| /* |
| * Licensed to the Apache Software Foundation (ASF) under one or more |
| * contributor license agreements. See the NOTICE file distributed with |
| * this work for additional information regarding copyright ownership. |
| * The ASF licenses this file to You under the Apache License, Version 2.0 |
| * (the "License"); you may not use this file except in compliance with |
| * the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| package java.math; |
| |
| import java.io.IOException; |
| import java.io.ObjectInputStream; |
| import java.io.ObjectOutputStream; |
| import java.io.Serializable; |
| import java.util.Random; |
| |
| /** |
| * An immutable arbitrary-precision signed integer. |
| * |
| * <h3>Fast Cryptography</h3> |
| * This implementation is efficient for operations traditionally used in |
| * cryptography, such as the generation of large prime numbers and computation |
| * of the modular inverse. |
| * |
| * <h3>Slow Two's Complement Bitwise Operations</h3> |
| * This API includes operations for bitwise operations in two's complement |
| * representation. Two's complement is not the internal representation used by |
| * this implementation, so such methods may be inefficient. Use {@link |
| * java.util.BitSet} for high-performance bitwise operations on |
| * arbitrarily-large sequences of bits. |
| */ |
| public class BigInteger extends Number |
| implements Comparable<BigInteger>, Serializable { |
| |
| /** This is the serialVersionUID used by the sun implementation. */ |
| private static final long serialVersionUID = -8287574255936472291L; |
| |
| private transient BigInt bigInt; |
| |
| private transient boolean nativeIsValid = false; |
| |
| private transient boolean javaIsValid = false; |
| |
| /** The magnitude of this in the little-endian representation. */ |
| transient int[] digits; |
| |
| /** |
| * The length of this in measured in ints. Can be less than |
| * digits.length(). |
| */ |
| transient int numberLength; |
| |
| /** The sign of this. */ |
| transient int sign; |
| |
| /** The {@code BigInteger} constant 0. */ |
| public static final BigInteger ZERO = new BigInteger(0, 0); |
| |
| /** The {@code BigInteger} constant 1. */ |
| public static final BigInteger ONE = new BigInteger(1, 1); |
| |
| /** The {@code BigInteger} constant 10. */ |
| public static final BigInteger TEN = new BigInteger(1, 10); |
| |
| /** The {@code BigInteger} constant -1. */ |
| static final BigInteger MINUS_ONE = new BigInteger(-1, 1); |
| |
| /** All the {@code BigInteger} numbers in the range [0,10] are cached. */ |
| static final BigInteger[] SMALL_VALUES = { ZERO, ONE, new BigInteger(1, 2), |
| new BigInteger(1, 3), new BigInteger(1, 4), new BigInteger(1, 5), |
| new BigInteger(1, 6), new BigInteger(1, 7), new BigInteger(1, 8), |
| new BigInteger(1, 9), TEN }; |
| |
| private transient int firstNonzeroDigit = -2; |
| |
| /** sign field, used for serialization. */ |
| private int signum; |
| |
| /** absolute value field, used for serialization */ |
| private byte[] magnitude; |
| |
| /** Cache for the hash code. */ |
| private transient int hashCode = 0; |
| |
| BigInteger(BigInt bigInt) { |
| if (bigInt == null || !bigInt.hasNativeBignum()) { |
| throw new AssertionError(); |
| } |
| setBigInt(bigInt); |
| } |
| |
| BigInteger(int sign, long value) { |
| BigInt bigInt = new BigInt(); |
| bigInt.putULongInt(value, (sign < 0)); |
| setBigInt(bigInt); |
| } |
| |
| /** |
| * Constructs a number without creating new space. This construct should be |
| * used only if the three fields of representation are known. |
| * |
| * @param sign the sign of the number. |
| * @param numberLength the length of the internal array. |
| * @param digits a reference of some array created before. |
| */ |
| BigInteger(int sign, int numberLength, int[] digits) { |
| setJavaRepresentation(sign, numberLength, digits); |
| } |
| |
| /** |
| * Constructs a random non-negative {@code BigInteger} instance in the range |
| * {@code [0, pow(2, numBits)-1]}. |
| * |
| * @param numBits maximum length of the new {@code BigInteger} in bits. |
| * @param random is the random number generator to be used. |
| * @throws IllegalArgumentException if {@code numBits} < 0. |
| */ |
| public BigInteger(int numBits, Random random) { |
| if (numBits < 0) { |
| throw new IllegalArgumentException("numBits < 0: " + numBits); |
| } |
| if (numBits == 0) { |
| setJavaRepresentation(0, 1, new int[] { 0 }); |
| } else { |
| int sign = 1; |
| int numberLength = (numBits + 31) >> 5; |
| int[] digits = new int[numberLength]; |
| for (int i = 0; i < numberLength; i++) { |
| digits[i] = random.nextInt(); |
| } |
| // Clear any extra bits. |
| digits[numberLength - 1] >>>= (-numBits) & 31; |
| setJavaRepresentation(sign, numberLength, digits); |
| } |
| javaIsValid = true; |
| } |
| |
| /** |
| * Constructs a random {@code BigInteger} instance in the range {@code [0, |
| * pow(2, bitLength)-1]} which is probably prime. The probability that the |
| * returned {@code BigInteger} is prime is greater than |
| * {@code 1 - 1/2<sup>certainty</sup>)}. |
| * |
