blob: c87ac18c3143c3ed4b4eba23a05a14a151d57aef [file] [log] [blame]
Alan Viverette3da604b2020-06-10 18:34:39 +00001/*
2 * Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26/*
27 * This file is available under and governed by the GNU General Public
28 * License version 2 only, as published by the Free Software Foundation.
29 * However, the following notice accompanied the original version of this
30 * file:
31 *
32 * Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos
33 *
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions are met:
38 *
39 * * Redistributions of source code must retain the above copyright notice,
40 * this list of conditions and the following disclaimer.
41 *
42 * * Redistributions in binary form must reproduce the above copyright notice,
43 * this list of conditions and the following disclaimer in the documentation
44 * and/or other materials provided with the distribution.
45 *
46 * * Neither the name of JSR-310 nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
54 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
55 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
56 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
57 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
58 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
59 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
60 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 */
62package java.time;
63
64import static java.time.LocalTime.NANOS_PER_SECOND;
65import static java.time.LocalTime.SECONDS_PER_DAY;
66import static java.time.LocalTime.SECONDS_PER_HOUR;
67import static java.time.LocalTime.SECONDS_PER_MINUTE;
68import static java.time.temporal.ChronoField.INSTANT_SECONDS;
69import static java.time.temporal.ChronoField.MICRO_OF_SECOND;
70import static java.time.temporal.ChronoField.MILLI_OF_SECOND;
71import static java.time.temporal.ChronoField.NANO_OF_SECOND;
72import static java.time.temporal.ChronoUnit.DAYS;
73import static java.time.temporal.ChronoUnit.NANOS;
74
75import java.io.DataInput;
76import java.io.DataOutput;
77import java.io.IOException;
78import java.io.InvalidObjectException;
79import java.io.ObjectInputStream;
80import java.io.Serializable;
81import java.time.format.DateTimeFormatter;
82import java.time.format.DateTimeParseException;
83import java.time.temporal.ChronoField;
84import java.time.temporal.ChronoUnit;
85import java.time.temporal.Temporal;
86import java.time.temporal.TemporalAccessor;
87import java.time.temporal.TemporalAdjuster;
88import java.time.temporal.TemporalAmount;
89import java.time.temporal.TemporalField;
90import java.time.temporal.TemporalQueries;
91import java.time.temporal.TemporalQuery;
92import java.time.temporal.TemporalUnit;
93import java.time.temporal.UnsupportedTemporalTypeException;
94import java.time.temporal.ValueRange;
95import java.util.Objects;
96
97// Android-changed: removed ValueBased paragraph.
98/**
99 * An instantaneous point on the time-line.
100 * <p>
101 * This class models a single instantaneous point on the time-line.
102 * This might be used to record event time-stamps in the application.
103 * <p>
104 * The range of an instant requires the storage of a number larger than a {@code long}.
105 * To achieve this, the class stores a {@code long} representing epoch-seconds and an
106 * {@code int} representing nanosecond-of-second, which will always be between 0 and 999,999,999.
107 * The epoch-seconds are measured from the standard Java epoch of {@code 1970-01-01T00:00:00Z}
108 * where instants after the epoch have positive values, and earlier instants have negative values.
109 * For both the epoch-second and nanosecond parts, a larger value is always later on the time-line
110 * than a smaller value.
111 *
112 * <h3>Time-scale</h3>
113 * <p>
114 * The length of the solar day is the standard way that humans measure time.
115 * This has traditionally been subdivided into 24 hours of 60 minutes of 60 seconds,
116 * forming a 86400 second day.
117 * <p>
118 * Modern timekeeping is based on atomic clocks which precisely define an SI second
119 * relative to the transitions of a Caesium atom. The length of an SI second was defined
120 * to be very close to the 86400th fraction of a day.
121 * <p>
122 * Unfortunately, as the Earth rotates the length of the day varies.
123 * In addition, over time the average length of the day is getting longer as the Earth slows.
124 * As a result, the length of a solar day in 2012 is slightly longer than 86400 SI seconds.
125 * The actual length of any given day and the amount by which the Earth is slowing
126 * are not predictable and can only be determined by measurement.
127 * The UT1 time-scale captures the accurate length of day, but is only available some
128 * time after the day has completed.
129 * <p>
130 * The UTC time-scale is a standard approach to bundle up all the additional fractions
131 * of a second from UT1 into whole seconds, known as <i>leap-seconds</i>.
132 * A leap-second may be added or removed depending on the Earth's rotational changes.
133 * As such, UTC permits a day to have 86399 SI seconds or 86401 SI seconds where
134 * necessary in order to keep the day aligned with the Sun.
135 * <p>
136 * The modern UTC time-scale was introduced in 1972, introducing the concept of whole leap-seconds.
137 * Between 1958 and 1972, the definition of UTC was complex, with minor sub-second leaps and
138 * alterations to the length of the notional second. As of 2012, discussions are underway
139 * to change the definition of UTC again, with the potential to remove leap seconds or
140 * introduce other changes.
141 * <p>
142 * Given the complexity of accurate timekeeping described above, this Java API defines
143 * its own time-scale, the <i>Java Time-Scale</i>.
144 * <p>
145 * The Java Time-Scale divides each calendar day into exactly 86400
146 * subdivisions, known as seconds. These seconds may differ from the
147 * SI second. It closely matches the de facto international civil time
148 * scale, the definition of which changes from time to time.
149 * <p>
150 * The Java Time-Scale has slightly different definitions for different
151 * segments of the time-line, each based on the consensus international
152 * time scale that is used as the basis for civil time. Whenever the
153 * internationally-agreed time scale is modified or replaced, a new
154 * segment of the Java Time-Scale must be defined for it. Each segment
155 * must meet these requirements:
156 * <ul>
157 * <li>the Java Time-Scale shall closely match the underlying international
158 * civil time scale;</li>
159 * <li>the Java Time-Scale shall exactly match the international civil
160 * time scale at noon each day;</li>
161 * <li>the Java Time-Scale shall have a precisely-defined relationship to
162 * the international civil time scale.</li>
163 * </ul>
164 * There are currently, as of 2013, two segments in the Java time-scale.
165 * <p>
166 * For the segment from 1972-11-03 (exact boundary discussed below) until
167 * further notice, the consensus international time scale is UTC (with
168 * leap seconds). In this segment, the Java Time-Scale is identical to
169 * <a href="http://www.cl.cam.ac.uk/~mgk25/time/utc-sls/">UTC-SLS</a>.
170 * This is identical to UTC on days that do not have a leap second.
171 * On days that do have a leap second, the leap second is spread equally
172 * over the last 1000 seconds of the day, maintaining the appearance of
173 * exactly 86400 seconds per day.
174 * <p>
175 * For the segment prior to 1972-11-03, extending back arbitrarily far,
176 * the consensus international time scale is defined to be UT1, applied
177 * proleptically, which is equivalent to the (mean) solar time on the
178 * prime meridian (Greenwich). In this segment, the Java Time-Scale is
179 * identical to the consensus international time scale. The exact
180 * boundary between the two segments is the instant where UT1 = UTC
181 * between 1972-11-03T00:00 and 1972-11-04T12:00.
