Alan Viverette | 3da604b | 2020-06-10 18:34:39 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2014 The Android Open Source Project |
| 3 | * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved. |
| 4 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 5 | * |
| 6 | * This code is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 only, as |
| 8 | * published by the Free Software Foundation. Oracle designates this |
| 9 | * particular file as subject to the "Classpath" exception as provided |
| 10 | * by Oracle in the LICENSE file that accompanied this code. |
| 11 | * |
| 12 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 13 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 14 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 15 | * version 2 for more details (a copy is included in the LICENSE file that |
| 16 | * accompanied this code). |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License version |
| 19 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 20 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 21 | * |
| 22 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 23 | * or visit www.oracle.com if you need additional information or have any |
| 24 | * questions. |
| 25 | */ |
| 26 | |
| 27 | package java.util; |
| 28 | |
| 29 | import java.io.*; |
| 30 | import java.util.function.BiConsumer; |
| 31 | import java.util.function.BiFunction; |
| 32 | import java.util.function.Function; |
| 33 | |
| 34 | /** |
| 35 | * This class implements a hash table, which maps keys to values. Any |
| 36 | * non-<code>null</code> object can be used as a key or as a value. <p> |
| 37 | * |
| 38 | * To successfully store and retrieve objects from a hashtable, the |
| 39 | * objects used as keys must implement the <code>hashCode</code> |
| 40 | * method and the <code>equals</code> method. <p> |
| 41 | * |
| 42 | * An instance of <code>Hashtable</code> has two parameters that affect its |
| 43 | * performance: <i>initial capacity</i> and <i>load factor</i>. The |
| 44 | * <i>capacity</i> is the number of <i>buckets</i> in the hash table, and the |
| 45 | * <i>initial capacity</i> is simply the capacity at the time the hash table |
| 46 | * is created. Note that the hash table is <i>open</i>: in the case of a "hash |
| 47 | * collision", a single bucket stores multiple entries, which must be searched |
| 48 | * sequentially. The <i>load factor</i> is a measure of how full the hash |
| 49 | * table is allowed to get before its capacity is automatically increased. |
| 50 | * The initial capacity and load factor parameters are merely hints to |
| 51 | * the implementation. The exact details as to when and whether the rehash |
| 52 | * method is invoked are implementation-dependent.<p> |
| 53 | * |
| 54 | * Generally, the default load factor (.75) offers a good tradeoff between |
| 55 | * time and space costs. Higher values decrease the space overhead but |
| 56 | * increase the time cost to look up an entry (which is reflected in most |
| 57 | * <tt>Hashtable</tt> operations, including <tt>get</tt> and <tt>put</tt>).<p> |
| 58 | * |
| 59 | * The initial capacity controls a tradeoff between wasted space and the |
| 60 | * need for <code>rehash</code> operations, which are time-consuming. |
| 61 | * No <code>rehash</code> operations will <i>ever</i> occur if the initial |
| 62 | * capacity is greater than the maximum number of entries the |
| 63 | * <tt>Hashtable</tt> will contain divided by its load factor. However, |
| 64 | * setting the initial capacity too high can waste space.<p> |
| 65 | * |
| 66 | * If many entries are to be made into a <code>Hashtable</code>, |