| * <p><b>Note:</b> the {@code Random} argument is ignored if |
| * {@code bitLength >= 16}, where this implementation will use OpenSSL's |
| * {@code BN_generate_prime_ex} as a source of cryptographically strong pseudo-random numbers. |
| * |
| * @param bitLength length of the new {@code BigInteger} in bits. |
| * @param certainty tolerated primality uncertainty. |
| * @throws ArithmeticException if {@code bitLength < 2}. |
| * @see <a href="http://www.openssl.org/docs/crypto/BN_rand.html"> |
| * Specification of random generator used from OpenSSL library</a> |
| */ |
| public BigInteger(int bitLength, int certainty, Random random) { |
| if (bitLength < 2) { |
| throw new ArithmeticException("bitLength < 2: " + bitLength); |
| } |
| if (bitLength < 16) { |
| // We have to generate short primes ourselves, because OpenSSL bottoms out at 16 bits. |
| int candidate; |
| do { |
| candidate = random.nextInt() & ((1 << bitLength) - 1); |
| candidate |= (1 << (bitLength - 1)); // Set top bit. |
| if (bitLength > 2) { |
| candidate |= 1; // Any prime longer than 2 bits must have the bottom bit set. |
| } |
| } while (!isSmallPrime(candidate)); |
| BigInt prime = new BigInt(); |
| prime.putULongInt(candidate, false); |
| setBigInt(prime); |
| } else { |
| // We need a loop here to work around an OpenSSL bug; http://b/8588028. |
| do { |
| setBigInt(BigInt.generatePrimeDefault(bitLength)); |
| } while (bitLength() != bitLength); |
| } |
| } |
| |
| private static boolean isSmallPrime(int x) { |
| if (x == 2) { |
| return true; |
| } |
| if ((x % 2) == 0) { |
| return false; |
| } |
| final int max = (int) Math.sqrt(x); |
| for (int i = 3; i <= max; i += 2) { |
| if ((x % i) == 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /** |
| * Constructs a new {@code BigInteger} by parsing {@code value}. The string |
| * representation consists of an optional plus or minus sign followed by a |
| * non-empty sequence of decimal digits. Digits are interpreted as if by |
| * {@code Character.digit(char,10)}. |
| * |
| * @param value string representation of the new {@code BigInteger}. |
| * @throws NullPointerException if {@code value == null}. |
| * @throws NumberFormatException if {@code value} is not a valid |
| * representation of a {@code BigInteger}. |
| */ |
| public BigInteger(String value) { |
| BigInt bigInt = new BigInt(); |
| bigInt.putDecString(value); |
| setBigInt(bigInt); |
| } |
| |
| /** |
| * Constructs a new {@code BigInteger} instance by parsing {@code value}. |
| * The string representation consists of an optional plus or minus sign |
| * followed by a non-empty sequence of digits in the specified radix. Digits |
| * are interpreted as if by {@code Character.digit(char, radix)}. |
| * |
| * @param value string representation of the new {@code BigInteger}. |
| * @param radix the base to be used for the conversion. |
| * @throws NullPointerException if {@code value == null}. |
| * @throws NumberFormatException if {@code value} is not a valid |
| * representation of a {@code BigInteger} or if {@code radix < |
| * Character.MIN_RADIX} or {@code radix > Character.MAX_RADIX}. |
| */ |
| public BigInteger(String value, int radix) { |
| if (value == null) { |
| throw new NullPointerException("value == null"); |
| } |
| if (radix == 10) { |
| BigInt bigInt = new BigInt(); |
| bigInt.putDecString(value); |
| setBigInt(bigInt); |
| } else if (radix == 16) { |
| BigInt bigInt = new BigInt(); |
| bigInt.putHexString(value); |
| setBigInt(bigInt); |
| } else { |
| if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) { |
| throw new NumberFormatException("Invalid radix: " + radix); |
| } |
| if (value.isEmpty()) { |
| throw new NumberFormatException("value.isEmpty()"); |
| } |
| BigInteger.parseFromString(this, value, radix); |
| } |
| } |
| |
| /** |
| * Constructs a new {@code BigInteger} instance with the given sign and |
| * magnitude. |
| * |
| * @param signum sign of the new {@code BigInteger} (-1 for negative, 0 for |
| * zero, 1 for positive). |
| * @param magnitude magnitude of the new {@code BigInteger} with the most |
| * significant byte first. |
| * @throws NullPointerException if {@code magnitude == null}. |
| * @throws NumberFormatException if the sign is not one of -1, 0, 1 or if |
| * the sign is zero and the magnitude contains non-zero entries. |
| */ |
| public BigInteger(int signum, byte[] magnitude) { |
| if (magnitude == null) { |
| throw new NullPointerException("magnitude == null"); |
| } |
| if (signum < -1 || signum > 1) { |
| throw new NumberFormatException("Invalid signum: " + signum); |
| } |
| if (signum == 0) { |
| for (byte element : magnitude) { |
| if (element != 0) { |
| throw new NumberFormatException("signum-magnitude mismatch"); |
| } |
| } |
| } |
| BigInt bigInt = new BigInt(); |
| bigInt.putBigEndian(magnitude, signum < 0); |
| setBigInt(bigInt); |
| } |
| |
| /** |
| * Constructs a new {@code BigInteger} from the given two's complement |
| * representation. The most significant byte is the entry at index 0. The |
| * most significant bit of this entry determines the sign of the new {@code |
