Aurimas Liutikas | dc3f885 | 2024-07-11 10:07:48 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2007 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | package android.opengl; |
| 18 | |
| 19 | import androidx.annotation.NonNull; |
| 20 | |
| 21 | /** |
| 22 | * Matrix math utilities. These methods operate on OpenGL ES format |
| 23 | * matrices and vectors stored in float arrays. |
| 24 | * <p> |
| 25 | * Matrices are 4 x 4 column-vector matrices stored in column-major |
| 26 | * order: |
| 27 | * <pre> |
| 28 | * m[offset + 0] m[offset + 4] m[offset + 8] m[offset + 12] |
| 29 | * m[offset + 1] m[offset + 5] m[offset + 9] m[offset + 13] |
| 30 | * m[offset + 2] m[offset + 6] m[offset + 10] m[offset + 14] |
| 31 | * m[offset + 3] m[offset + 7] m[offset + 11] m[offset + 15]</pre> |
| 32 | * |
| 33 | * Vectors are 4 x 1 column vectors stored in order: |
| 34 | * <pre> |
| 35 | * v[offset + 0] |
| 36 | * v[offset + 1] |
| 37 | * v[offset + 2] |
| 38 | * v[offset + 3]</pre> |
| 39 | */ |
| 40 | public class Matrix { |
| 41 | |
| 42 | /** Temporary memory for operations that need temporary matrix data. */ |
| 43 | private static final ThreadLocal<float[]> ThreadTmp = new ThreadLocal() { |
| 44 | @Override protected float[] initialValue() { |
| 45 | return new float[32]; |
| 46 | } |
| 47 | }; |
| 48 | |
| 49 | /** |
| 50 | * @deprecated All methods are static, do not instantiate this class. |
| 51 | */ |
| 52 | @Deprecated |
| 53 | public Matrix() {} |
| 54 | |
| 55 | private static boolean overlap( |
| 56 | float[] a, int aStart, int aLength, float[] b, int bStart, int bLength) { |
| 57 | if (a != b) { |
| 58 | return false; |
| 59 | } |
| 60 | |
| 61 | if (aStart == bStart) { |
| 62 | return true; |
| 63 | } |
| 64 | |
| 65 | int aEnd = aStart + aLength; |
| 66 | int bEnd = bStart + bLength; |
| 67 | |
| 68 | if (aEnd == bEnd) { |
| 69 | return true; |
| 70 | } |
| 71 | |
| 72 | if (aStart < bStart && bStart < aEnd) { |
| 73 | return true; |
| 74 | } |
| 75 | if (aStart < bEnd && bEnd < aEnd) { |
| 76 | return true; |
| 77 | } |
| 78 | |
| 79 | if (bStart < aStart && aStart < bEnd) { |
| 80 | return true; |
| 81 | } |
| 82 | if (bStart < aEnd && aEnd < bEnd) { |
| 83 | return true; |
| 84 | } |
| 85 | |
| 86 | return false; |
| 87 | } |
| 88 | |
| 89 | /** |
| 90 | * Multiplies two 4x4 matrices together and stores the result in a third 4x4 |
| 91 | * matrix. In matrix notation: result = lhs x rhs. Due to the way |
| 92 | * matrix multiplication works, the result matrix will have the same |
| 93 | * effect as first multiplying by the rhs matrix, then multiplying by |
| 94 | * the lhs matrix. This is the opposite of what you might expect. |
| 95 | * <p> |
| 96 | * The same float array may be passed for result, lhs, and/or rhs. This |
| 97 | * operation is expected to do the correct thing if the result elements |
| 98 | * overlap with either of the lhs or rhs elements. |
| 99 | * |
| 100 | * @param result The float array that holds the result. |
| 101 | * @param resultOffset The offset into the result array where the result is |
| 102 | * stored. |
| 103 | * @param lhs The float array that holds the left-hand-side matrix. |
| 104 | * @param lhsOffset The offset into the lhs array where the lhs is stored |
| 105 | * @param rhs The float array that holds the right-hand-side matrix. |
| 106 | * @param rhsOffset The offset into the rhs array where the rhs is stored. |
| 107 | * |
| 108 | * @throws IllegalArgumentException under any of the following conditions: |
| 109 | * result, lhs, or rhs are null; |
| 110 | * resultOffset + 16 > result.length |
| 111 | * or lhsOffset + 16 > lhs.length |
| 112 | * or rhsOffset + 16 > rhs.length; |
| 113 | * resultOffset < 0 or lhsOffset < 0 or rhsOffset < 0 |
| 114 | */ |
| 115 | public static void multiplyMM(float[] result, int resultOffset, |
| 116 | float[] lhs, int lhsOffset, float[] rhs, int rhsOffset) { |
| 117 | // error checking |
| 118 | if (result == null) { |
| 119 | throw new IllegalArgumentException("result == null"); |
| 120 | } |
| 121 | if (lhs == null) { |
| 122 | throw new IllegalArgumentException("lhs == null"); |
| 123 | } |
| 124 | if (rhs == null) { |
| 125 | throw new IllegalArgumentException("rhs == null"); |
| 126 | } |
| 127 | if (resultOffset < 0) { |
| 128 | throw new IllegalArgumentException("resultOffset < 0"); |
| 129 | } |
| 130 | if (lhsOffset < 0) { |
| 131 | throw new IllegalArgumentException("lhsOffset < 0"); |
| 132 | } |
| 133 | if (rhsOffset < 0) { |
| 134 | throw new IllegalArgumentException("rhsOffset < 0"); |
| 135 | } |
| 136 | if (result.length < resultOffset + 16) { |
| 137 | throw new IllegalArgumentException("result.length < resultOffset + 16"); |
| 138 | } |
| 139 | if (lhs.length < lhsOffset + 16) { |