| 67 | * creating it with a sufficiently large capacity may allow the |
| 68 | * entries to be inserted more efficiently than letting it perform |
| 69 | * automatic rehashing as needed to grow the table. <p> |
| 70 | * |
| 71 | * This example creates a hashtable of numbers. It uses the names of |
| 72 | * the numbers as keys: |
| 73 | * <pre> {@code |
| 74 | * Hashtable<String, Integer> numbers |
| 75 | * = new Hashtable<String, Integer>(); |
| 76 | * numbers.put("one", 1); |
| 77 | * numbers.put("two", 2); |
| 78 | * numbers.put("three", 3);}</pre> |
| 79 | * |
| 80 | * <p>To retrieve a number, use the following code: |
| 81 | * <pre> {@code |
| 82 | * Integer n = numbers.get("two"); |
| 83 | * if (n != null) { |
| 84 | * System.out.println("two = " + n); |
| 85 | * }}</pre> |
| 86 | * |
| 87 | * <p>The iterators returned by the <tt>iterator</tt> method of the collections |
| 88 | * returned by all of this class's "collection view methods" are |
| 89 | * <em>fail-fast</em>: if the Hashtable is structurally modified at any time |
| 90 | * after the iterator is created, in any way except through the iterator's own |
| 91 | * <tt>remove</tt> method, the iterator will throw a {@link |
| 92 | * ConcurrentModificationException}. Thus, in the face of concurrent |
| 93 | * modification, the iterator fails quickly and cleanly, rather than risking |
| 94 | * arbitrary, non-deterministic behavior at an undetermined time in the future. |
| 95 | * The Enumerations returned by Hashtable's keys and elements methods are |
| 96 | * <em>not</em> fail-fast. |
| 97 | * |
| 98 | * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed |
| 99 | * as it is, generally speaking, impossible to make any hard guarantees in the |
| 100 | * presence of unsynchronized concurrent modification. Fail-fast iterators |
| 101 | * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. |
| 102 | * Therefore, it would be wrong to write a program that depended on this |
| 103 | * exception for its correctness: <i>the fail-fast behavior of iterators |
| 104 | * should be used only to detect bugs.</i> |
| 105 | * |
| 106 | * <p>As of the Java 2 platform v1.2, this class was retrofitted to |
| 107 | * implement the {@link Map} interface, making it a member of the |
| 108 | * <a href="{@docRoot}/../technotes/guides/collections/index.html"> |
| 109 | * |
| 110 | * Java Collections Framework</a>. Unlike the new collection |
| 111 | * implementations, {@code Hashtable} is synchronized. If a |
| 112 | * thread-safe implementation is not needed, it is recommended to use |
| 113 | * {@link HashMap} in place of {@code Hashtable}. If a thread-safe |
| 114 | * highly-concurrent implementation is desired, then it is recommended |
| 115 | * to use {@link java.util.concurrent.ConcurrentHashMap} in place of |
| 116 | * {@code Hashtable}. |
| 117 | * |
| 118 | * @author Arthur van Hoff |
| 119 | * @author Josh Bloch |
| 120 | * @author Neal Gafter |
| 121 | * @see Object#equals(java.lang.Object) |
| 122 | * @see Object#hashCode() |
| 123 | * @see Hashtable#rehash() |
| 124 | * @see Collection |
| 125 | * @see Map |
| 126 | * @see HashMap |
| 127 | * @see TreeMap |
| 128 | * @since JDK1.0 |
| 129 | */ |
| 130 | public class Hashtable<K,V> |
| 131 | extends Dictionary<K,V> |
| 132 | implements Map<K,V>, Cloneable, java.io.Serializable { |
| 133 | |
| 134 | /** |
| 135 | * The hash table data. |
| 136 | */ |
| 137 | private transient HashtableEntry<?,?>[] table; |
| 138 | |
| 139 | /** |
| 140 | * The total number of entries in the hash table. |
| 141 | */ |
| 142 | private transient int count; |
| 143 | |
| 144 | /** |
| 145 | * The table is rehashed when its size exceeds this threshold. (The |