182 * <p>
183 * Implementations of the Java time-scale using the JSR-310 API are not
184 * required to provide any clock that is sub-second accurate, or that
185 * progresses monotonically or smoothly. Implementations are therefore
186 * not required to actually perform the UTC-SLS slew or to otherwise be
187 * aware of leap seconds. JSR-310 does, however, require that
188 * implementations must document the approach they use when defining a
189 * clock representing the current instant.
190 * See {@link Clock} for details on the available clocks.
191 * <p>
192 * The Java time-scale is used for all date-time classes.
193 * This includes {@code Instant}, {@code LocalDate}, {@code LocalTime}, {@code OffsetDateTime},
194 * {@code ZonedDateTime} and {@code Duration}.
195 *
196 * @implSpec
197 * This class is immutable and thread-safe.
198 *
199 * @since 1.8
200 */
201public final class Instant
202 implements Temporal, TemporalAdjuster, Comparable<Instant>, Serializable {
203
204 /**
205 * Constant for the 1970-01-01T00:00:00Z epoch instant.
206 */
207 public static final Instant EPOCH = new Instant(0, 0);
208 /**
209 * The minimum supported epoch second.
210 */
211 private static final long MIN_SECOND = -31557014167219200L;
212 /**
213 * The maximum supported epoch second.
214 */
215 private static final long MAX_SECOND = 31556889864403199L;
216 /**
217 * The minimum supported {@code Instant}, '-1000000000-01-01T00:00Z'.
218 * This could be used by an application as a "far past" instant.
219 * <p>
220 * This is one year earlier than the minimum {@code LocalDateTime}.
221 * This provides sufficient values to handle the range of {@code ZoneOffset}
222 * which affect the instant in addition to the local date-time.
223 * The value is also chosen such that the value of the year fits in
224 * an {@code int}.
225 */
226 public static final Instant MIN = Instant.ofEpochSecond(MIN_SECOND, 0);
227 /**
228 * The maximum supported {@code Instant}, '1000000000-12-31T23:59:59.999999999Z'.
229 * This could be used by an application as a "far future" instant.
230 * <p>
231 * This is one year later than the maximum {@code LocalDateTime}.
232 * This provides sufficient values to handle the range of {@code ZoneOffset}
233 * which affect the instant in addition to the local date-time.
234 * The value is also chosen such that the value of the year fits in
235 * an {@code int}.
236 */
237 public static final Instant MAX = Instant.ofEpochSecond(MAX_SECOND, 999_999_999);
238
239 /**
240 * Serialization version.
241 */
242 private static final long serialVersionUID = -665713676816604388L;
243
244 /**
245 * The number of seconds from the epoch of 1970-01-01T00:00:00Z.
246 */
247 private final long seconds;
248 /**
249 * The number of nanoseconds, later along the time-line, from the seconds field.
250 * This is always positive, and never exceeds 999,999,999.
251 */
252 private final int nanos;
253
254 //-----------------------------------------------------------------------
255 /**
256 * Obtains the current instant from the system clock.
257 * <p>
258 * This will query the {@link Clock#systemUTC() system UTC clock} to
259 * obtain the current instant.
260 * <p>
261 * Using this method will prevent the ability to use an alternate time-source for
262 * testing because the clock is effectively hard-coded.
263 *
264 * @return the current instant using the system clock, not null
265 */
266 public static Instant now() {
267 return Clock.systemUTC().instant();
268 }
269
270 /**
271 * Obtains the current instant from the specified clock.
272 * <p>
273 * This will query the specified clock to obtain the current time.
274 * <p>
275 * Using this method allows the use of an alternate clock for testing.
276 * The alternate clock may be introduced using {@link Clock dependency injection}.
277 *
278 * @param clock the clock to use, not null
279 * @return the current instant, not null
280 */
281 public static Instant now(Clock clock) {
282 Objects.requireNonNull(clock, "clock");
283 return clock.instant();
284 }
285
286 //-----------------------------------------------------------------------
287 /**
288 * Obtains an instance of {@code Instant} using seconds from the
289 * epoch of 1970-01-01T00:00:00Z.
290 * <p>
291 * The nanosecond field is set to zero.
292 *
293 * @param epochSecond the number of seconds from 1970-01-01T00:00:00Z
294 * @return an instant, not null
295 * @throws DateTimeException if the instant exceeds the maximum or minimum instant
296 */
297 public static Instant ofEpochSecond(long epochSecond) {
298 return create(epochSecond, 0);
299 }
300
301 /**
302 * Obtains an instance of {@code Instant} using seconds from the
303 * epoch of 1970-01-01T00:00:00Z and nanosecond fraction of second.
304 * <p>
305 * This method allows an arbitrary number of nanoseconds to be passed in.
306 * The factory will alter the values of the second and nanosecond in order
307 * to ensure that the stored nanosecond is in the range 0 to 999,999,999.
308 * For example, the following will result in the exactly the same instant:
309 * <pre>
310 * Instant.ofEpochSecond(3, 1);
311 * Instant.ofEpochSecond(4, -999_999_999);
312 * Instant.ofEpochSecond(2, 1000_000_001);
313 * </pre>
314 *
315 * @param epochSecond the number of seconds from 1970-01-01T00:00:00Z
316 * @param nanoAdjustment the nanosecond adjustment to the number of seconds, positive or negative
317 * @return an instant, not null
318 * @throws DateTimeException if the instant exceeds the maximum or minimum instant
319 * @throws ArithmeticException if numeric overflow occurs
320 */
321 public static Instant ofEpochSecond(long epochSecond, long nanoAdjustment) {
322 long secs = Math.addExact(epochSecond, Math.floorDiv(nanoAdjustment, NANOS_PER_SECOND));
323 int nos = (int)Math.floorMod(nanoAdjustment, NANOS_PER_SECOND);
324 return create(secs, nos);
325 }
326
327 /**
328 * Obtains an instance of {@code Instant} using milliseconds from the
329 * epoch of 1970-01-01T00:00:00Z.
330 * <p>
331 * The seconds and nanoseconds are extracted from the specified milliseconds.
332 *
333 * @param epochMilli the number of milliseconds from 1970-01-01T00:00:00Z
334 * @return an instant, not null
335 * @throws DateTimeException if the instant exceeds the maximum or minimum instant
336 */
337 public static Instant ofEpochMilli(long epochMilli) {
338 long secs = Math.floorDiv(epochMilli, 1000);
339 int mos = (int)Math.floorMod(epochMilli, 1000);
340 return create(secs, mos * 1000_000);
341 }
342
343 //-----------------------------------------------------------------------
344 /**
345 * Obtains an instance of {@code Instant} from a temporal object.
346 * <p>
347 * This obtains an instant based on the specified temporal.
348 * A {@code TemporalAccessor} represents an arbitrary set of date and time information,
349 * which this factory converts to an instance of {@code Instant}.
350 * <p>
351 * The conversion extracts the {@link ChronoField#INSTANT_SECONDS INSTANT_SECONDS}
352 * and {@link ChronoField#NANO_OF_SECOND NANO_OF_SECOND} fields.
353 * <p>
354 * This method matches the signature of the functional interface {@link TemporalQuery}
355 * allowing it to be used as a query via method reference, {@code Instant::from}.
