Alan Viverette | 3da604b | 2020-06-10 18:34:39 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 3 | * |
| 4 | * This code is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of the GNU General Public License version 2 only, as |
| 6 | * published by the Free Software Foundation. Oracle designates this |
| 7 | * particular file as subject to the "Classpath" exception as provided |
| 8 | * by Oracle in the LICENSE file that accompanied this code. |
| 9 | * |
| 10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 13 | * version 2 for more details (a copy is included in the LICENSE file that |
| 14 | * accompanied this code). |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License version |
| 17 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 19 | * |
| 20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 21 | * or visit www.oracle.com if you need additional information or have any |
| 22 | * questions. |
| 23 | */ |
| 24 | |
| 25 | /* |
| 26 | * This file is available under and governed by the GNU General Public |
| 27 | * License version 2 only, as published by the Free Software Foundation. |
| 28 | * However, the following notice accompanied the original version of this |
| 29 | * file: |
| 30 | * |
| 31 | * Written by Doug Lea with assistance from members of JCP JSR-166 |
| 32 | * Expert Group and released to the public domain, as explained at |
| 33 | * http://creativecommons.org/publicdomain/zero/1.0/ |
| 34 | */ |
| 35 | |
| 36 | package java.util.concurrent; |
| 37 | |
| 38 | import java.util.AbstractQueue; |
| 39 | import java.util.Collection; |
| 40 | import java.util.Iterator; |
| 41 | import java.util.NoSuchElementException; |
| 42 | import java.util.Spliterator; |
| 43 | import java.util.Spliterators; |
| 44 | import java.util.concurrent.atomic.AtomicInteger; |
| 45 | import java.util.concurrent.locks.Condition; |
| 46 | import java.util.concurrent.locks.ReentrantLock; |
| 47 | import java.util.function.Consumer; |
| 48 | |
| 49 | // BEGIN android-note |
| 50 | // removed link to collections framework docs |
| 51 | // END android-note |
| 52 | |
| 53 | /** |
| 54 | * An optionally-bounded {@linkplain BlockingQueue blocking queue} based on |
| 55 | * linked nodes. |
| 56 | * This queue orders elements FIFO (first-in-first-out). |
| 57 | * The <em>head</em> of the queue is that element that has been on the |
| 58 | * queue the longest time. |
| 59 | * The <em>tail</em> of the queue is that element that has been on the |
| 60 | * queue the shortest time. New elements |
| 61 | * are inserted at the tail of the queue, and the queue retrieval |
| 62 | * operations obtain elements at the head of the queue. |
| 63 | * Linked queues typically have higher throughput than array-based queues but |
| 64 | * less predictable performance in most concurrent applications. |
| 65 | * |
| 66 | * <p>The optional capacity bound constructor argument serves as a |
| 67 | * way to prevent excessive queue expansion. The capacity, if unspecified, |
| 68 | * is equal to {@link Integer#MAX_VALUE}. Linked nodes are |
| 69 | * dynamically created upon each insertion unless this would bring the |
| 70 | * queue above capacity. |
| 71 | * |
| 72 | * <p>This class and its iterator implement all of the |
| 73 | * <em>optional</em> methods of the {@link Collection} and {@link |
| 74 | * Iterator} interfaces. |
| 75 | * |
| 76 | * @since 1.5 |
| 77 | * @author Doug Lea |
| 78 | * @param <E> the type of elements held in this queue |
| 79 | */ |
| 80 | public class LinkedBlockingQueue<E> extends AbstractQueue<E> |
| 81 | implements BlockingQueue<E>, java.io.Serializable { |
| 82 | private static final long serialVersionUID = -6903933977591709194L; |
| 83 | |
| 84 | /* |
| 85 | * A variant of the "two lock queue" algorithm. The putLock gates |
| 86 | * entry to put (and offer), and has an associated condition for |
| 87 | * waiting puts. Similarly for the takeLock. The "count" field |
| 88 | * that they both rely on is maintained as an atomic to avoid |
| 89 | * needing to get both locks in most cases. Also, to minimize need |
| 90 | * for puts to get takeLock and vice-versa, cascading notifies are |
| 91 | * used. When a put notices that it has enabled at least one take, |
| 92 | * it signals taker. That taker in turn signals others if more |
| 93 | * items have been entered since the signal. And symmetrically for |
| 94 | * takes signalling puts. Operations such as remove(Object) and |
| 95 | * iterators acquire both locks. |