| * BigInteger} instance. The array must be nonempty. |
| * |
| * @param value two's complement representation of the new {@code |
| * BigInteger}. |
| * @throws NullPointerException if {@code value == null}. |
| * @throws NumberFormatException if the length of {@code value} is zero. |
| */ |
| public BigInteger(byte[] value) { |
| if (value.length == 0) { |
| throw new NumberFormatException("value.length == 0"); |
| } |
| BigInt bigInt = new BigInt(); |
| bigInt.putBigEndianTwosComplement(value); |
| setBigInt(bigInt); |
| } |
| |
| /** |
| * Returns the internal native representation of this big integer, computing |
| * it if necessary. |
| */ |
| BigInt getBigInt() { |
| if (nativeIsValid) { |
| return bigInt; |
| } |
| |
| synchronized (this) { |
| if (nativeIsValid) { |
| return bigInt; |
| } |
| BigInt bigInt = new BigInt(); |
| bigInt.putLittleEndianInts(digits, (sign < 0)); |
| setBigInt(bigInt); |
| return bigInt; |
| } |
| } |
| |
| private void setBigInt(BigInt bigInt) { |
| this.bigInt = bigInt; |
| this.nativeIsValid = true; |
| } |
| |
| private void setJavaRepresentation(int sign, int numberLength, int[] digits) { |
| // decrement numberLength to drop leading zeroes... |
| while (numberLength > 0 && digits[--numberLength] == 0) { |
| ; |
| } |
| // ... and then increment it back because we always drop one too many |
| if (digits[numberLength++] == 0) { |
| sign = 0; |
| } |
| this.sign = sign; |
| this.digits = digits; |
| this.numberLength = numberLength; |
| this.javaIsValid = true; |
| } |
| |
| void prepareJavaRepresentation() { |
| if (javaIsValid) { |
| return; |
| } |
| |
| synchronized (this) { |
| if (javaIsValid) { |
| return; |
| } |
| int sign = bigInt.sign(); |
| int[] digits = (sign != 0) ? bigInt.littleEndianIntsMagnitude() : new int[] { 0 }; |
| setJavaRepresentation(sign, digits.length, digits); |
| } |
| } |
| |
| /** Returns a {@code BigInteger} whose value is equal to {@code value}. */ |
| public static BigInteger valueOf(long value) { |
| if (value < 0) { |
| if (value != -1) { |
| return new BigInteger(-1, -value); |
| } |
| return MINUS_ONE; |
| } else if (value < SMALL_VALUES.length) { |
| return SMALL_VALUES[(int) value]; |
| } else {// (value > 10) |
| return new BigInteger(1, value); |
| } |
| } |
| |
| /** |
| * Returns the two's complement representation of this {@code BigInteger} in |
| * a byte array. |
| */ |
| public byte[] toByteArray() { |
| return twosComplement(); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is the absolute value of {@code |
| * this}. |
| */ |
| public BigInteger abs() { |
| BigInt bigInt = getBigInt(); |
| if (bigInt.sign() >= 0) { |
| return this; |
| } |
| BigInt a = bigInt.copy(); |
| a.setSign(1); |
| return new BigInteger(a); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is the {@code -this}. |
| */ |
| public BigInteger negate() { |
| BigInt bigInt = getBigInt(); |
| int sign = bigInt.sign(); |
| if (sign == 0) { |
| return this; |
| } |
| BigInt a = bigInt.copy(); |
| a.setSign(-sign); |
| return new BigInteger(a); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code this + value}. |
| */ |
| public BigInteger add(BigInteger value) { |
| BigInt lhs = getBigInt(); |
| BigInt rhs = value.getBigInt(); |
| if (rhs.sign() == 0) { |
| return this; |
| } |
| if (lhs.sign() == 0) { |
| return value; |
| } |
| return new BigInteger(BigInt.addition(lhs, rhs)); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code this - value}. |
| */ |
| public BigInteger subtract(BigInteger value) { |
| BigInt lhs = getBigInt(); |
| BigInt rhs = value.getBigInt(); |
| if (rhs.sign() == 0) { |
| return this; |
| } |
| return new BigInteger(BigInt.subtraction(lhs, rhs)); |
| } |
| |
| /** |
| * Returns the sign of this {@code BigInteger}. |
| * |
| * @return {@code -1} if {@code this < 0}, {@code 0} if {@code this == 0}, |
| * {@code 1} if {@code this > 0}. |
| */ |
| public int signum() { |
| if (javaIsValid) { |
| return sign; |
| } |
| return getBigInt().sign(); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code this >> n}. For |
| * negative arguments, the result is also negative. The shift distance may |
| * be negative which means that {@code this} is shifted left. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method on negative values is |
| * not recommended as the current implementation is not efficient. |
| * |
| * @param n shift distance |
| * @return {@code this >> n} if {@code n >= 0}; {@code this << (-n)} |
| * otherwise |
| */ |
| public BigInteger shiftRight(int n) { |
| return shiftLeft(-n); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code this << n}. The |
| * result is equivalent to {@code this * pow(2, n)} if n >= 0. The shift |
| * distance may be negative which means that {@code this} is shifted right. |
| * The result then corresponds to {@code floor(this / pow(2, -n))}. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method on negative values is |
| * not recommended as the current implementation is not efficient. |
| * |
| * @param n shift distance. |
| * @return {@code this << n} if {@code n >= 0}; {@code this >> (-n)}. |