356 *
357 * @param temporal the temporal object to convert, not null
358 * @return the instant, not null
359 * @throws DateTimeException if unable to convert to an {@code Instant}
360 */
361 public static Instant from(TemporalAccessor temporal) {
362 if (temporal instanceof Instant) {
363 return (Instant) temporal;
364 }
365 Objects.requireNonNull(temporal, "temporal");
366 try {
367 long instantSecs = temporal.getLong(INSTANT_SECONDS);
368 int nanoOfSecond = temporal.get(NANO_OF_SECOND);
369 return Instant.ofEpochSecond(instantSecs, nanoOfSecond);
370 } catch (DateTimeException ex) {
371 throw new DateTimeException("Unable to obtain Instant from TemporalAccessor: " +
372 temporal + " of type " + temporal.getClass().getName(), ex);
373 }
374 }
375
376 //-----------------------------------------------------------------------
377 /**
378 * Obtains an instance of {@code Instant} from a text string such as
379 * {@code 2007-12-03T10:15:30.00Z}.
380 * <p>
381 * The string must represent a valid instant in UTC and is parsed using
382 * {@link DateTimeFormatter#ISO_INSTANT}.
383 *
384 * @param text the text to parse, not null
385 * @return the parsed instant, not null
386 * @throws DateTimeParseException if the text cannot be parsed
387 */
388 public static Instant parse(final CharSequence text) {
389 return DateTimeFormatter.ISO_INSTANT.parse(text, Instant::from);
390 }
391
392 //-----------------------------------------------------------------------
393 /**
394 * Obtains an instance of {@code Instant} using seconds and nanoseconds.
395 *
396 * @param seconds the length of the duration in seconds
397 * @param nanoOfSecond the nano-of-second, from 0 to 999,999,999
398 * @throws DateTimeException if the instant exceeds the maximum or minimum instant
399 */
400 private static Instant create(long seconds, int nanoOfSecond) {
401 if ((seconds | nanoOfSecond) == 0) {
402 return EPOCH;
403 }
404 if (seconds < MIN_SECOND || seconds > MAX_SECOND) {
405 throw new DateTimeException("Instant exceeds minimum or maximum instant");
406 }
407 return new Instant(seconds, nanoOfSecond);
408 }
409
410 /**
411 * Constructs an instance of {@code Instant} using seconds from the epoch of
412 * 1970-01-01T00:00:00Z and nanosecond fraction of second.
413 *
414 * @param epochSecond the number of seconds from 1970-01-01T00:00:00Z
415 * @param nanos the nanoseconds within the second, must be positive
416 */
417 private Instant(long epochSecond, int nanos) {
418 super();
419 this.seconds = epochSecond;
420 this.nanos = nanos;
421 }
422
423 //-----------------------------------------------------------------------
424 /**
425 * Checks if the specified field is supported.
426 * <p>
427 * This checks if this instant can be queried for the specified field.
428 * If false, then calling the {@link #range(TemporalField) range},
429 * {@link #get(TemporalField) get} and {@link #with(TemporalField, long)}
430 * methods will throw an exception.
431 * <p>
432 * If the field is a {@link ChronoField} then the query is implemented here.
433 * The supported fields are:
434 * <ul>
435 * <li>{@code NANO_OF_SECOND}
436 * <li>{@code MICRO_OF_SECOND}
437 * <li>{@code MILLI_OF_SECOND}
438 * <li>{@code INSTANT_SECONDS}
439 * </ul>
440 * All other {@code ChronoField} instances will return false.
441 * <p>
442 * If the field is not a {@code ChronoField}, then the result of this method
443 * is obtained by invoking {@code TemporalField.isSupportedBy(TemporalAccessor)}
444 * passing {@code this} as the argument.
445 * Whether the field is supported is determined by the field.
446 *
447 * @param field the field to check, null returns false
448 * @return true if the field is supported on this instant, false if not
449 */
450 @Override
451 public boolean isSupported(TemporalField field) {
452 if (field instanceof ChronoField) {
453 return field == INSTANT_SECONDS || field == NANO_OF_SECOND || field == MICRO_OF_SECOND || field == MILLI_OF_SECOND;
454 }
455 return field != null && field.isSupportedBy(this);
456 }
457
458 /**
459 * Checks if the specified unit is supported.
460 * <p>
461 * This checks if the specified unit can be added to, or subtracted from, this date-time.
462 * If false, then calling the {@link #plus(long, TemporalUnit)} and
463 * {@link #minus(long, TemporalUnit) minus} methods will throw an exception.
464 * <p>
465 * If the unit is a {@link ChronoUnit} then the query is implemented here.
466 * The supported units are:
467 * <ul>
468 * <li>{@code NANOS}
469 * <li>{@code MICROS}
470 * <li>{@code MILLIS}
471 * <li>{@code SECONDS}
472 * <li>{@code MINUTES}
473 * <li>{@code HOURS}
474 * <li>{@code HALF_DAYS}
475 * <li>{@code DAYS}
476 * </ul>
477 * All other {@code ChronoUnit} instances will return false.
478 * <p>
479 * If the unit is not a {@code ChronoUnit}, then the result of this method
480 * is obtained by invoking {@code TemporalUnit.isSupportedBy(Temporal)}
481 * passing {@code this} as the argument.
482 * Whether the unit is supported is determined by the unit.
483 *
484 * @param unit the unit to check, null returns false
485 * @return true if the unit can be added/subtracted, false if not
486 */
487 @Override
488 public boolean isSupported(TemporalUnit unit) {
489 if (unit instanceof ChronoUnit) {
490 return unit.isTimeBased() || unit == DAYS;
491 }
492 return unit != null && unit.isSupportedBy(this);
493 }
494
495 //-----------------------------------------------------------------------
496 /**
497 * Gets the range of valid values for the specified field.
498 * <p>
499 * The range object expresses the minimum and maximum valid values for a field.
500 * This instant is used to enhance the accuracy of the returned range.
501 * If it is not possible to return the range, because the field is not supported
502 * or for some other reason, an exception is thrown.
503 * <p>
504 * If the field is a {@link ChronoField} then the query is implemented here.
505 * The {@link #isSupported(TemporalField) supported fields} will return
506 * appropriate range instances.
507 * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
508 * <p>
509 * If the field is not a {@code ChronoField}, then the result of this method
510 * is obtained by invoking {@code TemporalField.rangeRefinedBy(TemporalAccessor)}
511 * passing {@code this} as the argument.
512 * Whether the range can be obtained is determined by the field.
513 *
514 * @param field the field to query the range for, not null
515 * @return the range of valid values for the field, not null
516 * @throws DateTimeException if the range for the field cannot be obtained
517 * @throws UnsupportedTemporalTypeException if the field is not supported
518 */
519 @Override // override for Javadoc
520 public ValueRange range(TemporalField field) {
521 return Temporal.super.range(field);
522 }
523
524 /**
525 * Gets the value of the specified field from this instant as an {@code int}.
526 * <p>
527 * This queries this instant for the value of the specified field.
528 * The returned value will always be within the valid range of values for the field.
529 * If it is not possible to return the value, because the field is not supported
530 * or for some other reason, an exception is thrown.
531 * <p>
532 * If the field is a {@link ChronoField} then the query is implemented here.