| 96 | * |
| 97 | * Visibility between writers and readers is provided as follows: |
| 98 | * |
| 99 | * Whenever an element is enqueued, the putLock is acquired and |
| 100 | * count updated. A subsequent reader guarantees visibility to the |
| 101 | * enqueued Node by either acquiring the putLock (via fullyLock) |
| 102 | * or by acquiring the takeLock, and then reading n = count.get(); |
| 103 | * this gives visibility to the first n items. |
| 104 | * |
| 105 | * To implement weakly consistent iterators, it appears we need to |
| 106 | * keep all Nodes GC-reachable from a predecessor dequeued Node. |
| 107 | * That would cause two problems: |
| 108 | * - allow a rogue Iterator to cause unbounded memory retention |
| 109 | * - cause cross-generational linking of old Nodes to new Nodes if |
| 110 | * a Node was tenured while live, which generational GCs have a |
| 111 | * hard time dealing with, causing repeated major collections. |
| 112 | * However, only non-deleted Nodes need to be reachable from |
| 113 | * dequeued Nodes, and reachability does not necessarily have to |
| 114 | * be of the kind understood by the GC. We use the trick of |
| 115 | * linking a Node that has just been dequeued to itself. Such a |
| 116 | * self-link implicitly means to advance to head.next. |
| 117 | */ |
| 118 | |
| 119 | /** |
| 120 | * Linked list node class. |
| 121 | */ |
| 122 | static class Node<E> { |
| 123 | E item; |
| 124 | |
| 125 | /** |
| 126 | * One of: |
| 127 | * - the real successor Node |
| 128 | * - this Node, meaning the successor is head.next |
| 129 | * - null, meaning there is no successor (this is the last node) |
| 130 | */ |
| 131 | Node<E> next; |
| 132 | |
| 133 | Node(E x) { item = x; } |
| 134 | } |
| 135 | |
| 136 | /** The capacity bound, or Integer.MAX_VALUE if none */ |
| 137 | private final int capacity; |
| 138 | |
| 139 | /** Current number of elements */ |
| 140 | private final AtomicInteger count = new AtomicInteger(); |
| 141 | |
| 142 | /** |
| 143 | * Head of linked list. |
| 144 | * Invariant: head.item == null |
| 145 | */ |
| 146 | transient Node<E> head; |
| 147 | |
| 148 | /** |
| 149 | * Tail of linked list. |
| 150 | * Invariant: last.next == null |
| 151 | */ |
| 152 | private transient Node<E> last; |
| 153 | |
| 154 | /** Lock held by take, poll, etc */ |
| 155 | private final ReentrantLock takeLock = new ReentrantLock(); |
| 156 | |
| 157 | /** Wait queue for waiting takes */ |
| 158 | private final Condition notEmpty = takeLock.newCondition(); |
| 159 | |
| 160 | /** Lock held by put, offer, etc */ |
| 161 | private final ReentrantLock putLock = new ReentrantLock(); |
| 162 | |
| 163 | /** Wait queue for waiting puts */ |
| 164 | private final Condition notFull = putLock.newCondition(); |
| 165 | |
| 166 | /** |
| 167 | * Signals a waiting take. Called only from put/offer (which do not |
| 168 | * otherwise ordinarily lock takeLock.) |
| 169 | */ |
| 170 | private void signalNotEmpty() { |
| 171 | final ReentrantLock takeLock = this.takeLock; |
| 172 | takeLock.lock(); |
| 173 | try { |
| 174 | notEmpty.signal(); |
| 175 | } finally { |
| 176 | takeLock.unlock(); |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | /** |
| 181 | * Signals a waiting put. Called only from take/poll. |
| 182 | */ |
| 183 | private void signalNotFull() { |
| 184 | final ReentrantLock putLock = this.putLock; |
| 185 | putLock.lock(); |
| 186 | try { |
| 187 | notFull.signal(); |
| 188 | } finally { |
| 189 | putLock.unlock(); |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | /** |
| 194 | * Links node at end of queue. |
| 195 | * |
| 196 | * @param node the node |
| 197 | */ |
| 198 | private void enqueue(Node<E> node) { |
| 199 | // assert putLock.isHeldByCurrentThread(); |
| 200 | // assert last.next == null; |
| 201 | last = last.next = node; |
| 202 | } |
| 203 | |
| 204 | /** |
| 205 | * Removes a node from head of queue. |
| 206 | * |
| 207 | * @return the node |
| 208 | */ |
| 209 | private E dequeue() { |
| 210 | // assert takeLock.isHeldByCurrentThread(); |
| 211 | // assert head.item == null; |
| 212 | Node<E> h = head; |
| 213 | Node<E> first = h.next; |
| 214 | h.next = h; // help GC |
| 215 | head = first; |
| 216 | E x = first.item; |
| 217 | first.item = null; |
| 218 | return x; |
| 219 | } |
| 220 | |
| 221 | /** |
| 222 | * Locks to prevent both puts and takes. |
| 223 | */ |
| 224 | void fullyLock() { |
| 225 | putLock.lock(); |
| 226 | takeLock.lock(); |
