Alan Viverette | 3da604b | 2020-06-10 18:34:39 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2016 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | package android.util; |
| 18 | |
| 19 | import android.annotation.HalfFloat; |
| 20 | import android.annotation.NonNull; |
| 21 | import android.annotation.Nullable; |
| 22 | |
| 23 | import libcore.util.FP16; |
| 24 | |
| 25 | /** |
| 26 | * <p>The {@code Half} class is a wrapper and a utility class to manipulate half-precision 16-bit |
| 27 | * <a href="https://en.wikipedia.org/wiki/Half-precision_floating-point_format">IEEE 754</a> |
| 28 | * floating point data types (also called fp16 or binary16). A half-precision float can be |
| 29 | * created from or converted to single-precision floats, and is stored in a short data type. |
| 30 | * To distinguish short values holding half-precision floats from regular short values, |
| 31 | * it is recommended to use the <code>@HalfFloat</code> annotation.</p> |
| 32 | * |
| 33 | * <p>The IEEE 754 standard specifies an fp16 as having the following format:</p> |
| 34 | * <ul> |
| 35 | * <li>Sign bit: 1 bit</li> |
| 36 | * <li>Exponent width: 5 bits</li> |
| 37 | * <li>Significand: 10 bits</li> |
| 38 | * </ul> |
| 39 | * |
| 40 | * <p>The format is laid out as follows:</p> |
| 41 | * <pre> |
| 42 | * 1 11111 1111111111 |
| 43 | * ^ --^-- -----^---- |
| 44 | * sign | |_______ significand |
| 45 | * | |
| 46 | * -- exponent |
| 47 | * </pre> |
| 48 | * |
| 49 | * <p>Half-precision floating points can be useful to save memory and/or |
| 50 | * bandwidth at the expense of range and precision when compared to single-precision |
| 51 | * floating points (fp32).</p> |
| 52 | * <p>To help you decide whether fp16 is the right storage type for you need, please |
| 53 | * refer to the table below that shows the available precision throughout the range of |
| 54 | * possible values. The <em>precision</em> column indicates the step size between two |
| 55 | * consecutive numbers in a specific part of the range.</p> |
| 56 | * |
| 57 | * <table summary="Precision of fp16 across the range"> |
| 58 | * <tr><th>Range start</th><th>Precision</th></tr> |
| 59 | * <tr><td>0</td><td>1 ⁄ 16,777,216</td></tr> |
| 60 | * <tr><td>1 ⁄ 16,384</td><td>1 ⁄ 16,777,216</td></tr> |
| 61 | * <tr><td>1 ⁄ 8,192</td><td>1 ⁄ 8,388,608</td></tr> |
| 62 | * <tr><td>1 ⁄ 4,096</td><td>1 ⁄ 4,194,304</td></tr> |
| 63 | * <tr><td>1 ⁄ 2,048</td><td>1 ⁄ 2,097,152</td></tr> |
| 64 | * <tr><td>1 ⁄ 1,024</td><td>1 ⁄ 1,048,576</td></tr> |
| 65 | * <tr><td>1 ⁄ 512</td><td>1 ⁄ 524,288</td></tr> |
| 66 | * <tr><td>1 ⁄ 256</td><td>1 ⁄ 262,144</td></tr> |
| 67 | * <tr><td>1 ⁄ 128</td><td>1 ⁄ 131,072</td></tr> |
| 68 | * <tr><td>1 ⁄ 64</td><td>1 ⁄ 65,536</td></tr> |
| 69 | * <tr><td>1 ⁄ 32</td><td>1 ⁄ 32,768</td></tr> |
| 70 | * <tr><td>1 ⁄ 16</td><td>1 ⁄ 16,384</td></tr> |
| 71 | * <tr><td>1 ⁄ 8</td><td>1 ⁄ 8,192</td></tr> |
| 72 | * <tr><td>1 ⁄ 4</td><td>1 ⁄ 4,096</td></tr> |
| 73 | * <tr><td>1 ⁄ 2</td><td>1 ⁄ 2,048</td></tr> |
| 74 | * <tr><td>1</td><td>1 ⁄ 1,024</td></tr> |
| 75 | * <tr><td>2</td><td>1 ⁄ 512</td></tr> |
| 76 | * <tr><td>4</td><td>1 ⁄ 256</td></tr> |
| 77 | * <tr><td>8</td><td>1 ⁄ 128</td></tr> |
| 78 | * <tr><td>16</td><td>1 ⁄ 64</td></tr> |
| 79 | * <tr><td>32</td><td>1 ⁄ 32</td></tr> |
| 80 | * <tr><td>64</td><td>1 ⁄ 16</td></tr> |
| 81 | * <tr><td>128</td><td>1 ⁄ 8</td></tr> |
| 82 | * <tr><td>256</td><td>1 ⁄ 4</td></tr> |
| 83 | * <tr><td>512</td><td>1 ⁄ 2</td></tr> |
| 84 | * <tr><td>1,024</td><td>1</td></tr> |
| 85 | * <tr><td>2,048</td><td>2</td></tr> |
| 86 | * <tr><td>4,096</td><td>4</td></tr> |
| 87 | * <tr><td>8,192</td><td>8</td></tr> |
| 88 | * <tr><td>16,384</td><td>16</td></tr> |
| 89 | * <tr><td>32,768</td><td>32</td></tr> |
| 90 | * </table> |
| 91 | * |
| 92 | * <p>This table shows that numbers higher than 1024 lose all fractional precision.</p> |
| 93 | */ |
| 94 | @SuppressWarnings("SimplifiableIfStatement") |
| 95 | public final class Half extends Number implements Comparable<Half> { |
| 96 | /** |
| 97 | * The number of bits used to represent a half-precision float value. |
| 98 | */ |
| 99 | public static final int SIZE = 16; |
| 100 | |
| 101 | /** |
| 102 | * Epsilon is the difference between 1.0 and the next value representable |
| 103 | * by a half-precision floating-point. |
| 104 | */ |
| 105 | public static final @HalfFloat short EPSILON = (short) 0x1400; |
| 106 | |
| 107 | /** |
| 108 | * Maximum exponent a finite half-precision float may have. |
| 109 | */ |
| 110 | public static final int MAX_EXPONENT = 15; |
| 111 | /** |
| 112 | * Minimum exponent a normalized half-precision float may have. |
| 113 | */ |
| 114 | public static final int MIN_EXPONENT = -14; |
| 115 | |
| 116 | /** |
| 117 | * Smallest negative value a half-precision float may have. |
| 118 | */ |