| * otherwise |
| */ |
| public BigInteger shiftLeft(int n) { |
| if (n == 0) { |
| return this; |
| } |
| int sign = signum(); |
| if (sign == 0) { |
| return this; |
| } |
| if ((sign > 0) || (n >= 0)) { |
| return new BigInteger(BigInt.shift(getBigInt(), n)); |
| } else { |
| // Negative numbers faking 2's complement: |
| // Not worth optimizing this: |
| // Sticking to Harmony Java implementation. |
| return BitLevel.shiftRight(this, -n); |
| } |
| } |
| |
| BigInteger shiftLeftOneBit() { |
| return (signum() == 0) ? this : BitLevel.shiftLeftOneBit(this); |
| } |
| |
| /** |
| * Returns the length of the value's two's complement representation without |
| * leading zeros for positive numbers / without leading ones for negative |
| * values. |
| * |
| * <p>The two's complement representation of {@code this} will be at least |
| * {@code bitLength() + 1} bits long. |
| * |
| * <p>The value will fit into an {@code int} if {@code bitLength() < 32} or |
| * into a {@code long} if {@code bitLength() < 64}. |
| * |
| * @return the length of the minimal two's complement representation for |
| * {@code this} without the sign bit. |
| */ |
| public int bitLength() { |
| // Optimization to avoid unnecessary duplicate representation: |
| if (!nativeIsValid && javaIsValid) { |
| return BitLevel.bitLength(this); |
| } |
| return getBigInt().bitLength(); |
| } |
| |
| /** |
| * Tests whether the bit at position n in {@code this} is set. The result is |
| * equivalent to {@code this & pow(2, n) != 0}. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method is not recommended as |
| * the current implementation is not efficient. |
| * |
| * @param n position where the bit in {@code this} has to be inspected. |
| * @throws ArithmeticException if {@code n < 0}. |
| */ |
| public boolean testBit(int n) { |
| if (n < 0) { |
| throw new ArithmeticException("n < 0: " + n); |
| } |
| int sign = signum(); |
| if (sign > 0 && nativeIsValid && !javaIsValid) { |
| return getBigInt().isBitSet(n); |
| } else { |
| // Negative numbers faking 2's complement: |
| // Not worth optimizing this: |
| // Sticking to Harmony Java implementation. |
| prepareJavaRepresentation(); |
| if (n == 0) { |
| return ((digits[0] & 1) != 0); |
| } |
| int intCount = n >> 5; |
| if (intCount >= numberLength) { |
| return (sign < 0); |
| } |
| int digit = digits[intCount]; |
| n = (1 << (n & 31)); // int with 1 set to the needed position |
| if (sign < 0) { |
| int firstNonZeroDigit = getFirstNonzeroDigit(); |
| if (intCount < firstNonZeroDigit) { |
| return false; |
| } else if (firstNonZeroDigit == intCount) { |
| digit = -digit; |
| } else { |
| digit = ~digit; |
| } |
| } |
| return ((digit & n) != 0); |
| } |
| } |
| |
| /** |
| * Returns a {@code BigInteger} which has the same binary representation |
| * as {@code this} but with the bit at position n set. The result is |
| * equivalent to {@code this | pow(2, n)}. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method is not recommended as |
| * the current implementation is not efficient. |
| * |
| * @param n position where the bit in {@code this} has to be set. |
| * @throws ArithmeticException if {@code n < 0}. |
| */ |
| public BigInteger setBit(int n) { |
| prepareJavaRepresentation(); |
| if (!testBit(n)) { |
| return BitLevel.flipBit(this, n); |
| } else { |
| return this; |
| } |
| } |
| |
| /** |
| * Returns a {@code BigInteger} which has the same binary representation |
| * as {@code this} but with the bit at position n cleared. The result is |
| * equivalent to {@code this & ~pow(2, n)}. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method is not recommended as |
| * the current implementation is not efficient. |
| * |
| * @param n position where the bit in {@code this} has to be cleared. |
| * @throws ArithmeticException if {@code n < 0}. |
| */ |
| public BigInteger clearBit(int n) { |
| prepareJavaRepresentation(); |
| if (testBit(n)) { |
| return BitLevel.flipBit(this, n); |
| } else { |
| return this; |
| } |
| } |
| |
| /** |
| * Returns a {@code BigInteger} which has the same binary representation |
| * as {@code this} but with the bit at position n flipped. The result is |
| * equivalent to {@code this ^ pow(2, n)}. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method is not recommended as |
| * the current implementation is not efficient. |
| * |
| * @param n position where the bit in {@code this} has to be flipped. |
| * @throws ArithmeticException if {@code n < 0}. |
| */ |
| public BigInteger flipBit(int n) { |
| prepareJavaRepresentation(); |
| if (n < 0) { |
| throw new ArithmeticException("n < 0: " + n); |
| } |
| return BitLevel.flipBit(this, n); |
| } |
| |
| /** |
| * Returns the position of the lowest set bit in the two's complement |
| * representation of this {@code BigInteger}. If all bits are zero (this==0) |
| * then -1 is returned as result. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method is not recommended as |
| * the current implementation is not efficient. |
| */ |
| public int getLowestSetBit() { |
| prepareJavaRepresentation(); |
| if (sign == 0) { |