| 227 | } |
| 228 | |
| 229 | /** |
| 230 | * Unlocks to allow both puts and takes. |
| 231 | */ |
| 232 | void fullyUnlock() { |
| 233 | takeLock.unlock(); |
| 234 | putLock.unlock(); |
| 235 | } |
| 236 | |
| 237 | // /** |
| 238 | // * Tells whether both locks are held by current thread. |
| 239 | // */ |
| 240 | // boolean isFullyLocked() { |
| 241 | // return (putLock.isHeldByCurrentThread() && |
| 242 | // takeLock.isHeldByCurrentThread()); |
| 243 | // } |
| 244 | |
| 245 | /** |
| 246 | * Creates a {@code LinkedBlockingQueue} with a capacity of |
| 247 | * {@link Integer#MAX_VALUE}. |
| 248 | */ |
| 249 | public LinkedBlockingQueue() { |
| 250 | this(Integer.MAX_VALUE); |
| 251 | } |
| 252 | |
| 253 | /** |
| 254 | * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity. |
| 255 | * |
| 256 | * @param capacity the capacity of this queue |
| 257 | * @throws IllegalArgumentException if {@code capacity} is not greater |
| 258 | * than zero |
| 259 | */ |
| 260 | public LinkedBlockingQueue(int capacity) { |
| 261 | if (capacity <= 0) throw new IllegalArgumentException(); |
| 262 | this.capacity = capacity; |
| 263 | last = head = new Node<E>(null); |
| 264 | } |
| 265 | |
| 266 | /** |
| 267 | * Creates a {@code LinkedBlockingQueue} with a capacity of |
| 268 | * {@link Integer#MAX_VALUE}, initially containing the elements of the |
| 269 | * given collection, |
| 270 | * added in traversal order of the collection's iterator. |
| 271 | * |
| 272 | * @param c the collection of elements to initially contain |
| 273 | * @throws NullPointerException if the specified collection or any |
| 274 | * of its elements are null |
| 275 | */ |
| 276 | public LinkedBlockingQueue(Collection<? extends E> c) { |
| 277 | this(Integer.MAX_VALUE); |
| 278 | final ReentrantLock putLock = this.putLock; |
| 279 | putLock.lock(); // Never contended, but necessary for visibility |
| 280 | try { |
| 281 | int n = 0; |
| 282 | for (E e : c) { |
| 283 | if (e == null) |
| 284 | throw new NullPointerException(); |
| 285 | if (n == capacity) |
| 286 | throw new IllegalStateException("Queue full"); |
| 287 | enqueue(new Node<E>(e)); |
| 288 | ++n; |
| 289 | } |
| 290 | count.set(n); |
| 291 | } finally { |
| 292 | putLock.unlock(); |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | // this doc comment is overridden to remove the reference to collections |
| 297 | // greater in size than Integer.MAX_VALUE |
| 298 | /** |
| 299 | * Returns the number of elements in this queue. |
| 300 | * |
| 301 | * @return the number of elements in this queue |
| 302 | */ |
| 303 | public int size() { |
| 304 | return count.get(); |
| 305 | } |
| 306 | |
| 307 | // this doc comment is a modified copy of the inherited doc comment, |
| 308 | // without the reference to unlimited queues. |
| 309 | /** |
| 310 | * Returns the number of additional elements that this queue can ideally |
| 311 | * (in the absence of memory or resource constraints) accept without |
| 312 | * blocking. This is always equal to the initial capacity of this queue |
| 313 | * less the current {@code size} of this queue. |
| 314 | * |
| 315 | * <p>Note that you <em>cannot</em> always tell if an attempt to insert |
| 316 | * an element will succeed by inspecting {@code remainingCapacity} |
| 317 | * because it may be the case that another thread is about to |
| 318 | * insert or remove an element. |
| 319 | */ |
| 320 | public int remainingCapacity() { |
| 321 | return capacity - count.get(); |
| 322 | } |
| 323 | |
| 324 | /** |
| 325 | * Inserts the specified element at the tail of this queue, waiting if |
| 326 | * necessary for space to become available. |
| 327 | * |
| 328 | * @throws InterruptedException {@inheritDoc} |
| 329 | * @throws NullPointerException {@inheritDoc} |
| 330 | */ |
| 331 | public void put(E e) throws InterruptedException { |
| 332 | if (e == null) throw new NullPointerException(); |
| 333 | // Note: convention in all put/take/etc is to preset local var |
| 334 | // holding count negative to indicate failure unless set. |
| 335 | int c = -1; |
| 336 | Node<E> node = new Node<E>(e); |
| 337 | final ReentrantLock putLock = this.putLock; |
| 338 | final AtomicInteger count = this.count; |
| 339 | putLock.lockInterruptibly(); |
| 340 | try { |
| 341 | /* |
| 342 | * Note that count is used in wait guard even though it is |
| 343 | * not protected by lock. This works because count can |
| 344 | * only decrease at this point (all other puts are shut |