| 140 | throw new IllegalArgumentException("lhs.length < lhsOffset + 16"); |
| 141 | } |
| 142 | if (rhs.length < rhsOffset + 16) { |
| 143 | throw new IllegalArgumentException("rhs.length < rhsOffset + 16"); |
| 144 | } |
| 145 | |
| 146 | // Check for overlap between rhs and result or lhs and result |
| 147 | if ( overlap(result, resultOffset, 16, lhs, lhsOffset, 16) |
| 148 | || overlap(result, resultOffset, 16, rhs, rhsOffset, 16) ) { |
| 149 | float[] tmp = ThreadTmp.get(); |
| 150 | for (int i=0; i<4; i++) { |
| 151 | final float rhs_i0 = rhs[ 4*i + 0 + rhsOffset ]; |
| 152 | float ri0 = lhs[ 0 + lhsOffset ] * rhs_i0; |
| 153 | float ri1 = lhs[ 1 + lhsOffset ] * rhs_i0; |
| 154 | float ri2 = lhs[ 2 + lhsOffset ] * rhs_i0; |
| 155 | float ri3 = lhs[ 3 + lhsOffset ] * rhs_i0; |
| 156 | for (int j=1; j<4; j++) { |
| 157 | final float rhs_ij = rhs[ 4*i + j + rhsOffset]; |
| 158 | ri0 += lhs[ 4*j + 0 + lhsOffset ] * rhs_ij; |
| 159 | ri1 += lhs[ 4*j + 1 + lhsOffset ] * rhs_ij; |
| 160 | ri2 += lhs[ 4*j + 2 + lhsOffset ] * rhs_ij; |
| 161 | ri3 += lhs[ 4*j + 3 + lhsOffset ] * rhs_ij; |
| 162 | } |
| 163 | tmp[ 4*i + 0 ] = ri0; |
| 164 | tmp[ 4*i + 1 ] = ri1; |
| 165 | tmp[ 4*i + 2 ] = ri2; |
| 166 | tmp[ 4*i + 3 ] = ri3; |
| 167 | } |
| 168 | |
| 169 | // copy from tmp to result |
| 170 | for (int i=0; i < 16; i++) { |
| 171 | result[ i + resultOffset ] = tmp[ i ]; |
| 172 | } |
| 173 | |
| 174 | } else { |
| 175 | for (int i=0; i<4; i++) { |
| 176 | final float rhs_i0 = rhs[ 4*i + 0 + rhsOffset ]; |
| 177 | float ri0 = lhs[ 0 + lhsOffset ] * rhs_i0; |
| 178 | float ri1 = lhs[ 1 + lhsOffset ] * rhs_i0; |
| 179 | float ri2 = lhs[ 2 + lhsOffset ] * rhs_i0; |
| 180 | float ri3 = lhs[ 3 + lhsOffset ] * rhs_i0; |
| 181 | for (int j=1; j<4; j++) { |
| 182 | final float rhs_ij = rhs[ 4*i + j + rhsOffset]; |
| 183 | ri0 += lhs[ 4*j + 0 + lhsOffset ] * rhs_ij; |
| 184 | ri1 += lhs[ 4*j + 1 + lhsOffset ] * rhs_ij; |
| 185 | ri2 += lhs[ 4*j + 2 + lhsOffset ] * rhs_ij; |
| 186 | ri3 += lhs[ 4*j + 3 + lhsOffset ] * rhs_ij; |
| 187 | } |
| 188 | result[ 4*i + 0 + resultOffset ] = ri0; |
| 189 | result[ 4*i + 1 + resultOffset ] = ri1; |
| 190 | result[ 4*i + 2 + resultOffset ] = ri2; |
| 191 | result[ 4*i + 3 + resultOffset ] = ri3; |
| 192 | } |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | /** |
| 197 | * Multiplies a 4 element vector by a 4x4 matrix and stores the result in a |
| 198 | * 4-element column vector. In matrix notation: result = lhs x rhs |
| 199 | * <p> |
| 200 | * The same float array may be passed for resultVec, lhsMat, and/or rhsVec. |
| 201 | * This operation is expected to do the correct thing if the result elements |
| 202 | * overlap with either of the lhs or rhs elements. |
| 203 | * |
| 204 | * @param resultVec The float array that holds the result vector. |
| 205 | * @param resultVecOffset The offset into the result array where the result |
| 206 | * vector is stored. |
| 207 | * @param lhsMat The float array that holds the left-hand-side matrix. |
| 208 | * @param lhsMatOffset The offset into the lhs array where the lhs is stored |
| 209 | * @param rhsVec The float array that holds the right-hand-side vector. |
| 210 | * @param rhsVecOffset The offset into the rhs vector where the rhs vector |
| 211 | * is stored. |
| 212 | * |
| 213 | * @throws IllegalArgumentException under any of the following conditions: |
| 214 | * resultVec, lhsMat, or rhsVec are null; |
| 215 | * resultVecOffset + 4 > resultVec.length |
| 216 | * or lhsMatOffset + 16 > lhsMat.length |
| 217 | * or rhsVecOffset + 4 > rhsVec.length; |
| 218 | * resultVecOffset < 0 or lhsMatOffset < 0 or rhsVecOffset < 0 |
| 219 | */ |
| 220 | public static void multiplyMV(float[] resultVec, |
| 221 | int resultVecOffset, float[] lhsMat, int lhsMatOffset, |
| 222 | float[] rhsVec, int rhsVecOffset) { |
| 223 | // error checking |
| 224 | if (resultVec == null) { |
| 225 | throw new IllegalArgumentException("resultVec == null"); |
| 226 | } |
| 227 | if (lhsMat == null) { |
| 228 | throw new IllegalArgumentException("lhsMat == null"); |
| 229 | } |
| 230 | if (rhsVec == null) { |
| 231 | throw new IllegalArgumentException("rhsVec == null"); |
| 232 | } |
| 233 | if (resultVecOffset < 0) { |
| 234 | throw new IllegalArgumentException("resultVecOffset < 0"); |
| 235 | } |
| 236 | if (lhsMatOffset < 0) { |
| 237 | throw new IllegalArgumentException("lhsMatOffset < 0"); |
| 238 | } |
| 239 | if (rhsVecOffset < 0) { |
| 240 | throw new IllegalArgumentException("rhsVecOffset < 0"); |
| 241 | } |
| 242 | if (resultVec.length < resultVecOffset + 4) { |
| 243 | throw new IllegalArgumentException("resultVec.length < resultVecOffset + 4"); |
| 244 | } |
| 245 | if (lhsMat.length < lhsMatOffset + 16) { |