| 119 | public static final @HalfFloat short LOWEST_VALUE = (short) 0xfbff; |
| 120 | /** |
| 121 | * Maximum positive finite value a half-precision float may have. |
| 122 | */ |
| 123 | public static final @HalfFloat short MAX_VALUE = (short) 0x7bff; |
| 124 | /** |
| 125 | * Smallest positive normal value a half-precision float may have. |
| 126 | */ |
| 127 | public static final @HalfFloat short MIN_NORMAL = (short) 0x0400; |
| 128 | /** |
| 129 | * Smallest positive non-zero value a half-precision float may have. |
| 130 | */ |
| 131 | public static final @HalfFloat short MIN_VALUE = (short) 0x0001; |
| 132 | /** |
| 133 | * A Not-a-Number representation of a half-precision float. |
| 134 | */ |
| 135 | public static final @HalfFloat short NaN = (short) 0x7e00; |
| 136 | /** |
| 137 | * Negative infinity of type half-precision float. |
| 138 | */ |
| 139 | public static final @HalfFloat short NEGATIVE_INFINITY = (short) 0xfc00; |
| 140 | /** |
| 141 | * Negative 0 of type half-precision float. |
| 142 | */ |
| 143 | public static final @HalfFloat short NEGATIVE_ZERO = (short) 0x8000; |
| 144 | /** |
| 145 | * Positive infinity of type half-precision float. |
| 146 | */ |
| 147 | public static final @HalfFloat short POSITIVE_INFINITY = (short) 0x7c00; |
| 148 | /** |
| 149 | * Positive 0 of type half-precision float. |
| 150 | */ |
| 151 | public static final @HalfFloat short POSITIVE_ZERO = (short) 0x0000; |
| 152 | |
| 153 | private final @HalfFloat short mValue; |
| 154 | |
| 155 | /** |
| 156 | * Constructs a newly allocated {@code Half} object that represents the |
| 157 | * half-precision float type argument. |
| 158 | * |
| 159 | * @param value The value to be represented by the {@code Half} |
| 160 | */ |
| 161 | public Half(@HalfFloat short value) { |
| 162 | mValue = value; |
| 163 | } |
| 164 | |
| 165 | /** |
| 166 | * Constructs a newly allocated {@code Half} object that represents the |
| 167 | * argument converted to a half-precision float. |
| 168 | * |
| 169 | * @param value The value to be represented by the {@code Half} |
| 170 | * |
| 171 | * @see #toHalf(float) |
| 172 | */ |
| 173 | public Half(float value) { |
| 174 | mValue = toHalf(value); |
| 175 | } |
| 176 | |
| 177 | /** |
| 178 | * Constructs a newly allocated {@code Half} object that |
| 179 | * represents the argument converted to a half-precision float. |
| 180 | * |
| 181 | * @param value The value to be represented by the {@code Half} |
| 182 | * |
| 183 | * @see #toHalf(float) |
| 184 | */ |
| 185 | public Half(double value) { |
| 186 | mValue = toHalf((float) value); |
| 187 | } |
| 188 | |
| 189 | /** |
| 190 | * <p>Constructs a newly allocated {@code Half} object that represents the |
| 191 | * half-precision float value represented by the string. |
| 192 | * The string is converted to a half-precision float value as if by the |
| 193 | * {@link #valueOf(String)} method.</p> |
| 194 | * |
| 195 | * <p>Calling this constructor is equivalent to calling:</p> |
| 196 | * <pre> |
| 197 | * new Half(Float.parseFloat(value)) |
| 198 | * </pre> |
| 199 | * |
| 200 | * @param value A string to be converted to a {@code Half} |
| 201 | * @throws NumberFormatException if the string does not contain a parsable number |
| 202 | * |
| 203 | * @see Float#valueOf(java.lang.String) |
| 204 | * @see #toHalf(float) |
| 205 | */ |
| 206 | public Half(@NonNull String value) throws NumberFormatException { |
| 207 | mValue = toHalf(Float.parseFloat(value)); |
| 208 | } |
| 209 | |
| 210 | /** |
| 211 | * Returns the half-precision value of this {@code Half} as a {@code short} |
| 212 | * containing the bit representation described in {@link Half}. |
| 213 | * |
| 214 | * @return The half-precision float value represented by this object |
| 215 | */ |
| 216 | public @HalfFloat short halfValue() { |
| 217 | return mValue; |
| 218 | } |
| 219 | |
| 220 | /** |
| 221 | * Returns the value of this {@code Half} as a {@code byte} after |
| 222 | * a narrowing primitive conversion. |
| 223 | * |
| 224 | * @return The half-precision float value represented by this object |
| 225 | * converted to type {@code byte} |
| 226 | */ |
| 227 | @Override |
| 228 | public byte byteValue() { |
| 229 | return (byte) toFloat(mValue); |
| 230 | } |
| 231 | |
| 232 | /** |
| 233 | * Returns the value of this {@code Half} as a {@code short} after |
| 234 | * a narrowing primitive conversion. |
| 235 | * |
| 236 | * @return The half-precision float value represented by this object |
| 237 | * converted to type {@code short} |
| 238 | */ |
| 239 | @Override |
| 240 | public short shortValue() { |
| 241 | return (short) toFloat(mValue); |
| 242 | } |
| 243 | |
| 244 | /** |
| 245 | * Returns the value of this {@code Half} as a {@code int} after |
| 246 | * a narrowing primitive conversion. |
| 247 | * |
| 248 | * @return The half-precision float value represented by this object |