| 345 | * out by lock), and we (or some other waiting put) are |
| 346 | * signalled if it ever changes from capacity. Similarly |
| 347 | * for all other uses of count in other wait guards. |
| 348 | */ |
| 349 | while (count.get() == capacity) { |
| 350 | notFull.await(); |
| 351 | } |
| 352 | enqueue(node); |
| 353 | c = count.getAndIncrement(); |
| 354 | if (c + 1 < capacity) |
| 355 | notFull.signal(); |
| 356 | } finally { |
| 357 | putLock.unlock(); |
| 358 | } |
| 359 | if (c == 0) |
| 360 | signalNotEmpty(); |
| 361 | } |
| 362 | |
| 363 | /** |
| 364 | * Inserts the specified element at the tail of this queue, waiting if |
| 365 | * necessary up to the specified wait time for space to become available. |
| 366 | * |
| 367 | * @return {@code true} if successful, or {@code false} if |
| 368 | * the specified waiting time elapses before space is available |
| 369 | * @throws InterruptedException {@inheritDoc} |
| 370 | * @throws NullPointerException {@inheritDoc} |
| 371 | */ |
| 372 | public boolean offer(E e, long timeout, TimeUnit unit) |
| 373 | throws InterruptedException { |
| 374 | |
| 375 | if (e == null) throw new NullPointerException(); |
| 376 | long nanos = unit.toNanos(timeout); |
| 377 | int c = -1; |
| 378 | final ReentrantLock putLock = this.putLock; |
| 379 | final AtomicInteger count = this.count; |
| 380 | putLock.lockInterruptibly(); |
| 381 | try { |
| 382 | while (count.get() == capacity) { |
| 383 | if (nanos <= 0L) |
| 384 | return false; |
| 385 | nanos = notFull.awaitNanos(nanos); |
| 386 | } |
| 387 | enqueue(new Node<E>(e)); |
| 388 | c = count.getAndIncrement(); |
| 389 | if (c + 1 < capacity) |
| 390 | notFull.signal(); |
| 391 | } finally { |
| 392 | putLock.unlock(); |
| 393 | } |
| 394 | if (c == 0) |
| 395 | signalNotEmpty(); |
| 396 | return true; |
| 397 | } |
| 398 | |
| 399 | /** |
| 400 | * Inserts the specified element at the tail of this queue if it is |
| 401 | * possible to do so immediately without exceeding the queue's capacity, |
| 402 | * returning {@code true} upon success and {@code false} if this queue |
| 403 | * is full. |
| 404 | * When using a capacity-restricted queue, this method is generally |
| 405 | * preferable to method {@link BlockingQueue#add add}, which can fail to |
| 406 | * insert an element only by throwing an exception. |
| 407 | * |
| 408 | * @throws NullPointerException if the specified element is null |
| 409 | */ |
| 410 | public boolean offer(E e) { |
| 411 | if (e == null) throw new NullPointerException(); |
| 412 | final AtomicInteger count = this.count; |
| 413 | if (count.get() == capacity) |
| 414 | return false; |
| 415 | int c = -1; |
| 416 | Node<E> node = new Node<E>(e); |
| 417 | final ReentrantLock putLock = this.putLock; |
| 418 | putLock.lock(); |
| 419 | try { |
| 420 | if (count.get() < capacity) { |
| 421 | enqueue(node); |
| 422 | c = count.getAndIncrement(); |
| 423 | if (c + 1 < capacity) |
| 424 | notFull.signal(); |
| 425 | } |
| 426 | } finally { |
| 427 | putLock.unlock(); |
| 428 | } |
| 429 | if (c == 0) |
| 430 | signalNotEmpty(); |
| 431 | return c >= 0; |
| 432 | } |
| 433 | |
| 434 | public E take() throws InterruptedException { |
| 435 | E x; |
| 436 | int c = -1; |
| 437 | final AtomicInteger count = this.count; |
| 438 | final ReentrantLock takeLock = this.takeLock; |
| 439 | takeLock.lockInterruptibly(); |
| 440 | try { |
| 441 | while (count.get() == 0) { |
| 442 | notEmpty.await(); |
| 443 | } |
| 444 | x = dequeue(); |
| 445 | c = count.getAndDecrement(); |
| 446 | if (c > 1) |
| 447 | notEmpty.signal(); |
| 448 | } finally { |
| 449 | takeLock.unlock(); |
| 450 | } |
| 451 | if (c == capacity) |
| 452 | signalNotFull(); |
| 453 | return x; |
| 454 | } |
| 455 | |
| 456 | public E poll(long timeout, TimeUnit unit) throws InterruptedException { |
| 457 | E x = null; |
| 458 | int c = -1; |
| 459 | long nanos = unit.toNanos(timeout); |
| 460 | final AtomicInteger count = this.count; |
| 461 | final ReentrantLock takeLock = this.takeLock; |
| 462 | takeLock.lockInterruptibly(); |
| 463 | try { |
| 464 | while (count.get() == 0) { |
| 465 | if (nanos <= 0L) |
| 466 | return null; |
| 467 | nanos = notEmpty.awaitNanos(nanos); |
| 468 | } |
| 469 | x = dequeue(); |
| 470 | c = count.getAndDecrement(); |
| 471 | if (c > 1) |
| 472 | notEmpty.signal(); |
| 473 | } finally { |
| 474 | takeLock.unlock(); |
| 475 | } |
| 476 | if (c == capacity) |
| 477 | signalNotFull(); |
| 478 | return x; |