| 246 | throw new IllegalArgumentException("lhsMat.length < lhsMatOffset + 16"); |
| 247 | } |
| 248 | if (rhsVec.length < rhsVecOffset + 4) { |
| 249 | throw new IllegalArgumentException("rhsVec.length < rhsVecOffset + 4"); |
| 250 | } |
| 251 | |
| 252 | float tmp0 = lhsMat[0 + 4 * 0 + lhsMatOffset] * rhsVec[0 + rhsVecOffset] + |
| 253 | lhsMat[0 + 4 * 1 + lhsMatOffset] * rhsVec[1 + rhsVecOffset] + |
| 254 | lhsMat[0 + 4 * 2 + lhsMatOffset] * rhsVec[2 + rhsVecOffset] + |
| 255 | lhsMat[0 + 4 * 3 + lhsMatOffset] * rhsVec[3 + rhsVecOffset]; |
| 256 | float tmp1 = lhsMat[1 + 4 * 0 + lhsMatOffset] * rhsVec[0 + rhsVecOffset] + |
| 257 | lhsMat[1 + 4 * 1 + lhsMatOffset] * rhsVec[1 + rhsVecOffset] + |
| 258 | lhsMat[1 + 4 * 2 + lhsMatOffset] * rhsVec[2 + rhsVecOffset] + |
| 259 | lhsMat[1 + 4 * 3 + lhsMatOffset] * rhsVec[3 + rhsVecOffset]; |
| 260 | float tmp2 = lhsMat[2 + 4 * 0 + lhsMatOffset] * rhsVec[0 + rhsVecOffset] + |
| 261 | lhsMat[2 + 4 * 1 + lhsMatOffset] * rhsVec[1 + rhsVecOffset] + |
| 262 | lhsMat[2 + 4 * 2 + lhsMatOffset] * rhsVec[2 + rhsVecOffset] + |
| 263 | lhsMat[2 + 4 * 3 + lhsMatOffset] * rhsVec[3 + rhsVecOffset]; |
| 264 | float tmp3 = lhsMat[3 + 4 * 0 + lhsMatOffset] * rhsVec[0 + rhsVecOffset] + |
| 265 | lhsMat[3 + 4 * 1 + lhsMatOffset] * rhsVec[1 + rhsVecOffset] + |
| 266 | lhsMat[3 + 4 * 2 + lhsMatOffset] * rhsVec[2 + rhsVecOffset] + |
| 267 | lhsMat[3 + 4 * 3 + lhsMatOffset] * rhsVec[3 + rhsVecOffset]; |
| 268 | |
| 269 | resultVec[ 0 + resultVecOffset ] = tmp0; |
| 270 | resultVec[ 1 + resultVecOffset ] = tmp1; |
| 271 | resultVec[ 2 + resultVecOffset ] = tmp2; |
| 272 | resultVec[ 3 + resultVecOffset ] = tmp3; |
| 273 | } |
| 274 | |
| 275 | /** |
| 276 | * Transposes a 4 x 4 matrix. |
| 277 | * <p> |
| 278 | * mTrans and m must not overlap. |
| 279 | * |
| 280 | * @param mTrans the array that holds the output transposed matrix |
| 281 | * @param mTransOffset an offset into mTrans where the transposed matrix is |
| 282 | * stored. |
| 283 | * @param m the input array |
| 284 | * @param mOffset an offset into m where the input matrix is stored. |
| 285 | */ |
| 286 | public static void transposeM(float[] mTrans, int mTransOffset, float[] m, |
| 287 | int mOffset) { |
| 288 | for (int i = 0; i < 4; i++) { |
| 289 | int mBase = i * 4 + mOffset; |
| 290 | mTrans[i + mTransOffset] = m[mBase]; |
| 291 | mTrans[i + 4 + mTransOffset] = m[mBase + 1]; |
| 292 | mTrans[i + 8 + mTransOffset] = m[mBase + 2]; |
| 293 | mTrans[i + 12 + mTransOffset] = m[mBase + 3]; |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | /** |
| 298 | * Inverts a 4 x 4 matrix. |
| 299 | * <p> |
| 300 | * mInv and m must not overlap. |
| 301 | * |
| 302 | * @param mInv the array that holds the output inverted matrix |
| 303 | * @param mInvOffset an offset into mInv where the inverted matrix is |
| 304 | * stored. |
| 305 | * @param m the input array |
| 306 | * @param mOffset an offset into m where the input matrix is stored. |
| 307 | * @return true if the matrix could be inverted, false if it could not. |
| 308 | */ |
| 309 | public static boolean invertM(float[] mInv, int mInvOffset, float[] m, |
| 310 | int mOffset) { |
| 311 | // Invert a 4 x 4 matrix using Cramer's Rule |
| 312 | |
| 313 | // transpose matrix |
| 314 | final float src0 = m[mOffset + 0]; |
| 315 | final float src4 = m[mOffset + 1]; |
| 316 | final float src8 = m[mOffset + 2]; |
| 317 | final float src12 = m[mOffset + 3]; |
| 318 | |
| 319 | final float src1 = m[mOffset + 4]; |
| 320 | final float src5 = m[mOffset + 5]; |
| 321 | final float src9 = m[mOffset + 6]; |
| 322 | final float src13 = m[mOffset + 7]; |
| 323 | |
| 324 | final float src2 = m[mOffset + 8]; |
| 325 | final float src6 = m[mOffset + 9]; |
| 326 | final float src10 = m[mOffset + 10]; |
| 327 | final float src14 = m[mOffset + 11]; |
| 328 | |
| 329 | final float src3 = m[mOffset + 12]; |
| 330 | final float src7 = m[mOffset + 13]; |
| 331 | final float src11 = m[mOffset + 14]; |
| 332 | final float src15 = m[mOffset + 15]; |
| 333 | |
| 334 | // calculate pairs for first 8 elements (cofactors) |
| 335 | final float atmp0 = src10 * src15; |
| 336 | final float atmp1 = src11 * src14; |
| 337 | final float atmp2 = src9 * src15; |
| 338 | final float atmp3 = src11 * src13; |
| 339 | final float atmp4 = src9 * src14; |
| 340 | final float atmp5 = src10 * src13; |
| 341 | final float atmp6 = src8 * src15; |
| 342 | final float atmp7 = src11 * src12; |
| 343 | final float atmp8 = src8 * src14; |
| 344 | final float atmp9 = src10 * src12; |
| 345 | final float atmp10 = src8 * src13; |
| 346 | final float atmp11 = src9 * src12; |
| 347 | |
| 348 | // calculate first 8 elements (cofactors) |
| 349 | final float dst0 = (atmp0 * src5 + atmp3 * src6 + atmp4 * src7) |