| 146 | * value of this field is (int)(capacity * loadFactor).) |
| 147 | * |
| 148 | * @serial |
| 149 | */ |
| 150 | private int threshold; |
| 151 | |
| 152 | /** |
| 153 | * The load factor for the hashtable. |
| 154 | * |
| 155 | * @serial |
| 156 | */ |
| 157 | private float loadFactor; |
| 158 | |
| 159 | /** |
| 160 | * The number of times this Hashtable has been structurally modified |
| 161 | * Structural modifications are those that change the number of entries in |
| 162 | * the Hashtable or otherwise modify its internal structure (e.g., |
| 163 | * rehash). This field is used to make iterators on Collection-views of |
| 164 | * the Hashtable fail-fast. (See ConcurrentModificationException). |
| 165 | */ |
| 166 | private transient int modCount = 0; |
| 167 | |
| 168 | /** use serialVersionUID from JDK 1.0.2 for interoperability */ |
| 169 | private static final long serialVersionUID = 1421746759512286392L; |
| 170 | |
| 171 | /** |
| 172 | * Constructs a new, empty hashtable with the specified initial |
| 173 | * capacity and the specified load factor. |
| 174 | * |
| 175 | * @param initialCapacity the initial capacity of the hashtable. |
| 176 | * @param loadFactor the load factor of the hashtable. |
| 177 | * @exception IllegalArgumentException if the initial capacity is less |
| 178 | * than zero, or if the load factor is nonpositive. |
| 179 | */ |
| 180 | public Hashtable(int initialCapacity, float loadFactor) { |
| 181 | if (initialCapacity < 0) |
| 182 | throw new IllegalArgumentException("Illegal Capacity: "+ |
| 183 | initialCapacity); |
| 184 | if (loadFactor <= 0 || Float.isNaN(loadFactor)) |
| 185 | throw new IllegalArgumentException("Illegal Load: "+loadFactor); |
| 186 | |
| 187 | if (initialCapacity==0) |
| 188 | initialCapacity = 1; |
| 189 | this.loadFactor = loadFactor; |
| 190 | table = new HashtableEntry<?,?>[initialCapacity]; |
| 191 | // Android-changed: Ignore loadFactor when calculating threshold from initialCapacity |
| 192 | // threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1); |
| 193 | threshold = (int)Math.min(initialCapacity, MAX_ARRAY_SIZE + 1); |
| 194 | } |
| 195 | |
| 196 | /** |
| 197 | * Constructs a new, empty hashtable with the specified initial capacity |
| 198 | * and default load factor (0.75). |
| 199 | * |
| 200 | * @param initialCapacity the initial capacity of the hashtable. |
| 201 | * @exception IllegalArgumentException if the initial capacity is less |
| 202 | * than zero. |
| 203 | */ |
| 204 | public Hashtable(int initialCapacity) { |
| 205 | this(initialCapacity, 0.75f); |
| 206 | } |
| 207 | |
| 208 | /** |
| 209 | * Constructs a new, empty hashtable with a default initial capacity (11) |
| 210 | * and load factor (0.75). |
| 211 | */ |
| 212 | public Hashtable() { |
| 213 | this(11, 0.75f); |
| 214 | } |
| 215 | |
| 216 | /** |
| 217 | * Constructs a new hashtable with the same mappings as the given |
| 218 | * Map. The hashtable is created with an initial capacity sufficient to |
| 219 | * hold the mappings in the given Map and a default load factor (0.75). |
| 220 | * |
| 221 | * @param t the map whose mappings are to be placed in this map. |
| 222 | * @throws NullPointerException if the specified map is null. |
| 223 | * @since 1.2 |
| 224 | */ |
| 225 | public Hashtable(Map<? extends K, ? extends V> t) { |
| 226 | this(Math.max(2*t.size(), 11), 0.75f); |
| 227 | putAll(t); |
| 228 | } |
| 229 | |
| 230 | /** |
| 231 | * Returns the number of keys in this hashtable. |
| 232 | * |
| 233 | * @return the number of keys in this hashtable. |
| 234 | */ |
| 235 | public synchronized int size() { |
