetic coordinates, in meters. |
| 134 | * @param timeMillis |
| 135 | * Time at which to evaluate the declination, in milliseconds |
| 136 | * since January 1, 1970. (approximate is fine -- the declination |
| 137 | * changes very slowly). |
| 138 | */ |
| 139 | public GeomagneticField(float gdLatitudeDeg, |
| 140 | float gdLongitudeDeg, |
| 141 | float altitudeMeters, |
| 142 | long timeMillis) { |
| 143 | final int MAX_N = G_COEFF.length; // Maximum degree of the coefficients. |
| 144 | |
| 145 | // We don't handle the north and south poles correctly -- pretend that |
| 146 | // we're not quite at them to avoid crashing. |
| 147 | gdLatitudeDeg = Math.min(90.0f - 1e-5f, |
| 148 | Math.max(-90.0f + 1e-5f, gdLatitudeDeg)); |
| 149 | computeGeocentricCoordinates(gdLatitudeDeg, |
| 150 | gdLongitudeDeg, |
| 151 | altitudeMeters); |
| 152 | |
| 153 | assert G_COEFF.length == H_COEFF.length; |
| 154 | |
| 155 | // Note: LegendreTable computes associated Legendre functions for |
| 156 | // cos(theta). We want the associated Legendre functions for |
| 157 | // sin(latitude), which is the same as cos(PI/2 - latitude), except the |
| 158 | // derivate will be negated. |
| 159 | LegendreTable legendre = |
| 160 | new LegendreTable(MAX_N - 1, |
| 161 | (float) (Math.PI / 2.0 - mGcLatitudeRad)); |
| 162 | |
| 163 | // Compute a table of (EARTH_REFERENCE_RADIUS_KM / radius)^n for i in |
| 164 | // 0..MAX_N-2 (this is much faster than calling Math.pow MAX_N+1 times). |
| 165 | float[] relativeRadiusPower = new float[MAX_N + 2]; |
| 166 | relativeRadiusPower[0] = 1.0f; |
| 167 | relativeRadiusPower[1] = EARTH_REFERENCE_RADIUS_KM / mGcRadiusKm; |
| 168 | for (int i = 2; i < relativeRadiusPower.length; ++i) { |
| 169 | relativeRadiusPower[i] = relativeRadiusPower[i - 1] * |
| 170 | relativeRadiusPower[1]; |
| 171 | } |
| 172 | |
| 173 | // Compute tables of sin(lon * m) and cos(lon * m) for m = 0..MAX_N -- |
| 174 | // this is much faster than calling Math.sin and Math.com MAX_N+1 times. |
| 175 | float[] sinMLon = new float[MAX_N]; |
| 176 | float[] cosMLon = new float[MAX_N]; |
| 177 | sinMLon[0] = 0.0f; |
| 178 | cosMLon[0] = 1.0f; |
| 179 | sinMLon[1] = (float) Math.sin(mGcLongitudeRad); |
| 180 | cosMLon[1] = (float) Math.cos(mGcLongitudeRad); |
| 181 | |
| 182 | for (int m = 2; m < MAX_N; ++m) { |
| 183 | // Standard expansions for sin((m-x)*theta + x*theta) and |
| 184 | // cos((m-x)*theta + x*theta). |
| 185 | int x = m >> 1; |
| 186 | sinMLon[m] = sinMLon[m-x] * cosMLon[x] + cosMLon[m-x] * sinMLon[x]; |
| 187 | cosMLon[m] = cosMLon[m-x] * cosMLon[x] - sinMLon[m-x] * sinMLon[x]; |
| 188 | } |
| 189 | |
| 190 | float inverseCosLatitude = 1.0f / (float) Math.cos(mGcLatitudeRad); |
| 191 | float yearsSinceBase = |
| 192 | (timeMillis - BASE_TIME) / (365f * 24f * 60f * 60f * 1000f); |
| 193 | |
| 194 | // We now compute the magnetic field strength given the geocentric |