| 479 | } |
| 480 | |
| 481 | public E poll() { |
| 482 | final AtomicInteger count = this.count; |
| 483 | if (count.get() == 0) |
| 484 | return null; |
| 485 | E x = null; |
| 486 | int c = -1; |
| 487 | final ReentrantLock takeLock = this.takeLock; |
| 488 | takeLock.lock(); |
| 489 | try { |
| 490 | if (count.get() > 0) { |
| 491 | x = dequeue(); |
| 492 | c = count.getAndDecrement(); |
| 493 | if (c > 1) |
| 494 | notEmpty.signal(); |
| 495 | } |
| 496 | } finally { |
| 497 | takeLock.unlock(); |
| 498 | } |
| 499 | if (c == capacity) |
| 500 | signalNotFull(); |
| 501 | return x; |
| 502 | } |
| 503 | |
| 504 | public E peek() { |
| 505 | if (count.get() == 0) |
| 506 | return null; |
| 507 | final ReentrantLock takeLock = this.takeLock; |
| 508 | takeLock.lock(); |
| 509 | try { |
| 510 | return (count.get() > 0) ? head.next.item : null; |
| 511 | } finally { |
| 512 | takeLock.unlock(); |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | /** |
| 517 | * Unlinks interior Node p with predecessor trail. |
| 518 | */ |
| 519 | void unlink(Node<E> p, Node<E> trail) { |
| 520 | // assert isFullyLocked(); |
| 521 | // p.next is not changed, to allow iterators that are |
| 522 | // traversing p to maintain their weak-consistency guarantee. |
| 523 | p.item = null; |
| 524 | trail.next = p.next; |
| 525 | if (last == p) |
| 526 | last = trail; |
| 527 | if (count.getAndDecrement() == capacity) |
| 528 | notFull.signal(); |
| 529 | } |
| 530 | |
| 531 | /** |
| 532 | * Removes a single instance of the specified element from this queue, |
| 533 | * if it is present. More formally, removes an element {@code e} such |
| 534 | * that {@code o.equals(e)}, if this queue contains one or more such |
| 535 | * elements. |
| 536 | * Returns {@code true} if this queue contained the specified element |
| 537 | * (or equivalently, if this queue changed as a result of the call). |
| 538 | * |
| 539 | * @param o element to be removed from this queue, if present |
| 540 | * @return {@code true} if this queue changed as a result of the call |
| 541 | */ |
| 542 | public boolean remove(Object o) { |
| 543 | if (o == null) return false; |
| 544 | fullyLock(); |
| 545 | try { |
| 546 | for (Node<E> trail = head, p = trail.next; |
| 547 | p != null; |
| 548 | trail = p, p = p.next) { |
| 549 | if (o.equals(p.item)) { |
| 550 | unlink(p, trail); |
| 551 | return true; |
| 552 | } |
| 553 | } |
| 554 | return false; |
| 555 | } finally { |
| 556 | fullyUnlock(); |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | /** |
| 561 | * Returns {@code true} if this queue contains the specified element. |
| 562 | * More formally, returns {@code true} if and only if this queue contains |
| 563 | * at least one element {@code e} such that {@code o.equals(e)}. |
| 564 | * |
| 565 | * @param o object to be checked for containment in this queue |
| 566 | * @return {@code true} if this queue contains the specified element |
| 567 | */ |
| 568 | public boolean contains(Object o) { |
| 569 | if (o == null) return false; |
| 570 | fullyLock(); |
| 571 | try { |
| 572 | for (Node<E> p = head.next; p != null; p = p.next) |
| 573 | if (o.equals(p.item)) |
| 574 | return true; |
| 575 | return false; |
| 576 | } finally { |
| 577 | fullyUnlock(); |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | /** |
| 582 | * Returns an array containing all of the elements in this queue, in |
| 583 | * proper sequence. |
| 584 | * |
| 585 | * <p>The returned array will be "safe" in that no references to it are |
| 586 | * maintained by this queue. (In other words, this method must allocate |
| 587 | * a new array). The caller is thus free to modify the returned array. |
| 588 | * |
| 589 | * <p>This method acts as bridge between array-based and collection-based |
| 590 | * APIs. |
| 591 | * |
| 592 | * @return an array containing all of the elements in this queue |
| 593 | */ |
| 594 | public Object[] toArray() { |
| 595 | fullyLock(); |
| 596 | try { |
| 597 | int size = count.get(); |
| 598 | Object[] a = new Object[size]; |
| 599 | int k = 0; |
| 600 | for (Node<E> p = head.next; p != null; p = p.next) |
| 601 | a[k++] = p.item; |
| 602 | return a; |
| 603 | } finally { |
| 604 | fullyUnlock(); |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | /** |
| 609 | * Returns an array containing all of the elements in this queue, in |
| 610 | * proper sequence; the runtime type of the returned array is that of |
| 611 | * the specified array. If the queue fits in the specified array, it |