| 236 | return count; |
| 237 | } |
| 238 | |
| 239 | /** |
| 240 | * Tests if this hashtable maps no keys to values. |
| 241 | * |
| 242 | * @return <code>true</code> if this hashtable maps no keys to values; |
| 243 | * <code>false</code> otherwise. |
| 244 | */ |
| 245 | public synchronized boolean isEmpty() { |
| 246 | return count == 0; |
| 247 | } |
| 248 | |
| 249 | /** |
| 250 | * Returns an enumeration of the keys in this hashtable. |
| 251 | * |
| 252 | * @return an enumeration of the keys in this hashtable. |
| 253 | * @see Enumeration |
| 254 | * @see #elements() |
| 255 | * @see #keySet() |
| 256 | * @see Map |
| 257 | */ |
| 258 | public synchronized Enumeration<K> keys() { |
| 259 | return this.<K>getEnumeration(KEYS); |
| 260 | } |
| 261 | |
| 262 | /** |
| 263 | * Returns an enumeration of the values in this hashtable. |
| 264 | * Use the Enumeration methods on the returned object to fetch the elements |
| 265 | * sequentially. |
| 266 | * |
| 267 | * @return an enumeration of the values in this hashtable. |
| 268 | * @see java.util.Enumeration |
| 269 | * @see #keys() |
| 270 | * @see #values() |
| 271 | * @see Map |
| 272 | */ |
| 273 | public synchronized Enumeration<V> elements() { |
| 274 | return this.<V>getEnumeration(VALUES); |
| 275 | } |
| 276 | |
| 277 | /** |
| 278 | * Tests if some key maps into the specified value in this hashtable. |
| 279 | * This operation is more expensive than the {@link #containsKey |
| 280 | * containsKey} method. |
| 281 | * |
| 282 | * <p>Note that this method is identical in functionality to |
| 283 | * {@link #containsValue containsValue}, (which is part of the |
| 284 | * {@link Map} interface in the collections framework). |
| 285 | * |
| 286 | * @param value a value to search for |
| 287 | * @return <code>true</code> if and only if some key maps to the |
| 288 | * <code>value</code> argument in this hashtable as |
| 289 | * determined by the <tt>equals</tt> method; |
| 290 | * <code>false</code> otherwise. |
| 291 | * @exception NullPointerException if the value is <code>null</code> |
| 292 | */ |
| 293 | public synchronized boolean contains(Object value) { |
| 294 | if (value == null) { |
| 295 | throw new NullPointerException(); |
| 296 | } |
| 297 | |
| 298 | HashtableEntry<?,?> tab[] = table; |
| 299 | for (int i = tab.length ; i-- > 0 ;) { |
| 300 | for (HashtableEntry<?,?> e = tab[i] ; e != null ; e = e.next) { |
| 301 | if (e.value.equals(value)) { |
| 302 | return true; |
| 303 | } |
| 304 | } |
| 305 | } |
| 306 | return false; |
| 307 | } |
| 308 | |
| 309 | /** |
| 310 | * Returns true if this hashtable maps one or more keys to this value. |
| 311 | * |
| 312 | * <p>Note that this method is identical in functionality to {@link |
| 313 | * #contains contains} (which predates the {@link Map} interface). |
| 314 | * |
| 315 | * @param value value whose presence in this hashtable is to be tested |
| 316 | * @return <tt>true</tt> if this map maps one or more keys to the |
| 317 | * specified value |
| 318 | * @throws NullPointerException if the value is <code>null</code> |
| 319 | * @since 1.2 |
| 320 | */ |
| 321 | public boolean containsValue(Object value) { |
| 322 | return contains(value); |
| 323 | } |
| 324 | |
| 325 | /** |
| 326 | * Tests if the specified object is a key in this hashtable. |
| 327 | * |
| 328 | * @param key possible key |
| 329 | * @return <code>true</code> if and only if the specified object |
| 330 | * is a key in this hashtable, as determined by the |
| 331 | * <tt>equals</tt> method; <code>false</code> otherwise. |
| 332 | * @throws NullPointerException if the key is <code>null</code> |