| 350 | - (atmp1 * src5 + atmp2 * src6 + atmp5 * src7); |
| 351 | final float dst1 = (atmp1 * src4 + atmp6 * src6 + atmp9 * src7) |
| 352 | - (atmp0 * src4 + atmp7 * src6 + atmp8 * src7); |
| 353 | final float dst2 = (atmp2 * src4 + atmp7 * src5 + atmp10 * src7) |
| 354 | - (atmp3 * src4 + atmp6 * src5 + atmp11 * src7); |
| 355 | final float dst3 = (atmp5 * src4 + atmp8 * src5 + atmp11 * src6) |
| 356 | - (atmp4 * src4 + atmp9 * src5 + atmp10 * src6); |
| 357 | final float dst4 = (atmp1 * src1 + atmp2 * src2 + atmp5 * src3) |
| 358 | - (atmp0 * src1 + atmp3 * src2 + atmp4 * src3); |
| 359 | final float dst5 = (atmp0 * src0 + atmp7 * src2 + atmp8 * src3) |
| 360 | - (atmp1 * src0 + atmp6 * src2 + atmp9 * src3); |
| 361 | final float dst6 = (atmp3 * src0 + atmp6 * src1 + atmp11 * src3) |
| 362 | - (atmp2 * src0 + atmp7 * src1 + atmp10 * src3); |
| 363 | final float dst7 = (atmp4 * src0 + atmp9 * src1 + atmp10 * src2) |
| 364 | - (atmp5 * src0 + atmp8 * src1 + atmp11 * src2); |
| 365 | |
| 366 | // calculate pairs for second 8 elements (cofactors) |
| 367 | final float btmp0 = src2 * src7; |
| 368 | final float btmp1 = src3 * src6; |
| 369 | final float btmp2 = src1 * src7; |
| 370 | final float btmp3 = src3 * src5; |
| 371 | final float btmp4 = src1 * src6; |
| 372 | final float btmp5 = src2 * src5; |
| 373 | final float btmp6 = src0 * src7; |
| 374 | final float btmp7 = src3 * src4; |
| 375 | final float btmp8 = src0 * src6; |
| 376 | final float btmp9 = src2 * src4; |
| 377 | final float btmp10 = src0 * src5; |
| 378 | final float btmp11 = src1 * src4; |
| 379 | |
| 380 | // calculate second 8 elements (cofactors) |
| 381 | final float dst8 = (btmp0 * src13 + btmp3 * src14 + btmp4 * src15) |
| 382 | - (btmp1 * src13 + btmp2 * src14 + btmp5 * src15); |
| 383 | final float dst9 = (btmp1 * src12 + btmp6 * src14 + btmp9 * src15) |
| 384 | - (btmp0 * src12 + btmp7 * src14 + btmp8 * src15); |
| 385 | final float dst10 = (btmp2 * src12 + btmp7 * src13 + btmp10 * src15) |
| 386 | - (btmp3 * src12 + btmp6 * src13 + btmp11 * src15); |
| 387 | final float dst11 = (btmp5 * src12 + btmp8 * src13 + btmp11 * src14) |
| 388 | - (btmp4 * src12 + btmp9 * src13 + btmp10 * src14); |
| 389 | final float dst12 = (btmp2 * src10 + btmp5 * src11 + btmp1 * src9 ) |
| 390 | - (btmp4 * src11 + btmp0 * src9 + btmp3 * src10); |
| 391 | final float dst13 = (btmp8 * src11 + btmp0 * src8 + btmp7 * src10) |
| 392 | - (btmp6 * src10 + btmp9 * src11 + btmp1 * src8 ); |
| 393 | final float dst14 = (btmp6 * src9 + btmp11 * src11 + btmp3 * src8 ) |
| 394 | - (btmp10 * src11 + btmp2 * src8 + btmp7 * src9 ); |
| 395 | final float dst15 = (btmp10 * src10 + btmp4 * src8 + btmp9 * src9 ) |
| 396 | - (btmp8 * src9 + btmp11 * src10 + btmp5 * src8 ); |
| 397 | |
| 398 | // calculate determinant |
| 399 | final float det = |
| 400 | src0 * dst0 + src1 * dst1 + src2 * dst2 + src3 * dst3; |
| 401 | |
| 402 | if (det == 0.0f) { |
| 403 | return false; |
| 404 | } |
| 405 | |
| 406 | // calculate matrix inverse |
| 407 | final float invdet = 1.0f / det; |
| 408 | mInv[ mInvOffset] = dst0 * invdet; |
| 409 | mInv[ 1 + mInvOffset] = dst1 * invdet; |
| 410 | mInv[ 2 + mInvOffset] = dst2 * invdet; |
| 411 | mInv[ 3 + mInvOffset] = dst3 * invdet; |
| 412 | |
| 413 | mInv[ 4 + mInvOffset] = dst4 * invdet; |
| 414 | mInv[ 5 + mInvOffset] = dst5 * invdet; |
| 415 | mInv[ 6 + mInvOffset] = dst6 * invdet; |
| 416 | mInv[ 7 + mInvOffset] = dst7 * invdet; |
| 417 | |
| 418 | mInv[ 8 + mInvOffset] = dst8 * invdet; |
| 419 | mInv[ 9 + mInvOffset] = dst9 * invdet; |
| 420 | mInv[10 + mInvOffset] = dst10 * invdet; |
| 421 | mInv[11 + mInvOffset] = dst11 * invdet; |
| 422 | |
| 423 | mInv[12 + mInvOffset] = dst12 * invdet; |
| 424 | mInv[13 + mInvOffset] = dst13 * invdet; |
| 425 | mInv[14 + mInvOffset] = dst14 * invdet; |
| 426 | mInv[15 + mInvOffset] = dst15 * invdet; |
| 427 | |
| 428 | return true; |
| 429 | } |
| 430 | |
| 431 | /** |
| 432 | * Computes an orthographic projection matrix. |
| 433 | * |
| 434 | * @param m returns the result |
| 435 | * @param mOffset |
| 436 | * @param left |
| 437 | * @param right |
| 438 | * @param bottom |
| 439 | * @param top |
| 440 | * @param near |
| 441 | * @param far |
| 442 | */ |
| 443 | public static void orthoM(float[] m, int mOffset, |
| 444 | float left, float right, float bottom, float top, |
| 445 | float near, float far) { |
| 446 | if (left == right) { |
| 447 | throw new IllegalArgumentException("left == right"); |
| 448 | } |
| 449 | if (bottom == top) { |
| 450 | throw new IllegalArgumentException("bottom == top"); |
| 451 | } |
| 452 | if (near == far) { |
| 453 | throw new IllegalArgumentException("near == far"); |
| 454 | } |
| 455 | |
| 456 | final float r_width = 1.0f / (right - left); |
| 457 | final float r_height = 1.0f / (top - bottom); |