533 * The {@link #isSupported(TemporalField) supported fields} will return valid
534 * values based on this date-time, except {@code INSTANT_SECONDS} which is too
535 * large to fit in an {@code int} and throws a {@code DateTimeException}.
536 * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
537 * <p>
538 * If the field is not a {@code ChronoField}, then the result of this method
539 * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
540 * passing {@code this} as the argument. Whether the value can be obtained,
541 * and what the value represents, is determined by the field.
542 *
543 * @param field the field to get, not null
544 * @return the value for the field
545 * @throws DateTimeException if a value for the field cannot be obtained or
546 * the value is outside the range of valid values for the field
547 * @throws UnsupportedTemporalTypeException if the field is not supported or
548 * the range of values exceeds an {@code int}
549 * @throws ArithmeticException if numeric overflow occurs
550 */
551 @Override // override for Javadoc and performance
552 public int get(TemporalField field) {
553 if (field instanceof ChronoField) {
554 switch ((ChronoField) field) {
555 case NANO_OF_SECOND: return nanos;
556 case MICRO_OF_SECOND: return nanos / 1000;
557 case MILLI_OF_SECOND: return nanos / 1000_000;
558 case INSTANT_SECONDS: INSTANT_SECONDS.checkValidIntValue(seconds);
559 }
560 throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
561 }
562 return range(field).checkValidIntValue(field.getFrom(this), field);
563 }
564
565 /**
566 * Gets the value of the specified field from this instant as a {@code long}.
567 * <p>
568 * This queries this instant for the value of the specified field.
569 * If it is not possible to return the value, because the field is not supported
570 * or for some other reason, an exception is thrown.
571 * <p>
572 * If the field is a {@link ChronoField} then the query is implemented here.
573 * The {@link #isSupported(TemporalField) supported fields} will return valid
574 * values based on this date-time.
575 * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
576 * <p>
577 * If the field is not a {@code ChronoField}, then the result of this method
578 * is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
579 * passing {@code this} as the argument. Whether the value can be obtained,
580 * and what the value represents, is determined by the field.
581 *
582 * @param field the field to get, not null
583 * @return the value for the field
584 * @throws DateTimeException if a value for the field cannot be obtained
585 * @throws UnsupportedTemporalTypeException if the field is not supported
586 * @throws ArithmeticException if numeric overflow occurs
587 */
588 @Override
589 public long getLong(TemporalField field) {
590 if (field instanceof ChronoField) {
591 switch ((ChronoField) field) {
592 case NANO_OF_SECOND: return nanos;
593 case MICRO_OF_SECOND: return nanos / 1000;
594 case MILLI_OF_SECOND: return nanos / 1000_000;
595 case INSTANT_SECONDS: return seconds;
596 }
597 throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
598 }
599 return field.getFrom(this);
600 }
601
602 //-----------------------------------------------------------------------
603 /**
604 * Gets the number of seconds from the Java epoch of 1970-01-01T00:00:00Z.
605 * <p>
606 * The epoch second count is a simple incrementing count of seconds where
607 * second 0 is 1970-01-01T00:00:00Z.
608 * The nanosecond part of the day is returned by {@code getNanosOfSecond}.
609 *
610 * @return the seconds from the epoch of 1970-01-01T00:00:00Z
611 */
612 public long getEpochSecond() {
613 return seconds;
614 }
615
616 /**
617 * Gets the number of nanoseconds, later along the time-line, from the start
618 * of the second.
619 * <p>
620 * The nanosecond-of-second value measures the total number of nanoseconds from
621 * the second returned by {@code getEpochSecond}.
622 *
623 * @return the nanoseconds within the second, always positive, never exceeds 999,999,999
624 */
625 public int getNano() {
626 return nanos;
627 }
628
629 //-------------------------------------------------------------------------
630 /**
631 * Returns an adjusted copy of this instant.
632 * <p>
633 * This returns an {@code Instant}, based on this one, with the instant adjusted.
634 * The adjustment takes place using the specified adjuster strategy object.
635 * Read the documentation of the adjuster to understand what adjustment will be made.
636 * <p>
637 * The result of this method is obtained by invoking the
638 * {@link TemporalAdjuster#adjustInto(Temporal)} method on the
639 * specified adjuster passing {@code this} as the argument.
640 * <p>
641 * This instance is immutable and unaffected by this method call.
642 *
643 * @param adjuster the adjuster to use, not null
644 * @return an {@code Instant} based on {@code this} with the adjustment made, not null
645 * @throws DateTimeException if the adjustment cannot be made
646 * @throws ArithmeticException if numeric overflow occurs
647 */
648 @Override
649 public Instant with(TemporalAdjuster adjuster) {
650 return (Instant) adjuster.adjustInto(this);
651 }
652
653 /**
654 * Returns a copy of this instant with the specified field set to a new value.
655 * <p>
656 * This returns an {@code Instant}, based on this one, with the value
657 * for the specified field changed.
658 * If it is not possible to set the value, because the field is not supported or for
659 * some other reason, an exception is thrown.
660 * <p>
661 * If the field is a {@link ChronoField} then the adjustment is implemented here.
662 * The supported fields behave as follows:
663 * <ul>
664 * <li>{@code NANO_OF_SECOND} -
665 * Returns an {@code Instant} with the specified nano-of-second.
666 * The epoch-second will be unchanged.
667 * <li>{@code MICRO_OF_SECOND} -
668 * Returns an {@code Instant} with the nano-of-second replaced by the specified
669 * micro-of-second multiplied by 1,000. The epoch-second will be unchanged.
670 * <li>{@code MILLI_OF_SECOND} -
671 * Returns an {@code Instant} with the nano-of-second replaced by the specified
672 * milli-of-second multiplied by 1,000,000. The epoch-second will be unchanged.
673 * <li>{@code INSTANT_SECONDS} -
674 * Returns an {@code Instant} with the specified epoch-second.
675 * The nano-of-second will be unchanged.
676 * </ul>
677 * <p>
678 * In all cases, if the new value is outside the valid range of values for the field
679 * then a {@code DateTimeException} will be thrown.
680 * <p>
681 * All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
682 * <p>
683 * If the field is not a {@code ChronoField}, then the result of this method
684 * is obtained by invoking {@code TemporalField.adjustInto(Temporal, long)}
685 * passing {@code this} as the argument. In this case, the field determines
686 * whether and how to adjust the instant.
687 * <p>
688 * This instance is immutable and unaffected by this method call.
689 *
690 * @param field the field to set in the result, not null
691 * @param newValue the new value of the field in the result
692 * @return an {@code Instant} based on {@code this} with the specified field set, not null
693 * @throws DateTimeException if the field cannot be set
694 * @throws UnsupportedTemporalTypeException if the field is not supported
695 * @throws ArithmeticException if numeric overflow occurs
696 */
697 @Override
698 public Instant with(TemporalField field, long newValue) {
699 if (field instanceof ChronoField) {
700 ChronoField f = (ChronoField) field;
701 f.checkValidValue(newValue);
702 switch (f) {
703 case MILLI_OF_SECOND: {
704 int nval = (int) newValue * 1000_000;
705 return (nval != nanos ? create(seconds, nval) : this);
706 }
707 case MICRO_OF_SECOND: {
708 int nval = (int) newValue * 1000;
709 return (nval != nanos ? create(seconds, nval) : this);
710 }
711 case NANO_OF_SECOND: return (newValue != nanos ? create(seconds, (int) newValue) : this);
712 case INSTANT_SECONDS: return (newValue != seconds ? create(newValue, nanos) : this);
713 }
714 throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
715 }
716 return field.adjustInto(this, newValue);
717 }
718
719 //-----------------------------------------------------------------------
720 /**
721 * Returns a copy of this {@code Instant} truncated to the specified unit.