| return -1; |
| } |
| // (sign != 0) implies that exists some non zero digit |
| int i = getFirstNonzeroDigit(); |
| return ((i << 5) + Integer.numberOfTrailingZeros(digits[i])); |
| } |
| |
| /** |
| * Returns the number of bits in the two's complement representation of |
| * {@code this} which differ from the sign bit. If {@code this} is negative, |
| * the result is equivalent to the number of bits set in the two's |
| * complement representation of {@code -this - 1}. |
| * |
| * <p>Use {@code bitLength(0)} to find the length of the binary value in |
| * bits. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method is not recommended as |
| * the current implementation is not efficient. |
| */ |
| public int bitCount() { |
| prepareJavaRepresentation(); |
| return BitLevel.bitCount(this); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code ~this}. The result |
| * of this operation is {@code -this-1}. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method is not recommended as |
| * the current implementation is not efficient. |
| */ |
| public BigInteger not() { |
| this.prepareJavaRepresentation(); |
| return Logical.not(this); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code this & value}. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method is not recommended |
| * as the current implementation is not efficient. |
| * |
| * @param value value to be and'ed with {@code this}. |
| * @throws NullPointerException if {@code value == null}. |
| */ |
| public BigInteger and(BigInteger value) { |
| this.prepareJavaRepresentation(); |
| value.prepareJavaRepresentation(); |
| return Logical.and(this, value); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code this | value}. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method is not recommended as |
| * the current implementation is not efficient. |
| * |
| * @param value value to be or'ed with {@code this}. |
| * @throws NullPointerException if {@code value == null}. |
| */ |
| public BigInteger or(BigInteger value) { |
| this.prepareJavaRepresentation(); |
| value.prepareJavaRepresentation(); |
| return Logical.or(this, value); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code this ^ value}. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method is not recommended as |
| * the current implementation is not efficient. |
| * |
| * @param value value to be xor'ed with {@code this} |
| * @throws NullPointerException if {@code value == null} |
| */ |
| public BigInteger xor(BigInteger value) { |
| this.prepareJavaRepresentation(); |
| value.prepareJavaRepresentation(); |
| return Logical.xor(this, value); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code this & ~value}. |
| * Evaluating {@code x.andNot(value)} returns the same result as {@code |
| * x.and(value.not())}. |
| * |
| * <p><b>Implementation Note:</b> Usage of this method is not recommended |
| * as the current implementation is not efficient. |
| * |
| * @param value value to be not'ed and then and'ed with {@code this}. |
| * @throws NullPointerException if {@code value == null}. |
| */ |
| public BigInteger andNot(BigInteger value) { |
| this.prepareJavaRepresentation(); |
| value.prepareJavaRepresentation(); |
| return Logical.andNot(this, value); |
| } |
| |
| /** |
| * Returns this {@code BigInteger} as an int value. If {@code this} is too |
| * big to be represented as an int, then {@code this % (1 << 32)} is |
| * returned. |
| */ |
| @Override |
| public int intValue() { |
| if (nativeIsValid && bigInt.twosCompFitsIntoBytes(4)) { |
| return (int) bigInt.longInt(); |
| } |
| this.prepareJavaRepresentation(); |
| return (sign * digits[0]); |
| } |
| |
| /** |
| * Returns this {@code BigInteger} as a long value. If {@code this} is too |
| * big to be represented as a long, then {@code this % pow(2, 64)} is |
| * returned. |
| */ |
| @Override |
| public long longValue() { |
| if (nativeIsValid && bigInt.twosCompFitsIntoBytes(8)) { |
| return bigInt.longInt(); |
| } |
| prepareJavaRepresentation(); |
| long value = numberLength > 1 |
| ? ((long) digits[1]) << 32 | digits[0] & 0xFFFFFFFFL |
| : digits[0] & 0xFFFFFFFFL; |
| return sign * value; |
| } |
| |
| /** |
| * Returns this {@code BigInteger} as a float. If {@code this} is too big to |
| * be represented as a float, then {@code Float.POSITIVE_INFINITY} or |
| * {@code Float.NEGATIVE_INFINITY} is returned. Note that not all integers |
| * in the range {@code [-Float.MAX_VALUE, Float.MAX_VALUE]} can be exactly |
| * represented as a float. |
| */ |
| @Override |
| public float floatValue() { |
| return (float) doubleValue(); |
| } |
| |
| /** |
| * Returns this {@code BigInteger} as a double. If {@code this} is too big |
| * to be represented as a double, then {@code Double.POSITIVE_INFINITY} or |
| * {@code Double.NEGATIVE_INFINITY} is returned. Note that not all integers |
| * in the range {@code [-Double.MAX_VALUE, Double.MAX_VALUE]} can be exactly |
| * represented as a double. |
| */ |
| @Override |
| public double doubleValue() { |
| return Conversion.bigInteger2Double(this); |
| } |
| |
| /** |