| 249 | * converted to type {@code int} |
| 250 | */ |
| 251 | @Override |
| 252 | public int intValue() { |
| 253 | return (int) toFloat(mValue); |
| 254 | } |
| 255 | |
| 256 | /** |
| 257 | * Returns the value of this {@code Half} as a {@code long} after |
| 258 | * a narrowing primitive conversion. |
| 259 | * |
| 260 | * @return The half-precision float value represented by this object |
| 261 | * converted to type {@code long} |
| 262 | */ |
| 263 | @Override |
| 264 | public long longValue() { |
| 265 | return (long) toFloat(mValue); |
| 266 | } |
| 267 | |
| 268 | /** |
| 269 | * Returns the value of this {@code Half} as a {@code float} after |
| 270 | * a widening primitive conversion. |
| 271 | * |
| 272 | * @return The half-precision float value represented by this object |
| 273 | * converted to type {@code float} |
| 274 | */ |
| 275 | @Override |
| 276 | public float floatValue() { |
| 277 | return toFloat(mValue); |
| 278 | } |
| 279 | |
| 280 | /** |
| 281 | * Returns the value of this {@code Half} as a {@code double} after |
| 282 | * a widening primitive conversion. |
| 283 | * |
| 284 | * @return The half-precision float value represented by this object |
| 285 | * converted to type {@code double} |
| 286 | */ |
| 287 | @Override |
| 288 | public double doubleValue() { |
| 289 | return toFloat(mValue); |
| 290 | } |
| 291 | |
| 292 | /** |
| 293 | * Returns true if this {@code Half} value represents a Not-a-Number, |
| 294 | * false otherwise. |
| 295 | * |
| 296 | * @return True if the value is a NaN, false otherwise |
| 297 | */ |
| 298 | public boolean isNaN() { |
| 299 | return isNaN(mValue); |
| 300 | } |
| 301 | |
| 302 | /** |
| 303 | * Compares this object against the specified object. The result is {@code true} |
| 304 | * if and only if the argument is not {@code null} and is a {@code Half} object |
| 305 | * that represents the same half-precision value as the this object. Two |
| 306 | * half-precision values are considered to be the same if and only if the method |
| 307 | * {@link #halfToIntBits(short)} returns an identical {@code int} value for both. |
| 308 | * |
| 309 | * @param o The object to compare |
| 310 | * @return True if the objects are the same, false otherwise |
| 311 | * |
| 312 | * @see #halfToIntBits(short) |
| 313 | */ |
| 314 | @Override |
| 315 | public boolean equals(@Nullable Object o) { |
| 316 | return (o instanceof Half) && |
| 317 | (halfToIntBits(((Half) o).mValue) == halfToIntBits(mValue)); |
| 318 | } |
| 319 | |
| 320 | /** |
| 321 | * Returns a hash code for this {@code Half} object. The result is the |
| 322 | * integer bit representation, exactly as produced by the method |
| 323 | * {@link #halfToIntBits(short)}, of the primitive half-precision float |
| 324 | * value represented by this {@code Half} object. |
| 325 | * |
| 326 | * @return A hash code value for this object |
| 327 | */ |
| 328 | @Override |
| 329 | public int hashCode() { |
| 330 | return hashCode(mValue); |
| 331 | } |
| 332 | |
| 333 | /** |
| 334 | * Returns a string representation of the specified half-precision |
| 335 | * float value. See {@link #toString(short)} for more information. |
| 336 | * |
| 337 | * @return A string representation of this {@code Half} object |
| 338 | */ |
| 339 | @NonNull |
| 340 | @Override |
| 341 | public String toString() { |
| 342 | return toString(mValue); |
| 343 | } |
| 344 | |
| 345 | /** |
| 346 | * <p>Compares the two specified half-precision float values. The following |
| 347 | * conditions apply during the comparison:</p> |
| 348 | * |
| 349 | * <ul> |
| 350 | * <li>{@link #NaN} is considered by this method to be equal to itself and greater |
| 351 | * than all other half-precision float values (including {@code #POSITIVE_INFINITY})</li> |
| 352 | * <li>{@link #POSITIVE_ZERO} is considered by this method to be greater than |
| 353 | * {@link #NEGATIVE_ZERO}.</li> |
| 354 | * </ul> |
| 355 | * |
| 356 | * @param h The half-precision float value to compare to the half-precision value |
| 357 | * represented by this {@code Half} object |
| 358 | * |
| 359 | * @return The value {@code 0} if {@code x} is numerically equal to {@code y}; a |
| 360 | * value less than {@code 0} if {@code x} is numerically less than {@code y}; |
| 361 | * and a value greater than {@code 0} if {@code x} is numerically greater |
| 362 | * than {@code y} |
| 363 | */ |
| 364 | @Override |
| 365 | public int compareTo(@NonNull Half h) { |
| 366 | return compare(mValue, h.mValue); |
| 367 | } |
| 368 | |
| 369 | /** |
| 370 | * Returns a hash code for a half-precision float value. |
| 371 | * |
| 372 | * @param h The value to hash |
| 373 | * |
| 374 | * @return A hash code value for a half-precision float value |
| 375 | */ |
| 376 | public static int hashCode(@HalfFloat short h) { |
| 377 | return halfToIntBits(h); |
| 378 | } |
| 379 | |
| 380 | /** |