| 612 | * is returned therein. Otherwise, a new array is allocated with the |
| 613 | * runtime type of the specified array and the size of this queue. |
| 614 | * |
| 615 | * <p>If this queue fits in the specified array with room to spare |
| 616 | * (i.e., the array has more elements than this queue), the element in |
| 617 | * the array immediately following the end of the queue is set to |
| 618 | * {@code null}. |
| 619 | * |
| 620 | * <p>Like the {@link #toArray()} method, this method acts as bridge between |
| 621 | * array-based and collection-based APIs. Further, this method allows |
| 622 | * precise control over the runtime type of the output array, and may, |
| 623 | * under certain circumstances, be used to save allocation costs. |
| 624 | * |
| 625 | * <p>Suppose {@code x} is a queue known to contain only strings. |
| 626 | * The following code can be used to dump the queue into a newly |
| 627 | * allocated array of {@code String}: |
| 628 | * |
| 629 | * <pre> {@code String[] y = x.toArray(new String[0]);}</pre> |
| 630 | * |
| 631 | * Note that {@code toArray(new Object[0])} is identical in function to |
| 632 | * {@code toArray()}. |
| 633 | * |
| 634 | * @param a the array into which the elements of the queue are to |
| 635 | * be stored, if it is big enough; otherwise, a new array of the |
| 636 | * same runtime type is allocated for this purpose |
| 637 | * @return an array containing all of the elements in this queue |
| 638 | * @throws ArrayStoreException if the runtime type of the specified array |
| 639 | * is not a supertype of the runtime type of every element in |
| 640 | * this queue |
| 641 | * @throws NullPointerException if the specified array is null |
| 642 | */ |
| 643 | @SuppressWarnings("unchecked") |
| 644 | public <T> T[] toArray(T[] a) { |
| 645 | fullyLock(); |
| 646 | try { |
| 647 | int size = count.get(); |
| 648 | if (a.length < size) |
| 649 | a = (T[])java.lang.reflect.Array.newInstance |
| 650 | (a.getClass().getComponentType(), size); |
| 651 | |
| 652 | int k = 0; |
| 653 | for (Node<E> p = head.next; p != null; p = p.next) |
| 654 | a[k++] = (T)p.item; |
| 655 | if (a.length > k) |
| 656 | a[k] = null; |
| 657 | return a; |
| 658 | } finally { |
| 659 | fullyUnlock(); |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | public String toString() { |
| 664 | return Helpers.collectionToString(this); |
| 665 | } |
| 666 | |
| 667 | /** |
| 668 | * Atomically removes all of the elements from this queue. |
| 669 | * The queue will be empty after this call returns. |
| 670 | */ |
| 671 | public void clear() { |
| 672 | fullyLock(); |
| 673 | try { |
| 674 | for (Node<E> p, h = head; (p = h.next) != null; h = p) { |
| 675 | h.next = h; |
| 676 | p.item = null; |
| 677 | } |
| 678 | head = last; |
| 679 | // assert head.item == null && head.next == null; |
| 680 | if (count.getAndSet(0) == capacity) |
| 681 | notFull.signal(); |
| 682 | } finally { |
| 683 | fullyUnlock(); |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | /** |
| 688 | * @throws UnsupportedOperationException {@inheritDoc} |
| 689 | * @throws ClassCastException {@inheritDoc} |
| 690 | * @throws NullPointerException {@inheritDoc} |
| 691 | * @throws IllegalArgumentException {@inheritDoc} |
| 692 | */ |
| 693 | public int drainTo(Collection<? super E> c) { |
| 694 | return drainTo(c, Integer.MAX_VALUE); |
| 695 | } |
| 696 | |
| 697 | /** |
| 698 | * @throws UnsupportedOperationException {@inheritDoc} |
| 699 | * @throws ClassCastException {@inheritDoc} |
| 700 | * @throws NullPointerException {@inheritDoc} |
| 701 | * @throws IllegalArgumentException {@inheritDoc} |
| 702 | */ |
| 703 | public int drainTo(Collection<? super E> c, int maxElements) { |
| 704 | if (c == null) |
| 705 | throw new NullPointerException(); |
| 706 | if (c == this) |
| 707 | throw new IllegalArgumentException(); |
| 708 | if (maxElements <= 0) |
| 709 | return 0; |
| 710 | boolean signalNotFull = false; |
| 711 | final ReentrantLock takeLock = this.takeLock; |
| 712 | takeLock.lock(); |
| 713 | try { |
| 714 | int n = Math.min(maxElements, count.get()); |
| 715 | // count.get provides visibility to first n Nodes |
| 716 | Node<E> h = head; |
| 717 | int i = 0; |
| 718 | try { |
| 719 | while (i < n) { |
| 720 | Node<E> p = h.next; |
| 721 | c.add(p.item); |
| 722 | p.item = null; |
| 723 | h.next = h; |
| 724 | h = p; |
| 725 | ++i; |
| 726 | } |
| 727 | return n; |
| 728 | } finally { |