| * Compares this {@code BigInteger} with {@code value}. Returns {@code -1} |
| * if {@code this < value}, {@code 0} if {@code this == value} and {@code 1} |
| * if {@code this > value}, . |
| * |
| * @param value value to be compared with {@code this}. |
| * @throws NullPointerException if {@code value == null}. |
| */ |
| public int compareTo(BigInteger value) { |
| return BigInt.cmp(getBigInt(), value.getBigInt()); |
| } |
| |
| /** |
| * Returns the minimum of this {@code BigInteger} and {@code value}. |
| * |
| * @param value value to be used to compute the minimum with {@code this}. |
| * @throws NullPointerException if {@code value == null}. |
| */ |
| public BigInteger min(BigInteger value) { |
| return this.compareTo(value) == -1 ? this : value; |
| } |
| |
| /** |
| * Returns the maximum of this {@code BigInteger} and {@code value}. |
| * |
| * @param value value to be used to compute the maximum with {@code this} |
| * @throws NullPointerException if {@code value == null} |
| */ |
| public BigInteger max(BigInteger value) { |
| return this.compareTo(value) == 1 ? this : value; |
| } |
| |
| @Override |
| public int hashCode() { |
| if (hashCode == 0) { |
| prepareJavaRepresentation(); |
| int hash = 0; |
| for (int i = 0; i < numberLength; ++i) { |
| hash = hash * 33 + digits[i]; |
| } |
| hashCode = hash * sign; |
| } |
| return hashCode; |
| } |
| |
| @Override |
| public boolean equals(Object x) { |
| if (this == x) { |
| return true; |
| } |
| if (x instanceof BigInteger) { |
| return this.compareTo((BigInteger) x) == 0; |
| } |
| return false; |
| } |
| |
| /** |
| * Returns a string representation of this {@code BigInteger} in decimal |
| * form. |
| */ |
| @Override |
| public String toString() { |
| return getBigInt().decString(); |
| } |
| |
| /** |
| * Returns a string containing a string representation of this {@code |
| * BigInteger} with base radix. If {@code radix < Character.MIN_RADIX} or |
| * {@code radix > Character.MAX_RADIX} then a decimal representation is |
| * returned. The characters of the string representation are generated with |
| * method {@code Character.forDigit}. |
| * |
| * @param radix base to be used for the string representation. |
| */ |
| public String toString(int radix) { |
| if (radix == 10) { |
| return getBigInt().decString(); |
| } else { |
| prepareJavaRepresentation(); |
| return Conversion.bigInteger2String(this, radix); |
| } |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is greatest common divisor |
| * of {@code this} and {@code value}. If {@code this == 0} and {@code |
| * value == 0} then zero is returned, otherwise the result is positive. |
| * |
| * @param value value with which the greatest common divisor is computed. |
| * @throws NullPointerException if {@code value == null}. |
| */ |
| public BigInteger gcd(BigInteger value) { |
| return new BigInteger(BigInt.gcd(getBigInt(), value.getBigInt())); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code this * value}. |
| * |
| * @throws NullPointerException if {@code value == null}. |
| */ |
| public BigInteger multiply(BigInteger value) { |
| return new BigInteger(BigInt.product(getBigInt(), value.getBigInt())); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code pow(this, exp)}. |
| * |
| * @throws ArithmeticException if {@code exp < 0}. |
| */ |
| public BigInteger pow(int exp) { |
| if (exp < 0) { |
| throw new ArithmeticException("exp < 0: " + exp); |
| } |
| return new BigInteger(BigInt.exp(getBigInt(), exp)); |
| } |
| |
| /** |
| * Returns a two element {@code BigInteger} array containing |
| * {@code this / divisor} at index 0 and {@code this % divisor} at index 1. |
| * |
| * @param divisor value by which {@code this} is divided. |
| * @throws NullPointerException if {@code divisor == null}. |
| * @throws ArithmeticException if {@code divisor == 0}. |
| * @see #divide |
| * @see #remainder |
| */ |
| public BigInteger[] divideAndRemainder(BigInteger divisor) { |
| BigInt divisorBigInt = divisor.getBigInt(); |
| BigInt quotient = new BigInt(); |
| BigInt remainder = new BigInt(); |
| BigInt.division(getBigInt(), divisorBigInt, quotient, remainder); |
| return new BigInteger[] {new BigInteger(quotient), new BigInteger(remainder) }; |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code this / divisor}. |
| * |
| * @param divisor value by which {@code this} is divided. |
| * @return {@code this / divisor}. |
| * @throws NullPointerException if {@code divisor == null}. |
| * @throws ArithmeticException if {@code divisor == 0}. |
| */ |
| public BigInteger divide(BigInteger divisor) { |
| BigInt quotient = new BigInt(); |
| BigInt.division(getBigInt(), divisor.getBigInt(), quotient, null); |
| return new BigInteger(quotient); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code this % divisor}. |
| * Regarding signs this methods has the same behavior as the % operator on |
| * ints: the sign of the remainder is the same as the sign of this. |
| * |
| * @param divisor value by which {@code this} is divided. |
| * @throws NullPointerException if {@code divisor == null}. |