722 * <p>
723 * Truncating the instant returns a copy of the original with fields
724 * smaller than the specified unit set to zero.
725 * The fields are calculated on the basis of using a UTC offset as seen
726 * in {@code toString}.
727 * For example, truncating with the {@link ChronoUnit#MINUTES MINUTES} unit will
728 * round down to the nearest minute, setting the seconds and nanoseconds to zero.
729 * <p>
730 * The unit must have a {@linkplain TemporalUnit#getDuration() duration}
731 * that divides into the length of a standard day without remainder.
732 * This includes all supplied time units on {@link ChronoUnit} and
733 * {@link ChronoUnit#DAYS DAYS}. Other units throw an exception.
734 * <p>
735 * This instance is immutable and unaffected by this method call.
736 *
737 * @param unit the unit to truncate to, not null
738 * @return an {@code Instant} based on this instant with the time truncated, not null
739 * @throws DateTimeException if the unit is invalid for truncation
740 * @throws UnsupportedTemporalTypeException if the unit is not supported
741 */
742 public Instant truncatedTo(TemporalUnit unit) {
743 if (unit == ChronoUnit.NANOS) {
744 return this;
745 }
746 Duration unitDur = unit.getDuration();
747 if (unitDur.getSeconds() > LocalTime.SECONDS_PER_DAY) {
748 throw new UnsupportedTemporalTypeException("Unit is too large to be used for truncation");
749 }
750 long dur = unitDur.toNanos();
751 if ((LocalTime.NANOS_PER_DAY % dur) != 0) {
752 throw new UnsupportedTemporalTypeException("Unit must divide into a standard day without remainder");
753 }
754 long nod = (seconds % LocalTime.SECONDS_PER_DAY) * LocalTime.NANOS_PER_SECOND + nanos;
755 long result = (nod / dur) * dur;
756 return plusNanos(result - nod);
757 }
758
759 //-----------------------------------------------------------------------
760 /**
761 * Returns a copy of this instant with the specified amount added.
762 * <p>
763 * This returns an {@code Instant}, based on this one, with the specified amount added.
764 * The amount is typically {@link Duration} but may be any other type implementing
765 * the {@link TemporalAmount} interface.
766 * <p>
767 * The calculation is delegated to the amount object by calling
768 * {@link TemporalAmount#addTo(Temporal)}. The amount implementation is free
769 * to implement the addition in any way it wishes, however it typically
770 * calls back to {@link #plus(long, TemporalUnit)}. Consult the documentation
771 * of the amount implementation to determine if it can be successfully added.
772 * <p>
773 * This instance is immutable and unaffected by this method call.
774 *
775 * @param amountToAdd the amount to add, not null
776 * @return an {@code Instant} based on this instant with the addition made, not null
777 * @throws DateTimeException if the addition cannot be made
778 * @throws ArithmeticException if numeric overflow occurs
779 */
780 @Override
781 public Instant plus(TemporalAmount amountToAdd) {
782 return (Instant) amountToAdd.addTo(this);
783 }
784
785 /**
786 * Returns a copy of this instant with the specified amount added.
787 * <p>
788 * This returns an {@code Instant}, based on this one, with the amount
789 * in terms of the unit added. If it is not possible to add the amount, because the
790 * unit is not supported or for some other reason, an exception is thrown.
791 * <p>
792 * If the field is a {@link ChronoUnit} then the addition is implemented here.
793 * The supported fields behave as follows:
794 * <ul>
795 * <li>{@code NANOS} -
796 * Returns a {@code Instant} with the specified number of nanoseconds added.
797 * This is equivalent to {@link #plusNanos(long)}.
798 * <li>{@code MICROS} -
799 * Returns a {@code Instant} with the specified number of microseconds added.
800 * This is equivalent to {@link #plusNanos(long)} with the amount
801 * multiplied by 1,000.
802 * <li>{@code MILLIS} -
803 * Returns a {@code Instant} with the specified number of milliseconds added.
804 * This is equivalent to {@link #plusNanos(long)} with the amount
805 * multiplied by 1,000,000.
806 * <li>{@code SECONDS} -
807 * Returns a {@code Instant} with the specified number of seconds added.
808 * This is equivalent to {@link #plusSeconds(long)}.
809 * <li>{@code MINUTES} -
810 * Returns a {@code Instant} with the specified number of minutes added.
811 * This is equivalent to {@link #plusSeconds(long)} with the amount
812 * multiplied by 60.
813 * <li>{@code HOURS} -
814 * Returns a {@code Instant} with the specified number of hours added.
815 * This is equivalent to {@link #plusSeconds(long)} with the amount
816 * multiplied by 3,600.
817 * <li>{@code HALF_DAYS} -
818 * Returns a {@code Instant} with the specified number of half-days added.
819 * This is equivalent to {@link #plusSeconds(long)} with the amount
820 * multiplied by 43,200 (12 hours).
821 * <li>{@code DAYS} -
822 * Returns a {@code Instant} with the specified number of days added.
823 * This is equivalent to {@link #plusSeconds(long)} with the amount
824 * multiplied by 86,400 (24 hours).
825 * </ul>
826 * <p>
827 * All other {@code ChronoUnit} instances will throw an {@code UnsupportedTemporalTypeException}.
828 * <p>
829 * If the field is not a {@code ChronoUnit}, then the result of this method
830 * is obtained by invoking {@code TemporalUnit.addTo(Temporal, long)}
831 * passing {@code this} as the argument. In this case, the unit determines
832 * whether and how to perform the addition.
833 * <p>
834 * This instance is immutable and unaffected by this method call.
835 *
836 * @param amountToAdd the amount of the unit to add to the result, may be negative
837 * @param unit the unit of the amount to add, not null
838 * @return an {@code Instant} based on this instant with the specified amount added, not null
839 * @throws DateTimeException if the addition cannot be made
840 * @throws UnsupportedTemporalTypeException if the unit is not supported
841 * @throws ArithmeticException if numeric overflow occurs
842 */
843 @Override
844 public Instant plus(long amountToAdd, TemporalUnit unit) {
845 if (unit instanceof ChronoUnit) {
846 switch ((ChronoUnit) unit) {
847 case NANOS: return plusNanos(amountToAdd);
848 case MICROS: return plus(amountToAdd / 1000_000, (amountToAdd % 1000_000) * 1000);
849 case MILLIS: return plusMillis(amountToAdd);
850 case SECONDS: return plusSeconds(amountToAdd);
851 case MINUTES: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_MINUTE));
852 case HOURS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_HOUR));
853 case HALF_DAYS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY / 2));
854 case DAYS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY));
855 }
856 throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit);
857 }
858 return unit.addTo(this, amountToAdd);
859 }
860
861 //-----------------------------------------------------------------------
862 /**
863 * Returns a copy of this instant with the specified duration in seconds added.