| 458 | final float r_depth = 1.0f / (far - near); |
| 459 | final float x = 2.0f * (r_width); |
| 460 | final float y = 2.0f * (r_height); |
| 461 | final float z = -2.0f * (r_depth); |
| 462 | final float tx = -(right + left) * r_width; |
| 463 | final float ty = -(top + bottom) * r_height; |
| 464 | final float tz = -(far + near) * r_depth; |
| 465 | m[mOffset + 0] = x; |
| 466 | m[mOffset + 5] = y; |
| 467 | m[mOffset +10] = z; |
| 468 | m[mOffset +12] = tx; |
| 469 | m[mOffset +13] = ty; |
| 470 | m[mOffset +14] = tz; |
| 471 | m[mOffset +15] = 1.0f; |
| 472 | m[mOffset + 1] = 0.0f; |
| 473 | m[mOffset + 2] = 0.0f; |
| 474 | m[mOffset + 3] = 0.0f; |
| 475 | m[mOffset + 4] = 0.0f; |
| 476 | m[mOffset + 6] = 0.0f; |
| 477 | m[mOffset + 7] = 0.0f; |
| 478 | m[mOffset + 8] = 0.0f; |
| 479 | m[mOffset + 9] = 0.0f; |
| 480 | m[mOffset + 11] = 0.0f; |
| 481 | } |
| 482 | |
| 483 | |
| 484 | /** |
| 485 | * Defines a projection matrix in terms of six clip planes. |
| 486 | * |
| 487 | * @param m the float array that holds the output perspective matrix |
| 488 | * @param offset the offset into float array m where the perspective |
| 489 | * matrix data is written |
| 490 | * @param left |
| 491 | * @param right |
| 492 | * @param bottom |
| 493 | * @param top |
| 494 | * @param near |
| 495 | * @param far |
| 496 | */ |
| 497 | public static void frustumM(float[] m, int offset, |
| 498 | float left, float right, float bottom, float top, |
| 499 | float near, float far) { |
| 500 | if (left == right) { |
| 501 | throw new IllegalArgumentException("left == right"); |
| 502 | } |
| 503 | if (top == bottom) { |
| 504 | throw new IllegalArgumentException("top == bottom"); |
| 505 | } |
| 506 | if (near == far) { |
| 507 | throw new IllegalArgumentException("near == far"); |
| 508 | } |
| 509 | if (near <= 0.0f) { |
| 510 | throw new IllegalArgumentException("near <= 0.0f"); |
| 511 | } |
| 512 | if (far <= 0.0f) { |
| 513 | throw new IllegalArgumentException("far <= 0.0f"); |
| 514 | } |
| 515 | final float r_width = 1.0f / (right - left); |
| 516 | final float r_height = 1.0f / (top - bottom); |
| 517 | final float r_depth = 1.0f / (near - far); |
| 518 | final float x = 2.0f * (near * r_width); |
| 519 | final float y = 2.0f * (near * r_height); |
| 520 | final float A = (right + left) * r_width; |
| 521 | final float B = (top + bottom) * r_height; |
| 522 | final float C = (far + near) * r_depth; |
| 523 | final float D = 2.0f * (far * near * r_depth); |
| 524 | m[offset + 0] = x; |
| 525 | m[offset + 5] = y; |
| 526 | m[offset + 8] = A; |
| 527 | m[offset + 9] = B; |
| 528 | m[offset + 10] = C; |
| 529 | m[offset + 14] = D; |
| 530 | m[offset + 11] = -1.0f; |
| 531 | m[offset + 1] = 0.0f; |
| 532 | m[offset + 2] = 0.0f; |
| 533 | m[offset + 3] = 0.0f; |
| 534 | m[offset + 4] = 0.0f; |
| 535 | m[offset + 6] = 0.0f; |
| 536 | m[offset + 7] = 0.0f; |
| 537 | m[offset + 12] = 0.0f; |
| 538 | m[offset + 13] = 0.0f; |
| 539 | m[offset + 15] = 0.0f; |
| 540 | } |
| 541 | |
| 542 | /** |
| 543 | * Defines a projection matrix in terms of a field of view angle, an |
| 544 | * aspect ratio, and z clip planes. |
| 545 | * |
| 546 | * @param m the float array that holds the perspective matrix |
| 547 | * @param offset the offset into float array m where the perspective |
| 548 | * matrix data is written |
| 549 | * @param fovy field of view in y direction, in degrees |
| 550 | * @param aspect width to height aspect ratio of the viewport |
| 551 | * @param zNear |
| 552 | * @param zFar |
| 553 | */ |
| 554 | public static void perspectiveM(float[] m, int offset, |
| 555 | float fovy, float aspect, float zNear, float zFar) { |
| 556 | float f = 1.0f / (float) Math.tan(fovy * (Math.PI / 360.0)); |
| 557 | float rangeReciprocal = 1.0f / (zNear - zFar); |
| 558 | |
| 559 | m[offset + 0] = f / aspect; |
| 560 | m[offset + 1] = 0.0f; |
| 561 | m[offset + 2] = 0.0f; |
| 562 | m[offset + 3] = 0.0f; |
| 563 | |
| 564 | m[offset + 4] = 0.0f; |
| 565 | m[offset + 5] = f; |
| 566 | m[offset + 6] = 0.0f; |
| 567 | m[offset + 7] = 0.0f; |
| 568 | |
| 569 | m[offset + 8] = 0.0f; |
| 570 | m[offset + 9] = 0.0f; |
| 571 | m[offset + 10] = (zFar + zNear) * rangeReciprocal; |
| 572 | m[offset + 11] = -1.0f; |
| 573 | |
| 574 | m[offset + 12] = 0.0f; |
| 575 | m[offset + 13] = 0.0f; |
| 576 | m[offset + 14] = 2.0f * zFar * zNear * rangeReciprocal; |
| 577 | m[offset + 15] = 0.0f; |
| 578 | } |
| 579 | |
| 580 | /** |
| 581 | * Computes the length of a vector. |
| 582 | * |
| 583 | * @param x x coordinate of a vector |
| 584 | * @param y y coordinate of a vector |
| 585 | * @param z z coordinate of a vector |
| 586 | * @return the length of a vector |
| 587 | */ |
| 588 | public static float length(float x, float y, float z) { |