| * @throws ArithmeticException if {@code divisor == 0}. |
| */ |
| public BigInteger remainder(BigInteger divisor) { |
| BigInt remainder = new BigInt(); |
| BigInt.division(getBigInt(), divisor.getBigInt(), null, remainder); |
| return new BigInteger(remainder); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code 1/this mod m}. The |
| * modulus {@code m} must be positive. The result is guaranteed to be in the |
| * interval {@code [0, m)} (0 inclusive, m exclusive). If {@code this} is |
| * not relatively prime to m, then an exception is thrown. |
| * |
| * @param m the modulus. |
| * @throws NullPointerException if {@code m == null} |
| * @throws ArithmeticException if {@code m < 0 or} if {@code this} is not |
| * relatively prime to {@code m} |
| */ |
| public BigInteger modInverse(BigInteger m) { |
| if (m.signum() <= 0) { |
| throw new ArithmeticException("modulus not positive"); |
| } |
| return new BigInteger(BigInt.modInverse(getBigInt(), m.getBigInt())); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code |
| * pow(this, exponent) mod modulus}. The modulus must be positive. The |
| * result is guaranteed to be in the interval {@code [0, modulus)}. |
| * If the exponent is negative, then |
| * {@code pow(this.modInverse(modulus), -exponent) mod modulus} is computed. |
| * The inverse of this only exists if {@code this} is relatively prime to the modulus, |
| * otherwise an exception is thrown. |
| * |
| * @throws NullPointerException if {@code modulus == null} or {@code exponent == null}. |
| * @throws ArithmeticException if {@code modulus < 0} or if {@code exponent < 0} and |
| * not relatively prime to {@code modulus}. |
| */ |
| public BigInteger modPow(BigInteger exponent, BigInteger modulus) { |
| if (modulus.signum() <= 0) { |
| throw new ArithmeticException("modulus.signum() <= 0"); |
| } |
| int exponentSignum = exponent.signum(); |
| if (exponentSignum == 0) { // OpenSSL gets this case wrong; http://b/8574367. |
| return ONE.mod(modulus); |
| } |
| BigInteger base = exponentSignum < 0 ? modInverse(modulus) : this; |
| return new BigInteger(BigInt.modExp(base.getBigInt(), exponent.getBigInt(), modulus.getBigInt())); |
| } |
| |
| /** |
| * Returns a {@code BigInteger} whose value is {@code this mod m}. The |
| * modulus {@code m} must be positive. The result is guaranteed to be in the |
| * interval {@code [0, m)} (0 inclusive, m exclusive). The behavior of this |
| * function is not equivalent to the behavior of the % operator defined for |
| * the built-in {@code int}'s. |
| * |
| * @param m the modulus. |
| * @return {@code this mod m}. |
| * @throws NullPointerException if {@code m == null}. |
| * @throws ArithmeticException if {@code m < 0}. |
| */ |
| public BigInteger mod(BigInteger m) { |
| if (m.signum() <= 0) { |
| throw new ArithmeticException("m.signum() <= 0"); |
| } |
| return new BigInteger(BigInt.modulus(getBigInt(), m.getBigInt())); |
| } |
| |
| /** |
| * Tests whether this {@code BigInteger} is probably prime. If {@code true} |
| * is returned, then this is prime with a probability greater than |
| * {@code 1 - 1/2<sup>certainty</sup>)}. If {@code false} is returned, then this |
| * is definitely composite. If the argument {@code certainty} <= 0, then |
| * this method returns true. |
| * |
| * @param certainty tolerated primality uncertainty. |
| * @return {@code true}, if {@code this} is probably prime, {@code false} |
| * otherwise. |
| */ |
| public boolean isProbablePrime(int certainty) { |
| if (certainty <= 0) { |
| return true; |
| } |
| return getBigInt().isPrime(certainty); |
| } |
| |
| /** |
| * Returns the smallest integer x > {@code this} which is probably prime as |
| * a {@code BigInteger} instance. The probability that the returned {@code |
| * BigInteger} is prime is greater than {@code 1 - 1/2<sup>100</sup>}. |
| * |
| * @return smallest integer > {@code this} which is probably prime. |
| * @throws ArithmeticException if {@code this < 0}. |
| */ |
| public BigInteger nextProbablePrime() { |
| if (sign < 0) { |
| throw new ArithmeticException("sign < 0"); |
| } |
| return Primality.nextProbablePrime(this); |
| } |
| |
| /** |
| * Returns a random positive {@code BigInteger} instance in the range {@code |
| * [0, pow(2, bitLength)-1]} which is probably prime. The probability that |
| * the returned {@code BigInteger} is prime is greater than {@code 1 - 1/2<sup>100</sup>)}. |
| * |
| * @param bitLength length of the new {@code BigInteger} in bits. |
| * @return probably prime random {@code BigInteger} instance. |
| * @throws IllegalArgumentException if {@code bitLength < 2}. |
| */ |
| public static BigInteger probablePrime(int bitLength, Random random) { |
| return new BigInteger(bitLength, 100, random); |
| } |
| |
| /* Private Methods */ |
| |
| /** |
| * Returns the two's complement representation of this BigInteger in a byte |
| * array. |
| */ |
| private byte[] twosComplement() { |
| prepareJavaRepresentation(); |
| if (this.sign == 0) { |
| return new byte[] { 0 }; |
| } |
| BigInteger temp = this; |
| int bitLen = bitLength(); |
| int iThis = getFirstNonzeroDigit(); |