864 * <p>
865 * This instance is immutable and unaffected by this method call.
866 *
867 * @param secondsToAdd the seconds to add, positive or negative
868 * @return an {@code Instant} based on this instant with the specified seconds added, not null
869 * @throws DateTimeException if the result exceeds the maximum or minimum instant
870 * @throws ArithmeticException if numeric overflow occurs
871 */
872 public Instant plusSeconds(long secondsToAdd) {
873 return plus(secondsToAdd, 0);
874 }
875
876 /**
877 * Returns a copy of this instant with the specified duration in milliseconds added.
878 * <p>
879 * This instance is immutable and unaffected by this method call.
880 *
881 * @param millisToAdd the milliseconds to add, positive or negative
882 * @return an {@code Instant} based on this instant with the specified milliseconds added, not null
883 * @throws DateTimeException if the result exceeds the maximum or minimum instant
884 * @throws ArithmeticException if numeric overflow occurs
885 */
886 public Instant plusMillis(long millisToAdd) {
887 return plus(millisToAdd / 1000, (millisToAdd % 1000) * 1000_000);
888 }
889
890 /**
891 * Returns a copy of this instant with the specified duration in nanoseconds added.
892 * <p>
893 * This instance is immutable and unaffected by this method call.
894 *
895 * @param nanosToAdd the nanoseconds to add, positive or negative
896 * @return an {@code Instant} based on this instant with the specified nanoseconds added, not null
897 * @throws DateTimeException if the result exceeds the maximum or minimum instant
898 * @throws ArithmeticException if numeric overflow occurs
899 */
900 public Instant plusNanos(long nanosToAdd) {
901 return plus(0, nanosToAdd);
902 }
903
904 /**
905 * Returns a copy of this instant with the specified duration added.
906 * <p>
907 * This instance is immutable and unaffected by this method call.
908 *
909 * @param secondsToAdd the seconds to add, positive or negative
910 * @param nanosToAdd the nanos to add, positive or negative
911 * @return an {@code Instant} based on this instant with the specified seconds added, not null
912 * @throws DateTimeException if the result exceeds the maximum or minimum instant
913 * @throws ArithmeticException if numeric overflow occurs
914 */
915 private Instant plus(long secondsToAdd, long nanosToAdd) {
916 if ((secondsToAdd | nanosToAdd) == 0) {
917 return this;
918 }
919 long epochSec = Math.addExact(seconds, secondsToAdd);
920 epochSec = Math.addExact(epochSec, nanosToAdd / NANOS_PER_SECOND);
921 nanosToAdd = nanosToAdd % NANOS_PER_SECOND;
922 long nanoAdjustment = nanos + nanosToAdd; // safe int+NANOS_PER_SECOND
923 return ofEpochSecond(epochSec, nanoAdjustment);
924 }
925
926 //-----------------------------------------------------------------------
927 /**
928 * Returns a copy of this instant with the specified amount subtracted.
929 * <p>
930 * This returns an {@code Instant}, based on this one, with the specified amount subtracted.
931 * The amount is typically {@link Duration} but may be any other type implementing
932 * the {@link TemporalAmount} interface.
933 * <p>
934 * The calculation is delegated to the amount object by calling
935 * {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
936 * to implement the subtraction in any way it wishes, however it typically
937 * calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
938 * of the amount implementation to determine if it can be successfully subtracted.
939 * <p>
940 * This instance is immutable and unaffected by this method call.
941 *
942 * @param amountToSubtract the amount to subtract, not null
943 * @return an {@code Instant} based on this instant with the subtraction made, not null
944 * @throws DateTimeException if the subtraction cannot be made
945 * @throws ArithmeticException if numeric overflow occurs
946 */
947 @Override
948 public Instant minus(TemporalAmount amountToSubtract) {
949 return (Instant) amountToSubtract.subtractFrom(this);
950 }
951
952 /**
953 * Returns a copy of this instant with the specified amount subtracted.
954 * <p>
955 * This returns a {@code Instant}, based on this one, with the amount
956 * in terms of the unit subtracted. If it is not possible to subtract the amount,
957 * because the unit is not supported or for some other reason, an exception is thrown.
958 * <p>
959 * This method is equivalent to {@link #plus(long, TemporalUnit)} with the amount negated.
960 * See that method for a full description of how addition, and thus subtraction, works.
961 * <p>
962 * This instance is immutable and unaffected by this method call.
963 *
964 * @param amountToSubtract the amount of the unit to subtract from the result, may be negative
965 * @param unit the unit of the amount to subtract, not null
966 * @return an {@code Instant} based on this instant with the specified amount subtracted, not null
967 * @throws DateTimeException if the subtraction cannot be made
968 * @throws UnsupportedTemporalTypeException if the unit is not supported
969 * @throws ArithmeticException if numeric overflow occurs
970 */
971 @Override
972 public Instant minus(long amountToSubtract, TemporalUnit unit) {
973 return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit));
974 }
975
976 //-----------------------------------------------------------------------
977 /**
978 * Returns a copy of this instant with the specified duration in seconds subtracted.
979 * <p>
980 * This instance is immutable and unaffected by this method call.
981 *
982 * @param secondsToSubtract the seconds to subtract, positive or negative
983 * @return an {@code Instant} based on this instant with the specified seconds subtracted, not null
984 * @throws DateTimeException if the result exceeds the maximum or minimum instant
985 * @throws ArithmeticException if numeric overflow occurs
986 */
987 public Instant minusSeconds(long secondsToSubtract) {
988 if (secondsToSubtract == Long.MIN_VALUE) {
989 return plusSeconds(Long.MAX_VALUE).plusSeconds(1);
990 }
991 return plusSeconds(-secondsToSubtract);
992 }
993
994 /**
995 * Returns a copy of this instant with the specified duration in milliseconds subtracted.
996 * <p>
997 * This instance is immutable and unaffected by this method call.
998 *
999 * @param millisToSubtract the milliseconds to subtract, positive or negative
1000 * @return an {@code Instant} based on this instant with the specified milliseconds subtracted, not null
1001 * @throws DateTimeException if the result exceeds the maximum or minimum instant
1002 * @throws ArithmeticException if numeric overflow occurs
1003 */
1004 public Instant minusMillis(long millisToSubtract) {
1005 if (millisToSubtract == Long.MIN_VALUE) {
1006 return plusMillis(Long.MAX_VALUE).plusMillis(1);
1007 }
1008 return plusMillis(-millisToSubtract);
1009 }
1010
1011 /**
1012 * Returns a copy of this instant with the specified duration in nanoseconds subtracted.
1013 * <p>
1014 * This instance is immutable and unaffected by this method call.
1015 *
1016 * @param nanosToSubtract the nanoseconds to subtract, positive or negative
1017 * @return an {@code Instant} based on this instant with the specified nanoseconds subtracted, not null
1018 * @throws DateTimeException if the result exceeds the maximum or minimum instant
1019 * @throws ArithmeticException if numeric overflow occurs
1020 */
1021 public Instant minusNanos(long nanosToSubtract) {
1022 if (nanosToSubtract == Long.MIN_VALUE) {
1023 return plusNanos(Long.MAX_VALUE).plusNanos(1);
1024 }
1025 return plusNanos(-nanosToSubtract);
1026 }
1027
1028 //-------------------------------------------------------------------------
1029 /**
1030 * Queries this instant using the specified query.