| 381 | * <p>Compares the two specified half-precision float values. The following |
| 382 | * conditions apply during the comparison:</p> |
| 383 | * |
| 384 | * <ul> |
| 385 | * <li>{@link #NaN} is considered by this method to be equal to itself and greater |
| 386 | * than all other half-precision float values (including {@code #POSITIVE_INFINITY})</li> |
| 387 | * <li>{@link #POSITIVE_ZERO} is considered by this method to be greater than |
| 388 | * {@link #NEGATIVE_ZERO}.</li> |
| 389 | * </ul> |
| 390 | * |
| 391 | * @param x The first half-precision float value to compare. |
| 392 | * @param y The second half-precision float value to compare |
| 393 | * |
| 394 | * @return The value {@code 0} if {@code x} is numerically equal to {@code y}, a |
| 395 | * value less than {@code 0} if {@code x} is numerically less than {@code y}, |
| 396 | * and a value greater than {@code 0} if {@code x} is numerically greater |
| 397 | * than {@code y} |
| 398 | */ |
| 399 | public static int compare(@HalfFloat short x, @HalfFloat short y) { |
| 400 | return FP16.compare(x, y); |
| 401 | } |
| 402 | |
| 403 | /** |
| 404 | * <p>Returns a representation of the specified half-precision float value |
| 405 | * according to the bit layout described in {@link Half}.</p> |
| 406 | * |
| 407 | * <p>Similar to {@link #halfToIntBits(short)}, this method collapses all |
| 408 | * possible Not-a-Number values to a single canonical Not-a-Number value |
| 409 | * defined by {@link #NaN}.</p> |
| 410 | * |
| 411 | * @param h A half-precision float value |
| 412 | * @return The bits that represent the half-precision float value |
| 413 | * |
| 414 | * @see #halfToIntBits(short) |
| 415 | */ |
| 416 | public static @HalfFloat short halfToShortBits(@HalfFloat short h) { |
| 417 | return (h & FP16.EXPONENT_SIGNIFICAND_MASK) > FP16.POSITIVE_INFINITY ? NaN : h; |
| 418 | } |
| 419 | |
| 420 | /** |
| 421 | * <p>Returns a representation of the specified half-precision float value |
| 422 | * according to the bit layout described in {@link Half}.</p> |
| 423 | * |
| 424 | * <p>Unlike {@link #halfToRawIntBits(short)}, this method collapses all |
| 425 | * possible Not-a-Number values to a single canonical Not-a-Number value |
| 426 | * defined by {@link #NaN}.</p> |
| 427 | * |
| 428 | * @param h A half-precision float value |
| 429 | * @return The bits that represent the half-precision float value |
| 430 | * |
| 431 | * @see #halfToRawIntBits(short) |
| 432 | * @see #halfToShortBits(short) |
| 433 | * @see #intBitsToHalf(int) |
| 434 | */ |
| 435 | public static int halfToIntBits(@HalfFloat short h) { |
| 436 | return (h & FP16.EXPONENT_SIGNIFICAND_MASK) > FP16.POSITIVE_INFINITY ? NaN : h & 0xffff; |
| 437 | } |
| 438 | |
| 439 | /** |
| 440 | * <p>Returns a representation of the specified half-precision float value |
| 441 | * according to the bit layout described in {@link Half}.</p> |
| 442 | * |
| 443 | * <p>The argument is considered to be a representation of a half-precision |
| 444 | * float value according to the bit layout described in {@link Half}. The 16 |
| 445 | * most significant bits of the returned value are set to 0.</p> |
| 446 | * |
| 447 | * @param h A half-precision float value |
| 448 | * @return The bits that represent the half-precision float value |
| 449 | * |
| 450 | * @see #halfToIntBits(short) |
| 451 | * @see #intBitsToHalf(int) |
| 452 | */ |
| 453 | public static int halfToRawIntBits(@HalfFloat short h) { |
| 454 | return h & 0xffff; |
| 455 | } |
| 456 | |
| 457 | /** |
| 458 | * <p>Returns the half-precision float value corresponding to a given |
| 459 | * bit representation.</p> |
| 460 | * |
| 461 | * <p>The argument is considered to be a representation of a half-precision |
| 462 | * float value according to the bit layout described in {@link Half}. The 16 |
| 463 | * most significant bits of the argument are ignored.</p> |
| 464 | * |
| 465 | * @param bits An integer |
| 466 | * @return The half-precision float value with the same bit pattern |
| 467 | */ |
| 468 | public static @HalfFloat short intBitsToHalf(int bits) { |
| 469 | return (short) (bits & 0xffff); |
| 470 | } |
| 471 | |
| 472 | /** |
| 473 | * Returns the first parameter with the sign of the second parameter. |
| 474 | * This method treats NaNs as having a sign. |
| 475 | * |
| 476 | * @param magnitude A half-precision float value providing the magnitude of the result |
| 477 | * @param sign A half-precision float value providing the sign of the result |
| 478 | * @return A value with the magnitude of the first parameter and the sign |
| 479 | * of the second parameter |
| 480 | */ |
| 481 | public static @HalfFloat short copySign(@HalfFloat short magnitude, @HalfFloat short sign) { |
| 482 | return (short) ((sign & FP16.SIGN_MASK) | (magnitude & FP16.EXPONENT_SIGNIFICAND_MASK)); |
| 483 | } |
| 484 | |
| 485 | /** |