| int bytesLen = (bitLen >> 3) + 1; |
| /* Puts the little-endian int array representing the magnitude |
| * of this BigInteger into the big-endian byte array. */ |
| byte[] bytes = new byte[bytesLen]; |
| int firstByteNumber = 0; |
| int highBytes; |
| int bytesInInteger = 4; |
| int hB; |
| |
| if (bytesLen - (numberLength << 2) == 1) { |
| bytes[0] = (byte) ((sign < 0) ? -1 : 0); |
| highBytes = 4; |
| firstByteNumber++; |
| } else { |
| hB = bytesLen & 3; |
| highBytes = (hB == 0) ? 4 : hB; |
| } |
| |
| int digitIndex = iThis; |
| bytesLen -= iThis << 2; |
| |
| if (sign < 0) { |
| int digit = -temp.digits[digitIndex]; |
| digitIndex++; |
| if (digitIndex == numberLength) { |
| bytesInInteger = highBytes; |
| } |
| for (int i = 0; i < bytesInInteger; i++, digit >>= 8) { |
| bytes[--bytesLen] = (byte) digit; |
| } |
| while (bytesLen > firstByteNumber) { |
| digit = ~temp.digits[digitIndex]; |
| digitIndex++; |
| if (digitIndex == numberLength) { |
| bytesInInteger = highBytes; |
| } |
| for (int i = 0; i < bytesInInteger; i++, digit >>= 8) { |
| bytes[--bytesLen] = (byte) digit; |
| } |
| } |
| } else { |
| while (bytesLen > firstByteNumber) { |
| int digit = temp.digits[digitIndex]; |
| digitIndex++; |
| if (digitIndex == numberLength) { |
| bytesInInteger = highBytes; |
| } |
| for (int i = 0; i < bytesInInteger; i++, digit >>= 8) { |
| bytes[--bytesLen] = (byte) digit; |
| } |
| } |
| } |
| return bytes; |
| } |
| |
| |
| static int multiplyByInt(int[] res, int[] a, int aSize, int factor) { |
| long carry = 0; |
| |
| for (int i = 0; i < aSize; i++) { |
| carry += (a[i] & 0xFFFFFFFFL) * (factor & 0xFFFFFFFFL); |
| res[i] = (int) carry; |
| carry >>>= 32; |
| } |
| return (int) carry; |
| } |
| |
| static int inplaceAdd(int[] a, int aSize, int addend) { |
| long carry = addend & 0xFFFFFFFFL; |
| |
| for (int i = 0; (carry != 0) && (i < aSize); i++) { |
| carry += a[i] & 0xFFFFFFFFL; |
| a[i] = (int) carry; |
| carry >>= 32; |
| } |
| return (int) carry; |
| } |
| |
| /** @see BigInteger#BigInteger(String, int) */ |
| private static void parseFromString(BigInteger bi, String value, int radix) { |
| int stringLength = value.length(); |
| int endChar = stringLength; |
| |
| int sign; |
| int startChar; |
| if (value.charAt(0) == '-') { |
| sign = -1; |
| startChar = 1; |
| stringLength--; |
| } else { |
| sign = 1; |
| startChar = 0; |
| } |
| |
| /* |
| * We use the following algorithm: split a string into portions of n |
| * characters and convert each portion to an integer according to the |
| * radix. Then convert an pow(radix, n) based number to binary using the |
| * multiplication method. See D. Knuth, The Art of Computer Programming, |
| * vol. 2. |
| */ |
| |
| int charsPerInt = Conversion.digitFitInInt[radix]; |
| int bigRadixDigitsLength = stringLength / charsPerInt; |
| int topChars = stringLength % charsPerInt; |
| |
| if (topChars != 0) { |
| bigRadixDigitsLength++; |
| } |
| int[] digits = new int[bigRadixDigitsLength]; |
| // Get the maximal power of radix that fits in int |
| int bigRadix = Conversion.bigRadices[radix - 2]; |
| // Parse an input string and accumulate the BigInteger's magnitude |
| int digitIndex = 0; // index of digits array |
| int substrEnd = startChar + ((topChars == 0) ? charsPerInt : topChars); |
| |
| for (int substrStart = startChar; substrStart < endChar; |
| substrStart = substrEnd, substrEnd = substrStart + charsPerInt) { |
| int bigRadixDigit = Integer.parseInt(value.substring(substrStart, substrEnd), radix); |
| int newDigit = multiplyByInt(digits, digits, digitIndex, bigRadix); |
| newDigit += inplaceAdd(digits, digitIndex, bigRadixDigit); |
| digits[digitIndex++] = newDigit; |
| } |
| int numberLength = digitIndex; |
| bi.setJavaRepresentation(sign, numberLength, digits); |
| } |
| |
| int getFirstNonzeroDigit() { |
| if (firstNonzeroDigit == -2) { |
| int i; |
| if (this.sign == 0) { |
| i = -1; |
| } else { |
| for (i = 0; digits[i] == 0; i++) { |
| ; |
| } |
| } |
| firstNonzeroDigit = i; |
| } |
| return firstNonzeroDigit; |
| } |
| |
| /** |
| * Returns a copy of the current instance to achieve immutability |
| */ |
| BigInteger copy() { |
| prepareJavaRepresentation(); |
| int[] copyDigits = new int[numberLength]; |
| System.arraycopy(digits, 0, copyDigits, 0, numberLength); |
| return new BigInteger(sign, numberLength, copyDigits); |
| } |
| |
| /** |
| * Assigns all transient fields upon deserialization of a {@code BigInteger} |
| * instance. |
| */ |
| private void readObject(ObjectInputStream in) |
| throws IOException, ClassNotFoundException { |
| in.defaultReadObject(); |
| BigInt bigInt = new BigInt(); |
| bigInt.putBigEndian(magnitude, signum < 0); |
| setBigInt(bigInt); |
| } |
| |
| /** |
| * Prepares this {@code BigInteger} for serialization, i.e. the |
| * non-transient fields {@code signum} and {@code magnitude} are assigned. |
| */ |
| private void writeObject(ObjectOutputStream out) throws IOException { |
| BigInt bigInt = getBigInt(); |
| signum = bigInt.sign(); |
| magnitude = bigInt.bigEndianMagnitude(); |
| out.defaultWriteObject(); |
| } |
| } |