1031 * <p>
1032 * This queries this instant using the specified query strategy object.
1033 * The {@code TemporalQuery} object defines the logic to be used to
1034 * obtain the result. Read the documentation of the query to understand
1035 * what the result of this method will be.
1036 * <p>
1037 * The result of this method is obtained by invoking the
1038 * {@link TemporalQuery#queryFrom(TemporalAccessor)} method on the
1039 * specified query passing {@code this} as the argument.
1040 *
1041 * @param <R> the type of the result
1042 * @param query the query to invoke, not null
1043 * @return the query result, null may be returned (defined by the query)
1044 * @throws DateTimeException if unable to query (defined by the query)
1045 * @throws ArithmeticException if numeric overflow occurs (defined by the query)
1046 */
1047 @SuppressWarnings("unchecked")
1048 @Override
1049 public <R> R query(TemporalQuery<R> query) {
1050 if (query == TemporalQueries.precision()) {
1051 return (R) NANOS;
1052 }
1053 // inline TemporalAccessor.super.query(query) as an optimization
1054 if (query == TemporalQueries.chronology() || query == TemporalQueries.zoneId() ||
1055 query == TemporalQueries.zone() || query == TemporalQueries.offset() ||
1056 query == TemporalQueries.localDate() || query == TemporalQueries.localTime()) {
1057 return null;
1058 }
1059 return query.queryFrom(this);
1060 }
1061
1062 /**
1063 * Adjusts the specified temporal object to have this instant.
1064 * <p>
1065 * This returns a temporal object of the same observable type as the input
1066 * with the instant changed to be the same as this.
1067 * <p>
1068 * The adjustment is equivalent to using {@link Temporal#with(TemporalField, long)}
1069 * twice, passing {@link ChronoField#INSTANT_SECONDS} and
1070 * {@link ChronoField#NANO_OF_SECOND} as the fields.
1071 * <p>
1072 * In most cases, it is clearer to reverse the calling pattern by using
1073 * {@link Temporal#with(TemporalAdjuster)}:
1074 * <pre>
1075 * // these two lines are equivalent, but the second approach is recommended
1076 * temporal = thisInstant.adjustInto(temporal);
1077 * temporal = temporal.with(thisInstant);
1078 * </pre>
1079 * <p>
1080 * This instance is immutable and unaffected by this method call.
1081 *
1082 * @param temporal the target object to be adjusted, not null
1083 * @return the adjusted object, not null
1084 * @throws DateTimeException if unable to make the adjustment
1085 * @throws ArithmeticException if numeric overflow occurs
1086 */
1087 @Override
1088 public Temporal adjustInto(Temporal temporal) {
1089 return temporal.with(INSTANT_SECONDS, seconds).with(NANO_OF_SECOND, nanos);
1090 }
1091
1092 /**
1093 * Calculates the amount of time until another instant in terms of the specified unit.
1094 * <p>
1095 * This calculates the amount of time between two {@code Instant}
1096 * objects in terms of a single {@code TemporalUnit}.
1097 * The start and end points are {@code this} and the specified instant.
1098 * The result will be negative if the end is before the start.
1099 * The calculation returns a whole number, representing the number of
1100 * complete units between the two instants.
1101 * The {@code Temporal} passed to this method is converted to a
1102 * {@code Instant} using {@link #from(TemporalAccessor)}.
1103 * For example, the amount in days between two dates can be calculated
1104 * using {@code startInstant.until(endInstant, SECONDS)}.
1105 * <p>
1106 * There are two equivalent ways of using this method.
1107 * The first is to invoke this method.
1108 * The second is to use {@link TemporalUnit#between(Temporal, Temporal)}:
1109 * <pre>
1110 * // these two lines are equivalent
1111 * amount = start.until(end, SECONDS);
1112 * amount = SECONDS.between(start, end);
1113 * </pre>
1114 * The choice should be made based on which makes the code more readable.
1115 * <p>
1116 * The calculation is implemented in this method for {@link ChronoUnit}.
1117 * The units {@code NANOS}, {@code MICROS}, {@code MILLIS}, {@code SECONDS},
1118 * {@code MINUTES}, {@code HOURS}, {@code HALF_DAYS} and {@code DAYS}
1119 * are supported. Other {@code ChronoUnit} values will throw an exception.
1120 * <p>
1121 * If the unit is not a {@code ChronoUnit}, then the result of this method
1122 * is obtained by invoking {@code TemporalUnit.between(Temporal, Temporal)}
1123 * passing {@code this} as the first argument and the converted input temporal
1124 * as the second argument.
1125 * <p>
1126 * This instance is immutable and unaffected by this method call.
1127 *
1128 * @param endExclusive the end date, exclusive, which is converted to an {@code Instant}, not null
1129 * @param unit the unit to measure the amount in, not null
1130 * @return the amount of time between this instant and the end instant
1131 * @throws DateTimeException if the amount cannot be calculated, or the end
1132 * temporal cannot be converted to an {@code Instant}
1133 * @throws UnsupportedTemporalTypeException if the unit is not supported
1134 * @throws ArithmeticException if numeric overflow occurs
1135 */
1136 @Override
1137 public long until(Temporal endExclusive, TemporalUnit unit) {
1138 Instant end = Instant.from(endExclusive);
1139 if (unit instanceof ChronoUnit) {
1140 ChronoUnit f = (ChronoUnit) unit;
1141 switch (f) {
1142 case NANOS: return nanosUntil(end);
1143 case MICROS: return nanosUntil(end) / 1000;
1144 case MILLIS: return Math.subtractExact(end.toEpochMilli(), toEpochMilli());
1145 case SECONDS: return secondsUntil(end);
1146 case MINUTES: return secondsUntil(end) / SECONDS_PER_MINUTE;
1147 case HOURS: return secondsUntil(end) / SECONDS_PER_HOUR;
1148 case HALF_DAYS: return secondsUntil(end) / (12 * SECONDS_PER_HOUR);
1149 case DAYS: return secondsUntil(end) / (SECONDS_PER_DAY);
1150 }
1151 throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit);
1152 }
1153 return unit.between(this, end);
1154 }
1155
1156 private long nanosUntil(Instant end) {
1157 long secsDiff = Math.subtractExact(end.seconds, seconds);
1158 long totalNanos = Math.multiplyExact(secsDiff, NANOS_PER_SECOND);
1159 return Math.addExact(totalNanos, end.nanos - nanos);
1160 }
1161
1162 private long secondsUntil(Instant end) {
1163 long secsDiff = Math.subtractExact(end.seconds, seconds);
1164 long nanosDiff = end.nanos - nanos;
1165 if (secsDiff > 0 && nanosDiff < 0) {
1166 secsDiff--;
1167 } else if (secsDiff < 0 && nanosDiff > 0) {
1168 secsDiff++;
1169 }
1170 return secsDiff;
1171 }
1172
1173 //-----------------------------------------------------------------------
1174 /**
1175 * Combines this instant with an offset to create an {@code OffsetDateTime}.