| 486 | * Returns the absolute value of the specified half-precision float. |
| 487 | * Special values are handled in the following ways: |
| 488 | * <ul> |
| 489 | * <li>If the specified half-precision float is NaN, the result is NaN</li> |
| 490 | * <li>If the specified half-precision float is zero (negative or positive), |
| 491 | * the result is positive zero (see {@link #POSITIVE_ZERO})</li> |
| 492 | * <li>If the specified half-precision float is infinity (negative or positive), |
| 493 | * the result is positive infinity (see {@link #POSITIVE_INFINITY})</li> |
| 494 | * </ul> |
| 495 | * |
| 496 | * @param h A half-precision float value |
| 497 | * @return The absolute value of the specified half-precision float |
| 498 | */ |
| 499 | public static @HalfFloat short abs(@HalfFloat short h) { |
| 500 | return (short) (h & FP16.EXPONENT_SIGNIFICAND_MASK); |
| 501 | } |
| 502 | |
| 503 | /** |
| 504 | * Returns the closest integral half-precision float value to the specified |
| 505 | * half-precision float value. Special values are handled in the |
| 506 | * following ways: |
| 507 | * <ul> |
| 508 | * <li>If the specified half-precision float is NaN, the result is NaN</li> |
| 509 | * <li>If the specified half-precision float is infinity (negative or positive), |
| 510 | * the result is infinity (with the same sign)</li> |
| 511 | * <li>If the specified half-precision float is zero (negative or positive), |
| 512 | * the result is zero (with the same sign)</li> |
| 513 | * </ul> |
| 514 | * |
| 515 | * <p class=note> |
| 516 | * <strong>Note:</strong> Unlike the identically named |
| 517 | * <code class=prettyprint>int java.lang.Math.round(float)</code> method, |
| 518 | * this returns a Half value stored in a short, <strong>not</strong> an |
| 519 | * actual short integer result. |
| 520 | * |
| 521 | * @param h A half-precision float value |
| 522 | * @return The value of the specified half-precision float rounded to the nearest |
| 523 | * half-precision float value |
| 524 | */ |
| 525 | public static @HalfFloat short round(@HalfFloat short h) { |
| 526 | return FP16.rint(h); |
| 527 | } |
| 528 | |
| 529 | /** |
| 530 | * Returns the smallest half-precision float value toward negative infinity |
| 531 | * greater than or equal to the specified half-precision float value. |
| 532 | * Special values are handled in the following ways: |
| 533 | * <ul> |
| 534 | * <li>If the specified half-precision float is NaN, the result is NaN</li> |
| 535 | * <li>If the specified half-precision float is infinity (negative or positive), |
| 536 | * the result is infinity (with the same sign)</li> |
| 537 | * <li>If the specified half-precision float is zero (negative or positive), |
| 538 | * the result is zero (with the same sign)</li> |
| 539 | * </ul> |
| 540 | * |
| 541 | * @param h A half-precision float value |
| 542 | * @return The smallest half-precision float value toward negative infinity |
| 543 | * greater than or equal to the specified half-precision float value |
| 544 | */ |
| 545 | public static @HalfFloat short ceil(@HalfFloat short h) { |
| 546 | return FP16.ceil(h); |
| 547 | } |
| 548 | |
| 549 | /** |
| 550 | * Returns the largest half-precision float value toward positive infinity |
| 551 | * less than or equal to the specified half-precision float value. |
| 552 | * Special values are handled in the following ways: |
| 553 | * <ul> |
| 554 | * <li>If the specified half-precision float is NaN, the result is NaN</li> |
| 555 | * <li>If the specified half-precision float is infinity (negative or positive), |
| 556 | * the result is infinity (with the same sign)</li> |
| 557 | * <li>If the specified half-precision float is zero (negative or positive), |
| 558 | * the result is zero (with the same sign)</li> |
| 559 | * </ul> |
| 560 | * |
| 561 | * @param h A half-precision float value |
| 562 | * @return The largest half-precision float value toward positive infinity |
| 563 | * less than or equal to the specified half-precision float value |
| 564 | */ |
| 565 | public static @HalfFloat short floor(@HalfFloat short h) { |
| 566 | return FP16.floor(h); |
| 567 | } |
| 568 | |
| 569 | /** |
| 570 | * Returns the truncated half-precision float value of the specified |
| 571 | * half-precision float value. Special values are handled in the following ways: |
| 572 | * <ul> |
| 573 | * <li>If the specified half-precision float is NaN, the result is NaN</li> |
| 574 | * <li>If the specified half-precision float is infinity (negative or positive), |
| 575 | * the result is infinity (with the same sign)</li> |
| 576 | * <li>If the specified half-precision float is zero (negative or positive), |
| 577 | * the result is zero (with the same sign)</li> |
| 578 | * </ul> |
| 579 | * |
| 580 | * @param h A half-precision float value |
| 581 | * @return The truncated half-precision float value of the specified |