| 195 | // location. The magnetic field is the derivative of the potential |
| 196 | // function defined by the model. See NOAA Technical Report: The US/UK |
| 197 | // World Magnetic Model for 2020-2025 for the derivation. |
| 198 | float gcX = 0.0f; // Geocentric northwards component. |
| 199 | float gcY = 0.0f; // Geocentric eastwards component. |
| 200 | float gcZ = 0.0f; // Geocentric downwards component. |
| 201 | |
| 202 | for (int n = 1; n < MAX_N; n++) { |
| 203 | for (int m = 0; m <= n; m++) { |
| 204 | // Adjust the coefficients for the current date. |
| 205 | float g = G_COEFF[n][m] + yearsSinceBase * DELTA_G[n][m]; |
| 206 | float h = H_COEFF[n][m] + yearsSinceBase * DELTA_H[n][m]; |
| 207 | |
| 208 | // Negative derivative with respect to latitude, divided by |
| 209 | // radius. This looks like the negation of the version in the |
| 210 | // NOAA Technical report because that report used |
| 211 | // P_n^m(sin(theta)) and we use P_n^m(cos(90 - theta)), so the |
| 212 | // derivative with respect to theta is negated. |
| 213 | gcX += relativeRadiusPower[n+2] |
| 214 | * (g * cosMLon[m] + h * sinMLon[m]) |
| 215 | * legendre.mPDeriv[n][m] |
| 216 | * SCHMIDT_QUASI_NORM_FACTORS[n][m]; |
| 217 | |
| 218 | // Negative derivative with respect to longitude, divided by |
| 219 | // radius. |
| 220 | gcY += relativeRadiusPower[n+2] * m |
| 221 | * (g * sinMLon[m] - h * cosMLon[m]) |
| 222 | * legendre.mP[n][m] |
| 223 | * SCHMIDT_QUASI_NORM_FACTORS[n][m] |
| 224 | * inverseCosLatitude; |
| 225 | |
| 226 | // Negative derivative with respect to radius. |
| 227 | gcZ -= (n + 1) * relativeRadiusPower[n+2] |
| 228 | * (g * cosMLon[m] + h * sinMLon[m]) |
| 229 | * legendre.mP[n][m] |
| 230 | * SCHMIDT_QUASI_NORM_FACTORS[n][m]; |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | // Convert back to geodetic coordinates. This is basically just a |
| 235 | // rotation around the Y-axis by the difference in latitudes between the |
| 236 | // geocentric frame and the geodetic frame. |
| 237 | double latDiffRad = Math.toRadians(gdLatitudeDeg) - mGcLatitudeRad; |
| 238 | mX = (float) (gcX * Math.cos(latDiffRad) |
| 239 | + gcZ * Math.sin(latDiffRad)); |
| 240 | mY = gcY; |
| 241 | mZ = (float) (- gcX * Math.sin(latDiffRad) |
| 242 | + gcZ * Math.cos(latDiffRad)); |
| 243 | } |
| 244 | |
| 245 | /** |
| 246 | * @return The X (northward) component of the magnetic field in nanoteslas. |
| 247 | */ |
| 248 | public float getX() { |
| 249 | return mX; |
| 250 | } |
| 251 | |
| 252 | /** |
| 253 | * @return The Y (eastward) component of the magnetic field in nanoteslas. |
| 254 | */ |
| 255 | public float getY() { |
| 256 | return mY; |
| 257 | } |
| 258 | |
| 259 | /** |
| 260 | * @return The Z (downward) component of the magnetic field in nanoteslas. |
| 261 | */ |
| 262 | public float getZ() { |
| 263 | return mZ; |
| 264 | } |
| 265 | |
| 266 | /** |
| 267 | * @return The declination of the horizontal component of the magnetic |