1176 * <p>
1177 * This returns an {@code OffsetDateTime} formed from this instant at the
1178 * specified offset from UTC/Greenwich. An exception will be thrown if the
1179 * instant is too large to fit into an offset date-time.
1180 * <p>
1181 * This method is equivalent to
1182 * {@link OffsetDateTime#ofInstant(Instant, ZoneId) OffsetDateTime.ofInstant(this, offset)}.
1183 *
1184 * @param offset the offset to combine with, not null
1185 * @return the offset date-time formed from this instant and the specified offset, not null
1186 * @throws DateTimeException if the result exceeds the supported range
1187 */
1188 public OffsetDateTime atOffset(ZoneOffset offset) {
1189 return OffsetDateTime.ofInstant(this, offset);
1190 }
1191
1192 /**
1193 * Combines this instant with a time-zone to create a {@code ZonedDateTime}.
1194 * <p>
1195 * This returns an {@code ZonedDateTime} formed from this instant at the
1196 * specified time-zone. An exception will be thrown if the instant is too
1197 * large to fit into a zoned date-time.
1198 * <p>
1199 * This method is equivalent to
1200 * {@link ZonedDateTime#ofInstant(Instant, ZoneId) ZonedDateTime.ofInstant(this, zone)}.
1201 *
1202 * @param zone the zone to combine with, not null
1203 * @return the zoned date-time formed from this instant and the specified zone, not null
1204 * @throws DateTimeException if the result exceeds the supported range
1205 */
1206 public ZonedDateTime atZone(ZoneId zone) {
1207 return ZonedDateTime.ofInstant(this, zone);
1208 }
1209
1210 //-----------------------------------------------------------------------
1211 /**
1212 * Converts this instant to the number of milliseconds from the epoch
1213 * of 1970-01-01T00:00:00Z.
1214 * <p>
1215 * If this instant represents a point on the time-line too far in the future
1216 * or past to fit in a {@code long} milliseconds, then an exception is thrown.
1217 * <p>
1218 * If this instant has greater than millisecond precision, then the conversion
1219 * will drop any excess precision information as though the amount in nanoseconds
1220 * was subject to integer division by one million.
1221 *
1222 * @return the number of milliseconds since the epoch of 1970-01-01T00:00:00Z
1223 * @throws ArithmeticException if numeric overflow occurs
1224 */
1225 public long toEpochMilli() {
1226 if (seconds < 0 && nanos > 0) {
1227 long millis = Math.multiplyExact(seconds+1, 1000);
1228 long adjustment = nanos / 1000_000 - 1000;
1229 return Math.addExact(millis, adjustment);
1230 } else {
1231 long millis = Math.multiplyExact(seconds, 1000);
1232 return Math.addExact(millis, nanos / 1000_000);
1233 }
1234 }
1235
1236 //-----------------------------------------------------------------------
1237 /**
1238 * Compares this instant to the specified instant.
1239 * <p>
1240 * The comparison is based on the time-line position of the instants.
1241 * It is "consistent with equals", as defined by {@link Comparable}.
1242 *
1243 * @param otherInstant the other instant to compare to, not null
1244 * @return the comparator value, negative if less, positive if greater
1245 * @throws NullPointerException if otherInstant is null
1246 */
1247 @Override
1248 public int compareTo(Instant otherInstant) {
1249 int cmp = Long.compare(seconds, otherInstant.seconds);
1250 if (cmp != 0) {
1251 return cmp;
1252 }
1253 return nanos - otherInstant.nanos;
1254 }
1255
1256 /**
1257 * Checks if this instant is after the specified instant.
1258 * <p>
1259 * The comparison is based on the time-line position of the instants.
1260 *
1261 * @param otherInstant the other instant to compare to, not null
1262 * @return true if this instant is after the specified instant
1263 * @throws NullPointerException if otherInstant is null
1264 */
1265 public boolean isAfter(Instant otherInstant) {
1266 return compareTo(otherInstant) > 0;
1267 }
1268
1269 /**
1270 * Checks if this instant is before the specified instant.
1271 * <p>
1272 * The comparison is based on the time-line position of the instants.
1273 *
1274 * @param otherInstant the other instant to compare to, not null
1275 * @return true if this instant is before the specified instant
1276 * @throws NullPointerException if otherInstant is null
1277 */
1278 public boolean isBefore(Instant otherInstant) {
1279 return compareTo(otherInstant) < 0;
1280 }
1281
1282 //-----------------------------------------------------------------------
1283 /**
1284 * Checks if this instant is equal to the specified instant.
1285 * <p>
1286 * The comparison is based on the time-line position of the instants.
1287 *
1288 * @param otherInstant the other instant, null returns false
1289 * @return true if the other instant is equal to this one
1290 */
1291 @Override
1292 public boolean equals(Object otherInstant) {
1293 if (this == otherInstant) {
1294 return true;
1295 }
1296 if (otherInstant instanceof Instant) {
1297 Instant other = (Instant) otherInstant;
1298 return this.seconds == other.seconds &&
1299 this.nanos == other.nanos;
1300 }
1301 return false;
1302 }
1303
1304 /**
1305 * Returns a hash code for this instant.
1306 *
1307 * @return a suitable hash code
1308 */
1309 @Override
1310 public int hashCode() {
1311 return ((int) (seconds ^ (seconds >>> 32))) + 51 * nanos;
1312 }
1313
1314 //-----------------------------------------------------------------------
1315 /**
1316 * A string representation of this instant using ISO-8601 representation.
1317 * <p>
1318 * The format used is the same as {@link DateTimeFormatter#ISO_INSTANT}.
1319 *
1320 * @return an ISO-8601 representation of this instant, not null
1321 */
1322 @Override
1323 public String toString() {
1324 return DateTimeFormatter.ISO_INSTANT.format(this);
1325 }
1326
1327 // -----------------------------------------------------------------------
1328 /**
1329 * Writes the object using a
1330 * <a href="../../serialized-form.html#java.time.Ser">dedicated serialized form</a>.
1331 * @serialData
1332 * <pre>
1333 * out.writeByte(2); // identifies an Instant
1334 * out.writeLong(seconds);
1335 * out.writeInt(nanos);
1336 * </pre>
1337 *
1338 * @return the instance of {@code Ser}, not null
1339 */
1340 private Object writeReplace() {
1341 return new Ser(Ser.INSTANT_TYPE, this);
1342 }
1343
1344 /**
1345 * Defend against malicious streams.
1346 *
1347 * @param s the stream to read
1348 * @throws InvalidObjectException always
1349 */
1350 private void readObject(ObjectInputStream s) throws InvalidObjectException {
1351 throw new InvalidObjectException("Deserialization via serialization delegate");
1352 }
1353
1354 void writeExternal(DataOutput out) throws IOException {
1355 out.writeLong(seconds);
1356 out.writeInt(nanos);
1357 }
1358
1359 static Instant readExternal(DataInput in) throws IOException {
1360 long seconds = in.readLong();
1361 int nanos = in.readInt();
1362 return Instant.ofEpochSecond(seconds, nanos);
1363 }
1364
1365}