| 582 | * half-precision float value |
| 583 | */ |
| 584 | public static @HalfFloat short trunc(@HalfFloat short h) { |
| 585 | return FP16.trunc(h); |
| 586 | } |
| 587 | |
| 588 | /** |
| 589 | * Returns the smaller of two half-precision float values (the value closest |
| 590 | * to negative infinity). Special values are handled in the following ways: |
| 591 | * <ul> |
| 592 | * <li>If either value is NaN, the result is NaN</li> |
| 593 | * <li>{@link #NEGATIVE_ZERO} is smaller than {@link #POSITIVE_ZERO}</li> |
| 594 | * </ul> |
| 595 | * |
| 596 | * @param x The first half-precision value |
| 597 | * @param y The second half-precision value |
| 598 | * @return The smaller of the two specified half-precision values |
| 599 | */ |
| 600 | public static @HalfFloat short min(@HalfFloat short x, @HalfFloat short y) { |
| 601 | return FP16.min(x, y); |
| 602 | } |
| 603 | |
| 604 | /** |
| 605 | * Returns the larger of two half-precision float values (the value closest |
| 606 | * to positive infinity). Special values are handled in the following ways: |
| 607 | * <ul> |
| 608 | * <li>If either value is NaN, the result is NaN</li> |
| 609 | * <li>{@link #POSITIVE_ZERO} is greater than {@link #NEGATIVE_ZERO}</li> |
| 610 | * </ul> |
| 611 | * |
| 612 | * @param x The first half-precision value |
| 613 | * @param y The second half-precision value |
| 614 | * |
| 615 | * @return The larger of the two specified half-precision values |
| 616 | */ |
| 617 | public static @HalfFloat short max(@HalfFloat short x, @HalfFloat short y) { |
| 618 | return FP16.max(x, y); |
| 619 | } |
| 620 | |
| 621 | /** |
| 622 | * Returns true if the first half-precision float value is less (smaller |
| 623 | * toward negative infinity) than the second half-precision float value. |
| 624 | * If either of the values is NaN, the result is false. |
| 625 | * |
| 626 | * @param x The first half-precision value |
| 627 | * @param y The second half-precision value |
| 628 | * |
| 629 | * @return True if x is less than y, false otherwise |
| 630 | */ |
| 631 | public static boolean less(@HalfFloat short x, @HalfFloat short y) { |
| 632 | return FP16.less(x, y); |
| 633 | } |
| 634 | |
| 635 | /** |
| 636 | * Returns true if the first half-precision float value is less (smaller |
| 637 | * toward negative infinity) than or equal to the second half-precision |
| 638 | * float value. If either of the values is NaN, the result is false. |
| 639 | * |
| 640 | * @param x The first half-precision value |
| 641 | * @param y The second half-precision value |
| 642 | * |
| 643 | * @return True if x is less than or equal to y, false otherwise |
| 644 | */ |
| 645 | public static boolean lessEquals(@HalfFloat short x, @HalfFloat short y) { |
| 646 | return FP16.lessEquals(x, y); |
| 647 | } |
| 648 | |
| 649 | /** |
| 650 | * Returns true if the first half-precision float value is greater (larger |
| 651 | * toward positive infinity) than the second half-precision float value. |
| 652 | * If either of the values is NaN, the result is false. |
| 653 | * |
| 654 | * @param x The first half-precision value |
| 655 | * @param y The second half-precision value |
| 656 | * |
| 657 | * @return True if x is greater than y, false otherwise |
| 658 | */ |
| 659 | public static boolean greater(@HalfFloat short x, @HalfFloat short y) { |
| 660 | return FP16.greater(x, y); |
| 661 | } |
| 662 | |
| 663 | /** |
| 664 | * Returns true if the first half-precision float value is greater (larger |
| 665 | * toward positive infinity) than or equal to the second half-precision float |
| 666 | * value. If either of the values is NaN, the result is false. |
| 667 | * |
| 668 | * @param x The first half-precision value |
| 669 | * @param y The second half-precision value |
| 670 | * |
| 671 | * @return True if x is greater than y, false otherwise |
| 672 | */ |
| 673 | public static boolean greaterEquals(@HalfFloat short x, @HalfFloat short y) { |
| 674 | return FP16.greaterEquals(x, y); |
| 675 | } |
| 676 | |
| 677 | /** |
| 678 | * Returns true if the two half-precision float values are equal. |
| 679 | * If either of the values is NaN, the result is false. {@link #POSITIVE_ZERO} |
| 680 | * and {@link #NEGATIVE_ZERO} are considered equal. |
| 681 | * |
| 682 | * @param x The first half-precision value |
| 683 | * @param y The second half-precision value |
| 684 | * |
| 685 | * @return True if x is equal to y, false otherwise |
| 686 | */ |
| 687 | public static boolean equals(@HalfFloat short x, @HalfFloat short y) { |
| 688 | return FP16.equals(x, y); |
| 689 | } |
| 690 | |
| 691 | /** |
| 692 | * Returns the sign of the specified half-precision float. |
| 693 | * |
| 694 | * @param h A half-precision float value |
| 695 | * @return 1 if the value is positive, -1 if the value is negative |
| 696 | */ |
| 697 | public static int getSign(@HalfFloat short h) { |