| 729 | // Restore invariants even if c.add() threw |
| 730 | if (i > 0) { |
| 731 | // assert h.item == null; |
| 732 | head = h; |
| 733 | signalNotFull = (count.getAndAdd(-i) == capacity); |
| 734 | } |
| 735 | } |
| 736 | } finally { |
| 737 | takeLock.unlock(); |
| 738 | if (signalNotFull) |
| 739 | signalNotFull(); |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | /** |
| 744 | * Returns an iterator over the elements in this queue in proper sequence. |
| 745 | * The elements will be returned in order from first (head) to last (tail). |
| 746 | * |
| 747 | * <p>The returned iterator is |
| 748 | * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. |
| 749 | * |
| 750 | * @return an iterator over the elements in this queue in proper sequence |
| 751 | */ |
| 752 | public Iterator<E> iterator() { |
| 753 | return new Itr(); |
| 754 | } |
| 755 | |
| 756 | private class Itr implements Iterator<E> { |
| 757 | /* |
| 758 | * Basic weakly-consistent iterator. At all times hold the next |
| 759 | * item to hand out so that if hasNext() reports true, we will |
| 760 | * still have it to return even if lost race with a take etc. |
| 761 | */ |
| 762 | |
| 763 | private Node<E> current; |
| 764 | private Node<E> lastRet; |
| 765 | private E currentElement; |
| 766 | |
| 767 | Itr() { |
| 768 | fullyLock(); |
| 769 | try { |
| 770 | current = head.next; |
| 771 | if (current != null) |
| 772 | currentElement = current.item; |
| 773 | } finally { |
| 774 | fullyUnlock(); |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | public boolean hasNext() { |
| 779 | return current != null; |
| 780 | } |
| 781 | |
| 782 | public E next() { |
| 783 | fullyLock(); |
| 784 | try { |
| 785 | if (current == null) |
| 786 | throw new NoSuchElementException(); |
| 787 | lastRet = current; |
| 788 | E item = null; |
| 789 | // Unlike other traversal methods, iterators must handle both: |
| 790 | // - dequeued nodes (p.next == p) |
| 791 | // - (possibly multiple) interior removed nodes (p.item == null) |
| 792 | for (Node<E> p = current, q;; p = q) { |
| 793 | if ((q = p.next) == p) |
| 794 | q = head.next; |
| 795 | if (q == null || (item = q.item) != null) { |
| 796 | current = q; |
| 797 | E x = currentElement; |
| 798 | currentElement = item; |
| 799 | return x; |
| 800 | } |
| 801 | } |
| 802 | } finally { |
| 803 | fullyUnlock(); |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | public void remove() { |
| 808 | if (lastRet == null) |
| 809 | throw new IllegalStateException(); |
| 810 | fullyLock(); |
| 811 | try { |
| 812 | Node<E> node = lastRet; |
| 813 | lastRet = null; |
| 814 | for (Node<E> trail = head, p = trail.next; |
| 815 | p != null; |
| 816 | trail = p, p = p.next) { |
| 817 | if (p == node) { |
| 818 | unlink(p, trail); |
| 819 | break; |
| 820 | } |
| 821 | } |
| 822 | } finally { |
| 823 | fullyUnlock(); |
| 824 | } |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | /** A customized variant of Spliterators.IteratorSpliterator */ |
| 829 | static final class LBQSpliterator<E> implements Spliterator<E> { |
| 830 | static final int MAX_BATCH = 1 << 25; // max batch array size; |
| 831 | final LinkedBlockingQueue<E> queue; |
| 832 | Node<E> current; // current node; null until initialized |
| 833 | int batch; // batch size for splits |
| 834 | boolean exhausted; // true when no more nodes |
| 835 | long est; // size estimate |
| 836 | LBQSpliterator(LinkedBlockingQueue<E> queue) { |
| 837 | this.queue = queue; |
| 838 | this.est = queue.size(); |
| 839 | } |
| 840 | |
| 841 | public long estimateSize() { return est; } |
| 842 | |
| 843 | public Spliterator<E> trySplit() { |
| 844 | Node<E> h; |
| 845 | final LinkedBlockingQueue<E> q = this.queue; |
| 846 | int b = batch; |
| 847 | int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1; |
| 848 | if (!exhausted && |
| 849 | ((h = current) != null || (h = q.head.next) != null) && |
| 850 | h.next != null) { |
| 851 | Object[] a = new Object[n]; |
| 852 | int i = 0; |
| 853 | Node<E> p = current; |
| 854 | q.fullyLock(); |
| 855 | try { |
| 856 | if (p != null || (p = q.head.next) != null) { |
| 857 | do { |
| 858 | if ((a[i] = p.item) != null) |
| 859 | ++i; |
| 860 | } while ((p = p.next) != null && i < n); |
| 861 | } |
| 862 | } finally { |
| 863 | q.fullyUnlock(); |
| 864 | } |
| 865 | if ((current = p) == null) { |
| 866 | est = 0L; |
| 867 | exhausted = true; |
| 868 | } |
| 869 | else if ((est -= i) < 0L) |
| 870 | est = 0L; |