| 589 | return (float) Math.sqrt(x * x + y * y + z * z); |
| 590 | } |
| 591 | |
| 592 | /** |
| 593 | * Sets matrix m to the identity matrix. |
| 594 | * |
| 595 | * @param sm returns the result |
| 596 | * @param smOffset index into sm where the result matrix starts |
| 597 | */ |
| 598 | public static void setIdentityM(float[] sm, int smOffset) { |
| 599 | for (int i=0 ; i<16 ; i++) { |
| 600 | sm[smOffset + i] = 0; |
| 601 | } |
| 602 | for(int i = 0; i < 16; i += 5) { |
| 603 | sm[smOffset + i] = 1.0f; |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | /** |
| 608 | * Scales matrix m by x, y, and z, putting the result in sm. |
| 609 | * <p> |
| 610 | * m and sm must not overlap. |
| 611 | * |
| 612 | * @param sm returns the result |
| 613 | * @param smOffset index into sm where the result matrix starts |
| 614 | * @param m source matrix |
| 615 | * @param mOffset index into m where the source matrix starts |
| 616 | * @param x scale factor x |
| 617 | * @param y scale factor y |
| 618 | * @param z scale factor z |
| 619 | */ |
| 620 | public static void scaleM(float[] sm, int smOffset, |
| 621 | float[] m, int mOffset, |
| 622 | float x, float y, float z) { |
| 623 | for (int i=0 ; i<4 ; i++) { |
| 624 | int smi = smOffset + i; |
| 625 | int mi = mOffset + i; |
| 626 | sm[ smi] = m[ mi] * x; |
| 627 | sm[ 4 + smi] = m[ 4 + mi] * y; |
| 628 | sm[ 8 + smi] = m[ 8 + mi] * z; |
| 629 | sm[12 + smi] = m[12 + mi]; |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | /** |
| 634 | * Scales matrix m in place by sx, sy, and sz. |
| 635 | * |
| 636 | * @param m matrix to scale |
| 637 | * @param mOffset index into m where the matrix starts |
| 638 | * @param x scale factor x |
| 639 | * @param y scale factor y |
| 640 | * @param z scale factor z |
| 641 | */ |
| 642 | public static void scaleM(float[] m, int mOffset, |
| 643 | float x, float y, float z) { |
| 644 | for (int i=0 ; i<4 ; i++) { |
| 645 | int mi = mOffset + i; |
| 646 | m[ mi] *= x; |
| 647 | m[ 4 + mi] *= y; |
| 648 | m[ 8 + mi] *= z; |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | /** |
| 653 | * Translates matrix m by x, y, and z, putting the result in tm. |
| 654 | * <p> |
| 655 | * m and tm must not overlap. |
| 656 | * |
| 657 | * @param tm returns the result |
| 658 | * @param tmOffset index into sm where the result matrix starts |
| 659 | * @param m source matrix |
| 660 | * @param mOffset index into m where the source matrix starts |
| 661 | * @param x translation factor x |
| 662 | * @param y translation factor y |
| 663 | * @param z translation factor z |
| 664 | */ |
| 665 | public static void translateM(float[] tm, int tmOffset, |
| 666 | float[] m, int mOffset, |
| 667 | float x, float y, float z) { |
| 668 | for (int i=0 ; i<12 ; i++) { |
| 669 | tm[tmOffset + i] = m[mOffset + i]; |
| 670 | } |
| 671 | for (int i=0 ; i<4 ; i++) { |
| 672 | int tmi = tmOffset + i; |
| 673 | int mi = mOffset + i; |
| 674 | tm[12 + tmi] = m[mi] * x + m[4 + mi] * y + m[8 + mi] * z + |
| 675 | m[12 + mi]; |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | /** |
| 680 | * Translates matrix m by x, y, and z in place. |
| 681 | * |
| 682 | * @param m matrix |
| 683 | * @param mOffset index into m where the matrix starts |
| 684 | * @param x translation factor x |
| 685 | * @param y translation factor y |
| 686 | * @param z translation factor z |
| 687 | */ |
| 688 | public static void translateM( |
| 689 | float[] m, int mOffset, |
| 690 | float x, float y, float z) { |
| 691 | for (int i=0 ; i<4 ; i++) { |
| 692 | int mi = mOffset + i; |
| 693 | m[12 + mi] += m[mi] * x + m[4 + mi] * y + m[8 + mi] * z; |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | /** |
| 698 | * Rotates matrix m by angle a (in degrees) around the axis (x, y, z). |
| 699 | * <p> |
| 700 | * m and rm must not overlap. |
| 701 | * |
| 702 | * @param rm returns the result |
| 703 | * @param rmOffset index into rm where the result matrix starts |
| 704 | * @param m source matrix |
| 705 | * @param mOffset index into m where the source matrix starts |
| 706 | * @param a angle to rotate in degrees |
| 707 | * @param x X axis component |
| 708 | * @param y Y axis component |
| 709 | * @param z Z axis component |
| 710 | */ |
| 711 | public static void rotateM(float[] rm, int rmOffset, |
| 712 | float[] m, int mOffset, |
| 713 | float a, float x, float y, float z) { |
| 714 | float[] tmp = ThreadTmp.get(); |
| 715 | setRotateM(tmp, 16, a, x, y, z); |
| 716 | multiplyMM(rm, rmOffset, m, mOffset, tmp, 16); |
| 717 | } |
| 718 | |
| 719 | /** |
| 720 | * Rotates matrix m in place by angle a (in degrees) |
| 721 | * around the axis (x, y, z). |
| 722 | * |
| 723 | * @param m source matrix |
| 724 | * @param mOffset index into m where the matrix starts |