| 698 | return (h & FP16.SIGN_MASK) == 0 ? 1 : -1; |
| 699 | } |
| 700 | |
| 701 | /** |
| 702 | * Returns the unbiased exponent used in the representation of |
| 703 | * the specified half-precision float value. if the value is NaN |
| 704 | * or infinite, this* method returns {@link #MAX_EXPONENT} + 1. |
| 705 | * If the argument is 0 or a subnormal representation, this method |
| 706 | * returns {@link #MIN_EXPONENT} - 1. |
| 707 | * |
| 708 | * @param h A half-precision float value |
| 709 | * @return The unbiased exponent of the specified value |
| 710 | */ |
| 711 | public static int getExponent(@HalfFloat short h) { |
| 712 | return ((h >>> FP16.EXPONENT_SHIFT) & FP16.SHIFTED_EXPONENT_MASK) - FP16.EXPONENT_BIAS; |
| 713 | } |
| 714 | |
| 715 | /** |
| 716 | * Returns the significand, or mantissa, used in the representation |
| 717 | * of the specified half-precision float value. |
| 718 | * |
| 719 | * @param h A half-precision float value |
| 720 | * @return The significand, or significand, of the specified vlaue |
| 721 | */ |
| 722 | public static int getSignificand(@HalfFloat short h) { |
| 723 | return h & FP16.SIGNIFICAND_MASK; |
| 724 | } |
| 725 | |
| 726 | /** |
| 727 | * Returns true if the specified half-precision float value represents |
| 728 | * infinity, false otherwise. |
| 729 | * |
| 730 | * @param h A half-precision float value |
| 731 | * @return True if the value is positive infinity or negative infinity, |
| 732 | * false otherwise |
| 733 | */ |
| 734 | public static boolean isInfinite(@HalfFloat short h) { |
| 735 | return FP16.isInfinite(h); |
| 736 | } |
| 737 | |
| 738 | /** |
| 739 | * Returns true if the specified half-precision float value represents |
| 740 | * a Not-a-Number, false otherwise. |
| 741 | * |
| 742 | * @param h A half-precision float value |
| 743 | * @return True if the value is a NaN, false otherwise |
| 744 | */ |
| 745 | public static boolean isNaN(@HalfFloat short h) { |
| 746 | return FP16.isNaN(h); |
| 747 | } |
| 748 | |
| 749 | /** |
| 750 | * Returns true if the specified half-precision float value is normalized |
| 751 | * (does not have a subnormal representation). If the specified value is |
| 752 | * {@link #POSITIVE_INFINITY}, {@link #NEGATIVE_INFINITY}, |
| 753 | * {@link #POSITIVE_ZERO}, {@link #NEGATIVE_ZERO}, NaN or any subnormal |
| 754 | * number, this method returns false. |
| 755 | * |
| 756 | * @param h A half-precision float value |
| 757 | * @return True if the value is normalized, false otherwise |
| 758 | */ |
| 759 | public static boolean isNormalized(@HalfFloat short h) { |
| 760 | return FP16.isNormalized(h); |
| 761 | } |
| 762 | |
| 763 | /** |
| 764 | * <p>Converts the specified half-precision float value into a |
| 765 | * single-precision float value. The following special cases are handled:</p> |
| 766 | * <ul> |
| 767 | * <li>If the input is {@link #NaN}, the returned value is {@link Float#NaN}</li> |
| 768 | * <li>If the input is {@link #POSITIVE_INFINITY} or |
| 769 | * {@link #NEGATIVE_INFINITY}, the returned value is respectively |
| 770 | * {@link Float#POSITIVE_INFINITY} or {@link Float#NEGATIVE_INFINITY}</li> |
| 771 | * <li>If the input is 0 (positive or negative), the returned value is +/-0.0f</li> |
| 772 | * <li>Otherwise, the returned value is a normalized single-precision float value</li> |
| 773 | * </ul> |
| 774 | * |
| 775 | * @param h The half-precision float value to convert to single-precision |
| 776 | * @return A normalized single-precision float value |
| 777 | */ |
| 778 | public static float toFloat(@HalfFloat short h) { |
| 779 | return FP16.toFloat(h); |
| 780 | } |
| 781 | |
| 782 | /** |
| 783 | * <p>Converts the specified single-precision float value into a |
| 784 | * half-precision float value. The following special cases are handled:</p> |
| 785 | * <ul> |
| 786 | * <li>If the input is NaN (see {@link Float#isNaN(float)}), the returned |
| 787 | * value is {@link #NaN}</li> |
| 788 | * <li>If the input is {@link Float#POSITIVE_INFINITY} or |
| 789 | * {@link Float#NEGATIVE_INFINITY}, the returned value is respectively |
| 790 | * {@link #POSITIVE_INFINITY} or {@link #NEGATIVE_INFINITY}</li> |
| 791 | * <li>If the input is 0 (positive or negative), the returned value is |
| 792 | * {@link #POSITIVE_ZERO} or {@link #NEGATIVE_ZERO}</li> |
| 793 | * <li>If the input is a less than {@link #MIN_VALUE}, the returned value |
| 794 | * is flushed to {@link #POSITIVE_ZERO} or {@link #NEGATIVE_ZERO}</li> |
| 795 | * <li>If the input is a less than {@link #MIN_NORMAL}, the returned value |
| 796 | * is a denorm half-precision float</li> |
| 797 | * <li>Otherwise, the returned value is rounded to the nearest |
| 798 | * representable half-precision float value</li> |
| 799 | * </ul> |
| 800 | * |
| 801 | * @param f The single-precision float value to convert to half-precision |