| 268 | * field from true north, in degrees (i.e. positive means the |
| 269 | * magnetic field is rotated east that much from true north). |
| 270 | */ |
| 271 | public float getDeclination() { |
| 272 | return (float) Math.toDegrees(Math.atan2(mY, mX)); |
| 273 | } |
| 274 | |
| 275 | /** |
| 276 | * @return The inclination of the magnetic field in degrees -- positive |
| 277 | * means the magnetic field is rotated downwards. |
| 278 | */ |
| 279 | public float getInclination() { |
| 280 | return (float) Math.toDegrees(Math.atan2(mZ, |
| 281 | getHorizontalStrength())); |
| 282 | } |
| 283 | |
| 284 | /** |
| 285 | * @return Horizontal component of the field strength in nanoteslas. |
| 286 | */ |
| 287 | public float getHorizontalStrength() { |
| 288 | return (float) Math.hypot(mX, mY); |
| 289 | } |
| 290 | |
| 291 | /** |
| 292 | * @return Total field strength in nanoteslas. |
| 293 | */ |
| 294 | public float getFieldStrength() { |
| 295 | return (float) Math.sqrt(mX * mX + mY * mY + mZ * mZ); |
| 296 | } |
| 297 | |
| 298 | /** |
| 299 | * @param gdLatitudeDeg |
| 300 | * Latitude in WGS84 geodetic coordinates. |
| 301 | * @param gdLongitudeDeg |
| 302 | * Longitude in WGS84 geodetic coordinates. |
| 303 | * @param altitudeMeters |
| 304 | * Altitude above sea level in WGS84 geodetic coordinates. |
| 305 | * @return Geocentric latitude (i.e. angle between closest point on the |
| 306 | * equator and this point, at the center of the earth. |
| 307 | */ |
| 308 | private void computeGeocentricCoordinates(float gdLatitudeDeg, |
| 309 | float gdLongitudeDeg, |
| 310 | float altitudeMeters) { |
| 311 | float altitudeKm = altitudeMeters / 1000.0f; |
| 312 | float a2 = EARTH_SEMI_MAJOR_AXIS_KM * EARTH_SEMI_MAJOR_AXIS_KM; |
| 313 | float b2 = EARTH_SEMI_MINOR_AXIS_KM * EARTH_SEMI_MINOR_AXIS_KM; |
| 314 | double gdLatRad = Math.toRadians(gdLatitudeDeg); |
| 315 | float clat = (float) Math.cos(gdLatRad); |
| 316 | float slat = (float) Math.sin(gdLatRad); |
| 317 | float tlat = slat / clat; |
| 318 | float latRad = |
| 319 | (float) Math.sqrt(a2 * clat * clat + b2 * slat * slat); |
| 320 | |
| 321 | mGcLatitudeRad = (float) Math.atan(tlat * (latRad * altitudeKm + b2) |
| 322 | / (latRad * altitudeKm + a2)); |
| 323 | |
| 324 | mGcLongitudeRad = (float) Math.toRadians(gdLongitudeDeg); |
| 325 | |
| 326 | float radSq = altitudeKm * altitudeKm |
| 327 | + 2 * altitudeKm * (float) Math.sqrt(a2 * clat * clat + |
| 328 | b2 * slat * slat) |
| 329 | + (a2 * a2 * clat * clat + b2 * b2 * slat * slat) |
| 330 | / (a2 * clat * clat + b2 * slat * slat); |
| 331 | mGcRadiusKm = (float) Math.sqrt(radSq); |
| 332 | } |
| 333 | |
| 334 | |
| 335 | /** |
| 336 | * Utility class to compute a table of Gauss-normalized associated Legendre |
| 337 | * functions P_n^m(cos(theta)) |
| 338 | */ |
| 339 | static private class LegendreTable { |
| 340 | // These are the Gauss-normalized associated Legendre functions -- that |