| 871 | if (i > 0) { |
| 872 | batch = i; |
| 873 | return Spliterators.spliterator |
| 874 | (a, 0, i, (Spliterator.ORDERED | |
| 875 | Spliterator.NONNULL | |
| 876 | Spliterator.CONCURRENT)); |
| 877 | } |
| 878 | } |
| 879 | return null; |
| 880 | } |
| 881 | |
| 882 | public void forEachRemaining(Consumer<? super E> action) { |
| 883 | if (action == null) throw new NullPointerException(); |
| 884 | final LinkedBlockingQueue<E> q = this.queue; |
| 885 | if (!exhausted) { |
| 886 | exhausted = true; |
| 887 | Node<E> p = current; |
| 888 | do { |
| 889 | E e = null; |
| 890 | q.fullyLock(); |
| 891 | try { |
| 892 | if (p == null) |
| 893 | p = q.head.next; |
| 894 | while (p != null) { |
| 895 | e = p.item; |
| 896 | p = p.next; |
| 897 | if (e != null) |
| 898 | break; |
| 899 | } |
| 900 | } finally { |
| 901 | q.fullyUnlock(); |
| 902 | } |
| 903 | if (e != null) |
| 904 | action.accept(e); |
| 905 | } while (p != null); |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | public boolean tryAdvance(Consumer<? super E> action) { |
| 910 | if (action == null) throw new NullPointerException(); |
| 911 | final LinkedBlockingQueue<E> q = this.queue; |
| 912 | if (!exhausted) { |
| 913 | E e = null; |
| 914 | q.fullyLock(); |
| 915 | try { |
| 916 | if (current == null) |
| 917 | current = q.head.next; |
| 918 | while (current != null) { |
| 919 | e = current.item; |
| 920 | current = current.next; |
| 921 | if (e != null) |
| 922 | break; |
| 923 | } |
| 924 | } finally { |
| 925 | q.fullyUnlock(); |
| 926 | } |
| 927 | if (current == null) |
| 928 | exhausted = true; |
| 929 | if (e != null) { |
| 930 | action.accept(e); |
| 931 | return true; |
| 932 | } |
| 933 | } |
| 934 | return false; |
| 935 | } |
| 936 | |
| 937 | public int characteristics() { |
| 938 | return Spliterator.ORDERED | Spliterator.NONNULL | |
| 939 | Spliterator.CONCURRENT; |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | /** |
| 944 | * Returns a {@link Spliterator} over the elements in this queue. |
| 945 | * |
| 946 | * <p>The returned spliterator is |
| 947 | * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. |
| 948 | * |
| 949 | * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT}, |
| 950 | * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}. |
| 951 | * |
| 952 | * @implNote |
| 953 | * The {@code Spliterator} implements {@code trySplit} to permit limited |
| 954 | * parallelism. |
| 955 | * |
| 956 | * @return a {@code Spliterator} over the elements in this queue |
| 957 | * @since 1.8 |
| 958 | */ |
| 959 | public Spliterator<E> spliterator() { |
| 960 | return new LBQSpliterator<E>(this); |
| 961 | } |
| 962 | |
| 963 | /** |
| 964 | * Saves this queue to a stream (that is, serializes it). |
| 965 | * |
| 966 | * @param s the stream |
| 967 | * @throws java.io.IOException if an I/O error occurs |
| 968 | * @serialData The capacity is emitted (int), followed by all of |
| 969 | * its elements (each an {@code Object}) in the proper order, |
| 970 | * followed by a null |
| 971 | */ |
| 972 | private void writeObject(java.io.ObjectOutputStream s) |
| 973 | throws java.io.IOException { |
| 974 | |
| 975 | fullyLock(); |
| 976 | try { |
| 977 | // Write out any hidden stuff, plus capacity |
| 978 | s.defaultWriteObject(); |
| 979 | |
| 980 | // Write out all elements in the proper order. |
| 981 | for (Node<E> p = head.next; p != null; p = p.next) |
| 982 | s.writeObject(p.item); |
| 983 | |
| 984 | // Use trailing null as sentinel |
| 985 | s.writeObject(null); |
| 986 | } finally { |
| 987 | fullyUnlock(); |
| 988 | } |
| 989 | } |
| 990 | |
| 991 | /** |
| 992 | * Reconstitutes this queue from a stream (that is, deserializes it). |
| 993 | * @param s the stream |
| 994 | * @throws ClassNotFoundException if the class of a serialized object |
| 995 | * could not be found |
| 996 | * @throws java.io.IOException if an I/O error occurs |
| 997 | */ |
| 998 | private void readObject(java.io.ObjectInputStream s) |
| 999 | throws java.io.IOException, ClassNotFoundException { |
| 1000 | // Read in capacity, and any hidden stuff |
| 1001 | s.defaultReadObject(); |
| 1002 | |
| 1003 | count.set(0); |
| 1004 | last = head = new Node<E>(null); |
| 1005 | |
| 1006 | // Read in all elements and place in queue |
| 1007 | for (;;) { |
| 1008 | @SuppressWarnings("unchecked") |
| 1009 | E item = (E)s.readObject(); |
| 1010 | if (item == null) |
| 1011 | break; |
| 1012 | add(item); |
| 1013 | } |
| 1014 | } |
| 1015 | } |