| 802 | * @return A half-precision float value |
| 803 | */ |
| 804 | @SuppressWarnings("StatementWithEmptyBody") |
| 805 | public static @HalfFloat short toHalf(float f) { |
| 806 | return FP16.toHalf(f); |
| 807 | } |
| 808 | |
| 809 | /** |
| 810 | * Returns a {@code Half} instance representing the specified |
| 811 | * half-precision float value. |
| 812 | * |
| 813 | * @param h A half-precision float value |
| 814 | * @return a {@code Half} instance representing {@code h} |
| 815 | */ |
| 816 | public static @NonNull Half valueOf(@HalfFloat short h) { |
| 817 | return new Half(h); |
| 818 | } |
| 819 | |
| 820 | /** |
| 821 | * Returns a {@code Half} instance representing the specified float value. |
| 822 | * |
| 823 | * @param f A float value |
| 824 | * @return a {@code Half} instance representing {@code f} |
| 825 | */ |
| 826 | public static @NonNull Half valueOf(float f) { |
| 827 | return new Half(f); |
| 828 | } |
| 829 | |
| 830 | /** |
| 831 | * Returns a {@code Half} instance representing the specified string value. |
| 832 | * Calling this method is equivalent to calling |
| 833 | * <code>toHalf(Float.parseString(h))</code>. See {@link Float#valueOf(String)} |
| 834 | * for more information on the format of the string representation. |
| 835 | * |
| 836 | * @param s The string to be parsed |
| 837 | * @return a {@code Half} instance representing {@code h} |
| 838 | * @throws NumberFormatException if the string does not contain a parsable |
| 839 | * half-precision float value |
| 840 | */ |
| 841 | public static @NonNull Half valueOf(@NonNull String s) { |
| 842 | return new Half(s); |
| 843 | } |
| 844 | |
| 845 | /** |
| 846 | * Returns the half-precision float value represented by the specified string. |
| 847 | * Calling this method is equivalent to calling |
| 848 | * <code>toHalf(Float.parseString(h))</code>. See {@link Float#valueOf(String)} |
| 849 | * for more information on the format of the string representation. |
| 850 | * |
| 851 | * @param s The string to be parsed |
| 852 | * @return A half-precision float value represented by the string |
| 853 | * @throws NumberFormatException if the string does not contain a parsable |
| 854 | * half-precision float value |
| 855 | */ |
| 856 | public static @HalfFloat short parseHalf(@NonNull String s) throws NumberFormatException { |
| 857 | return toHalf(Float.parseFloat(s)); |
| 858 | } |
| 859 | |
| 860 | /** |
| 861 | * Returns a string representation of the specified half-precision |
| 862 | * float value. Calling this method is equivalent to calling |
| 863 | * <code>Float.toString(toFloat(h))</code>. See {@link Float#toString(float)} |
| 864 | * for more information on the format of the string representation. |
| 865 | * |
| 866 | * @param h A half-precision float value |
| 867 | * @return A string representation of the specified value |
| 868 | */ |
| 869 | @NonNull |
| 870 | public static String toString(@HalfFloat short h) { |
| 871 | return Float.toString(toFloat(h)); |
| 872 | } |
| 873 | |
| 874 | /** |
| 875 | * <p>Returns a hexadecimal string representation of the specified half-precision |
| 876 | * float value. If the value is a NaN, the result is <code>"NaN"</code>, |
| 877 | * otherwise the result follows this format:</p> |
| 878 | * <ul> |
| 879 | * <li>If the sign is positive, no sign character appears in the result</li> |
| 880 | * <li>If the sign is negative, the first character is <code>'-'</code></li> |
| 881 | * <li>If the value is inifinity, the string is <code>"Infinity"</code></li> |
| 882 | * <li>If the value is 0, the string is <code>"0x0.0p0"</code></li> |
| 883 | * <li>If the value has a normalized representation, the exponent and |
| 884 | * significand are represented in the string in two fields. The significand |
| 885 | * starts with <code>"0x1."</code> followed by its lowercase hexadecimal |
| 886 | * representation. Trailing zeroes are removed unless all digits are 0, then |
| 887 | * a single zero is used. The significand representation is followed by the |
| 888 | * exponent, represented by <code>"p"</code>, itself followed by a decimal |
| 889 | * string of the unbiased exponent</li> |
| 890 | * <li>If the value has a subnormal representation, the significand starts |
| 891 | * with <code>"0x0."</code> followed by its lowercase hexadecimal |
| 892 | * representation. Trailing zeroes are removed unless all digits are 0, then |
| 893 | * a single zero is used. The significand representation is followed by the |
| 894 | * exponent, represented by <code>"p-14"</code></li> |
| 895 | * </ul> |
| 896 | * |
| 897 | * @param h A half-precision float value |
| 898 | * @return A hexadecimal string representation of the specified value |
| 899 | */ |
| 900 | @NonNull |
| 901 | public static String toHexString(@HalfFloat short h) { |
| 902 | return FP16.toHexString(h); |
| 903 | } |
| 904 | } |