| 725 | * @param a angle to rotate in degrees |
| 726 | * @param x X axis component |
| 727 | * @param y Y axis component |
| 728 | * @param z Z axis component |
| 729 | */ |
| 730 | public static void rotateM(float[] m, int mOffset, |
| 731 | float a, float x, float y, float z) { |
| 732 | rotateM(m, mOffset, m, mOffset, a, x, y, z); |
| 733 | } |
| 734 | |
| 735 | /** |
| 736 | * Creates a matrix for rotation by angle a (in degrees) |
| 737 | * around the axis (x, y, z). |
| 738 | * <p> |
| 739 | * An optimized path will be used for rotation about a major axis |
| 740 | * (e.g. x=1.0f y=0.0f z=0.0f). |
| 741 | * |
| 742 | * @param rm returns the result |
| 743 | * @param rmOffset index into rm where the result matrix starts |
| 744 | * @param a angle to rotate in degrees |
| 745 | * @param x X axis component |
| 746 | * @param y Y axis component |
| 747 | * @param z Z axis component |
| 748 | */ |
| 749 | public static void setRotateM(float[] rm, int rmOffset, |
| 750 | float a, float x, float y, float z) { |
| 751 | rm[rmOffset + 3] = 0; |
| 752 | rm[rmOffset + 7] = 0; |
| 753 | rm[rmOffset + 11]= 0; |
| 754 | rm[rmOffset + 12]= 0; |
| 755 | rm[rmOffset + 13]= 0; |
| 756 | rm[rmOffset + 14]= 0; |
| 757 | rm[rmOffset + 15]= 1; |
| 758 | a *= (float) (Math.PI / 180.0f); |
| 759 | float s = (float) Math.sin(a); |
| 760 | float c = (float) Math.cos(a); |
| 761 | if (1.0f == x && 0.0f == y && 0.0f == z) { |
| 762 | rm[rmOffset + 5] = c; rm[rmOffset + 10]= c; |
| 763 | rm[rmOffset + 6] = s; rm[rmOffset + 9] = -s; |
| 764 | rm[rmOffset + 1] = 0; rm[rmOffset + 2] = 0; |
| 765 | rm[rmOffset + 4] = 0; rm[rmOffset + 8] = 0; |
| 766 | rm[rmOffset + 0] = 1; |
| 767 | } else if (0.0f == x && 1.0f == y && 0.0f == z) { |
| 768 | rm[rmOffset + 0] = c; rm[rmOffset + 10]= c; |
| 769 | rm[rmOffset + 8] = s; rm[rmOffset + 2] = -s; |
| 770 | rm[rmOffset + 1] = 0; rm[rmOffset + 4] = 0; |
| 771 | rm[rmOffset + 6] = 0; rm[rmOffset + 9] = 0; |
| 772 | rm[rmOffset + 5] = 1; |
| 773 | } else if (0.0f == x && 0.0f == y && 1.0f == z) { |
| 774 | rm[rmOffset + 0] = c; rm[rmOffset + 5] = c; |
| 775 | rm[rmOffset + 1] = s; rm[rmOffset + 4] = -s; |
| 776 | rm[rmOffset + 2] = 0; rm[rmOffset + 6] = 0; |
| 777 | rm[rmOffset + 8] = 0; rm[rmOffset + 9] = 0; |
| 778 | rm[rmOffset + 10]= 1; |
| 779 | } else { |
| 780 | float len = length(x, y, z); |
| 781 | if (1.0f != len) { |
| 782 | float recipLen = 1.0f / len; |
| 783 | x *= recipLen; |
| 784 | y *= recipLen; |
| 785 | z *= recipLen; |
| 786 | } |
| 787 | float nc = 1.0f - c; |
| 788 | float xy = x * y; |
| 789 | float yz = y * z; |
| 790 | float zx = z * x; |
| 791 | float xs = x * s; |
| 792 | float ys = y * s; |
| 793 | float zs = z * s; |
| 794 | rm[rmOffset + 0] = x*x*nc + c; |
| 795 | rm[rmOffset + 4] = xy*nc - zs; |
| 796 | rm[rmOffset + 8] = zx*nc + ys; |
| 797 | rm[rmOffset + 1] = xy*nc + zs; |
| 798 | rm[rmOffset + 5] = y*y*nc + c; |
| 799 | rm[rmOffset + 9] = yz*nc - xs; |
| 800 | rm[rmOffset + 2] = zx*nc - ys; |
| 801 | rm[rmOffset + 6] = yz*nc + xs; |
| 802 | rm[rmOffset + 10] = z*z*nc + c; |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | /** |
| 807 | * Converts Euler angles to a rotation matrix. |
| 808 | * |
| 809 | * @param rm returns the result |
| 810 | * @param rmOffset index into rm where the result matrix starts |
| 811 | * @param x angle of rotation, in degrees |
| 812 | * @param y is broken, do not use |
| 813 | * @param z angle of rotation, in degrees |
| 814 | * |
| 815 | * @deprecated This method is incorrect around the y axis. This method is |
| 816 | * deprecated and replaced (below) by setRotateEulerM2 which |
| 817 | * behaves correctly |
| 818 | */ |
| 819 | @Deprecated |
| 820 | public static void setRotateEulerM(float[] rm, int rmOffset, |
| 821 | float x, float y, float z) { |
| 822 | x *= (float) (Math.PI / 180.0f); |
| 823 | y *= (float) (Math.PI / 180.0f); |
| 824 | z *= (float) (Math.PI / 180.0f); |
| 825 | float cx = (float) Math.cos(x); |
| 826 | float sx = (float) Math.sin(x); |
| 827 | float cy = (float) Math.cos(y); |
| 828 | float sy = (float) Math.sin(y); |
| 829 | float cz = (float) Math.cos(z); |
| 830 | float sz = (float) Math.sin(z); |
| 831 | float cxsy = cx * sy; |
| 832 | float sxsy = sx * sy; |
| 833 | |
| 834 | rm[rmOffset + 0] = cy * cz; |
| 835 | rm[rmOffset + 1] = -cy * sz; |
| 836 | rm[rmOffset + 2] = sy; |
| 837 | rm[rmOffset + 3] = 0.0f; |
| 838 | |
| 839 | rm[rmOffset + 4] = cxsy * cz + cx * sz; |
| 840 | rm[rmOffset + 5] = -cxsy * sz + cx * cz; |
| 841 | rm[rmOffset + 6] = -sx * cy; |
| 842 | rm[rmOffset + 7] = 0.0f; |
| 843 | |
| 844 | rm[rmOffset + 8] = -sxsy * cz + sx * sz; |
| 845 | rm[rmOffset + 9] = sxsy * sz + sx * cz; |
| 846 | rm[rmOffset + 10] = cx * cy; |