| 341 | // is, they are normal Legendre functions multiplied by |
| 342 | // (n-m)!/(2n-1)!! (where (2n-1)!! = 1*3*5*...*2n-1) |
| 343 | public final float[][] mP; |
| 344 | |
| 345 | // Derivative of mP, with respect to theta. |
| 346 | public final float[][] mPDeriv; |
| 347 | |
| 348 | /** |
| 349 | * @param maxN |
| 350 | * The maximum n- and m-values to support |
| 351 | * @param thetaRad |
| 352 | * Returned functions will be Gauss-normalized |
| 353 | * P_n^m(cos(thetaRad)), with thetaRad in radians. |
| 354 | */ |
| 355 | public LegendreTable(int maxN, float thetaRad) { |
| 356 | // Compute the table of Gauss-normalized associated Legendre |
| 357 | // functions using standard recursion relations. Also compute the |
| 358 | // table of derivatives using the derivative of the recursion |
| 359 | // relations. |
| 360 | float cos = (float) Math.cos(thetaRad); |
| 361 | float sin = (float) Math.sin(thetaRad); |
| 362 | |
| 363 | mP = new float[maxN + 1][]; |
| 364 | mPDeriv = new float[maxN + 1][]; |
| 365 | mP[0] = new float[] { 1.0f }; |
| 366 | mPDeriv[0] = new float[] { 0.0f }; |
| 367 | for (int n = 1; n <= maxN; n++) { |
| 368 | mP[n] = new float[n + 1]; |
| 369 | mPDeriv[n] = new float[n + 1]; |
| 370 | for (int m = 0; m <= n; m++) { |
| 371 | if (n == m) { |
| 372 | mP[n][m] = sin * mP[n - 1][m - 1]; |
| 373 | mPDeriv[n][m] = cos * mP[n - 1][m - 1] |
| 374 | + sin * mPDeriv[n - 1][m - 1]; |
| 375 | } else if (n == 1 || m == n - 1) { |
| 376 | mP[n][m] = cos * mP[n - 1][m]; |
| 377 | mPDeriv[n][m] = -sin * mP[n - 1][m] |
| 378 | + cos * mPDeriv[n - 1][m]; |
| 379 | } else { |
| 380 | assert n > 1 && m < n - 1; |
| 381 | float k = ((n - 1) * (n - 1) - m * m) |
| 382 | / (float) ((2 * n - 1) * (2 * n - 3)); |
| 383 | mP[n][m] = cos * mP[n - 1][m] - k * mP[n - 2][m]; |
| 384 | mPDeriv[n][m] = -sin * mP[n - 1][m] |
| 385 | + cos * mPDeriv[n - 1][m] - k * mPDeriv[n - 2][m]; |
| 386 | } |
| 387 | } |
| 388 | } |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | /** |
| 393 | * Compute the ration between the Gauss-normalized associated Legendre |
| 394 | * functions and the Schmidt quasi-normalized version. This is equivalent to |
| 395 | * sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! |
| 396 | */ |
| 397 | private static float[][] computeSchmidtQuasiNormFactors(int maxN) { |
| 398 | float[][] schmidtQuasiNorm = new float[maxN + 1][]; |
| 399 | schmidtQuasiNorm[0] = new float[] { 1.0f }; |
| 400 | for (int n = 1; n <= maxN; n++) { |
| 401 | schmidtQuasiNorm[n] = new float[n + 1]; |
| 402 | schmidtQuasiNorm[n][0] = |
| 403 | schmidtQuasiNorm[n - 1][0] * (2 * n - 1) / (float) n; |
| 404 | for (int m = 1; m <= n; m++) { |
| 405 | schmidtQuasiNorm[n][m] = schmidtQuasiNorm[n][m - 1] |
| 406 | * (float) Math.sqrt((n - m + 1) * (m == 1 ? 2 : 1) |
| 407 | / (float) (n + m)); |
| 408 | } |
| 409 | } |
| 410 | return schmidtQuasiNorm; |
| 411 | } |
| 412 | } |