| 847 | rm[rmOffset + 11] = 0.0f; |
| 848 | |
| 849 | rm[rmOffset + 12] = 0.0f; |
| 850 | rm[rmOffset + 13] = 0.0f; |
| 851 | rm[rmOffset + 14] = 0.0f; |
| 852 | rm[rmOffset + 15] = 1.0f; |
| 853 | } |
| 854 | |
| 855 | /** |
| 856 | * Converts Euler angles to a rotation matrix. |
| 857 | * |
| 858 | * @param rm returns the result |
| 859 | * @param rmOffset index into rm where the result matrix starts |
| 860 | * @param x angle of rotation, in degrees |
| 861 | * @param y angle of rotation, in degrees |
| 862 | * @param z angle of rotation, in degrees |
| 863 | * |
| 864 | * @throws IllegalArgumentException if rm is null; |
| 865 | * or if rmOffset + 16 > rm.length; |
| 866 | * rmOffset < 0 |
| 867 | */ |
| 868 | public static void setRotateEulerM2(@NonNull float[] rm, int rmOffset, |
| 869 | float x, float y, float z) { |
| 870 | if (rm == null) { |
| 871 | throw new IllegalArgumentException("rm == null"); |
| 872 | } |
| 873 | if (rmOffset < 0) { |
| 874 | throw new IllegalArgumentException("rmOffset < 0"); |
| 875 | } |
| 876 | if (rm.length < rmOffset + 16) { |
| 877 | throw new IllegalArgumentException("rm.length < rmOffset + 16"); |
| 878 | } |
| 879 | |
| 880 | x *= (float) (Math.PI / 180.0f); |
| 881 | y *= (float) (Math.PI / 180.0f); |
| 882 | z *= (float) (Math.PI / 180.0f); |
| 883 | float cx = (float) Math.cos(x); |
| 884 | float sx = (float) Math.sin(x); |
| 885 | float cy = (float) Math.cos(y); |
| 886 | float sy = (float) Math.sin(y); |
| 887 | float cz = (float) Math.cos(z); |
| 888 | float sz = (float) Math.sin(z); |
| 889 | float cxsy = cx * sy; |
| 890 | float sxsy = sx * sy; |
| 891 | |
| 892 | rm[rmOffset + 0] = cy * cz; |
| 893 | rm[rmOffset + 1] = -cy * sz; |
| 894 | rm[rmOffset + 2] = sy; |
| 895 | rm[rmOffset + 3] = 0.0f; |
| 896 | |
| 897 | rm[rmOffset + 4] = sxsy * cz + cx * sz; |
| 898 | rm[rmOffset + 5] = -sxsy * sz + cx * cz; |
| 899 | rm[rmOffset + 6] = -sx * cy; |
| 900 | rm[rmOffset + 7] = 0.0f; |
| 901 | |
| 902 | rm[rmOffset + 8] = -cxsy * cz + sx * sz; |
| 903 | rm[rmOffset + 9] = cxsy * sz + sx * cz; |
| 904 | rm[rmOffset + 10] = cx * cy; |
| 905 | rm[rmOffset + 11] = 0.0f; |
| 906 | |
| 907 | rm[rmOffset + 12] = 0.0f; |
| 908 | rm[rmOffset + 13] = 0.0f; |
| 909 | rm[rmOffset + 14] = 0.0f; |
| 910 | rm[rmOffset + 15] = 1.0f; |
| 911 | } |
| 912 | |
| 913 | /** |
| 914 | * Defines a viewing transformation in terms of an eye point, a center of |
| 915 | * view, and an up vector. |
| 916 | * |
| 917 | * @param rm returns the result |
| 918 | * @param rmOffset index into rm where the result matrix starts |
| 919 | * @param eyeX eye point X |
| 920 | * @param eyeY eye point Y |
| 921 | * @param eyeZ eye point Z |
| 922 | * @param centerX center of view X |
| 923 | * @param centerY center of view Y |
| 924 | * @param centerZ center of view Z |
| 925 | * @param upX up vector X |
| 926 | * @param upY up vector Y |
| 927 | * @param upZ up vector Z |
| 928 | */ |
| 929 | public static void setLookAtM(float[] rm, int rmOffset, |
| 930 | float eyeX, float eyeY, float eyeZ, |
| 931 | float centerX, float centerY, float centerZ, float upX, float upY, |
| 932 | float upZ) { |
| 933 | |
| 934 | // See the OpenGL GLUT documentation for gluLookAt for a description |
| 935 | // of the algorithm. We implement it in a straightforward way: |
| 936 | |
| 937 | float fx = centerX - eyeX; |
| 938 | float fy = centerY - eyeY; |
| 939 | float fz = centerZ - eyeZ; |
| 940 | |
| 941 | // Normalize f |
| 942 | float rlf = 1.0f / Matrix.length(fx, fy, fz); |
| 943 | fx *= rlf; |
| 944 | fy *= rlf; |
| 945 | fz *= rlf; |
| 946 | |
| 947 | // compute s = f x up (x means "cross product") |
| 948 | float sx = fy * upZ - fz * upY; |
| 949 | float sy = fz * upX - fx * upZ; |
| 950 | float sz = fx * upY - fy * upX; |
| 951 | |
| 952 | // and normalize s |
| 953 | float rls = 1.0f / Matrix.length(sx, sy, sz); |
| 954 | sx *= rls; |
| 955 | sy *= rls; |
| 956 | sz *= rls; |
| 957 | |
| 958 | // compute u = s x f |
| 959 | float ux = sy * fz - sz * fy; |
| 960 | float uy = sz * fx - sx * fz; |
| 961 | float uz = sx * fy - sy * fx; |
| 962 | |
| 963 | rm[rmOffset + 0] = sx; |
| 964 | rm[rmOffset + 1] = ux; |
| 965 | rm[rmOffset + 2] = -fx; |
| 966 | rm[rmOffset + 3] = 0.0f; |
| 967 | |
| 968 | rm[rmOffset + 4] = sy; |
| 969 | rm[rmOffset + 5] = uy; |
| 970 | rm[rmOffset + 6] = -fy; |
| 971 | rm[rmOffset + 7] = 0.0f; |
| 972 | |
| 973 | rm[rmOffset + 8] = sz; |
| 974 | rm[rmOffset + 9] = uz; |
| 975 | rm[rmOffset + 10] = -fz; |
| 976 | rm[rmOffset + 11] = 0.0f; |
| 977 | |
| 978 | rm[rmOffset + 12] = 0.0f; |
| 979 | rm[rmOffset + 13] = 0.0f; |
| 980 | rm[rmOffset + 14] = 0.0f; |
| 981 | rm[rmOffset + 15] = 1.0f; |
| 982 | |
| 983 | translateM(rm, rmOffset, -eyeX, -eyeY, -eyeZ); |
| 984 | } |
| 985 | } |