| 333 | * @see #contains(Object) |
| 334 | */ |
| 335 | public synchronized boolean containsKey(Object key) { |
| 336 | HashtableEntry<?,?> tab[] = table; |
| 337 | int hash = key.hashCode(); |
| 338 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 339 | for (HashtableEntry<?,?> e = tab[index] ; e != null ; e = e.next) { |
| 340 | if ((e.hash == hash) && e.key.equals(key)) { |
| 341 | return true; |
| 342 | } |
| 343 | } |
| 344 | return false; |
| 345 | } |
| 346 | |
| 347 | /** |
| 348 | * Returns the value to which the specified key is mapped, |
| 349 | * or {@code null} if this map contains no mapping for the key. |
| 350 | * |
| 351 | * <p>More formally, if this map contains a mapping from a key |
| 352 | * {@code k} to a value {@code v} such that {@code (key.equals(k))}, |
| 353 | * then this method returns {@code v}; otherwise it returns |
| 354 | * {@code null}. (There can be at most one such mapping.) |
| 355 | * |
| 356 | * @param key the key whose associated value is to be returned |
| 357 | * @return the value to which the specified key is mapped, or |
| 358 | * {@code null} if this map contains no mapping for the key |
| 359 | * @throws NullPointerException if the specified key is null |
| 360 | * @see #put(Object, Object) |
| 361 | */ |
| 362 | @SuppressWarnings("unchecked") |
| 363 | public synchronized V get(Object key) { |
| 364 | HashtableEntry<?,?> tab[] = table; |
| 365 | int hash = key.hashCode(); |
| 366 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 367 | for (HashtableEntry<?,?> e = tab[index] ; e != null ; e = e.next) { |
| 368 | if ((e.hash == hash) && e.key.equals(key)) { |
| 369 | return (V)e.value; |
| 370 | } |
| 371 | } |
| 372 | return null; |
| 373 | } |
| 374 | |
| 375 | /** |
| 376 | * The maximum size of array to allocate. |
| 377 | * Some VMs reserve some header words in an array. |
| 378 | * Attempts to allocate larger arrays may result in |
| 379 | * OutOfMemoryError: Requested array size exceeds VM limit |
| 380 | */ |
| 381 | private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; |
| 382 | |
| 383 | /** |
| 384 | * Increases the capacity of and internally reorganizes this |
| 385 | * hashtable, in order to accommodate and access its entries more |
| 386 | * efficiently. This method is called automatically when the |
| 387 | * number of keys in the hashtable exceeds this hashtable's capacity |
| 388 | * and load factor. |
| 389 | */ |
| 390 | @SuppressWarnings("unchecked") |
| 391 | protected void rehash() { |
| 392 | int oldCapacity = table.length; |
| 393 | HashtableEntry<?,?>[] oldMap = table; |
| 394 | |
| 395 | // overflow-conscious code |
| 396 | int newCapacity = (oldCapacity << 1) + 1; |
| 397 | if (newCapacity - MAX_ARRAY_SIZE > 0) { |
| 398 | if (oldCapacity == MAX_ARRAY_SIZE) |
| 399 | // Keep running with MAX_ARRAY_SIZE buckets |
| 400 | return; |
| 401 | newCapacity = MAX_ARRAY_SIZE; |
| 402 | } |
| 403 | HashtableEntry<?,?>[] newMap = new HashtableEntry<?,?>[newCapacity]; |
| 404 | |
| 405 | modCount++; |
| 406 | threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1); |
| 407 | table = newMap; |
| 408 | |
| 409 | for (int i = oldCapacity ; i-- > 0 ;) { |
| 410 | for (HashtableEntry<K,V> old = (HashtableEntry<K,V>)oldMap[i] ; old != null ; ) { |
| 411 | HashtableEntry<K,V> e = old; |
| 412 | old = old.next; |
| 413 | |
| 414 | int index = (e.hash & 0x7FFFFFFF) % newCapacity; |
| 415 | e.next = (HashtableEntry<K,V>)newMap[index]; |
| 416 | newMap[index] = e; |
| 417 | } |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | private void addEntry(int hash, K key, V value, int index) { |
| 422 | modCount++; |
| 423 | |
| 424 | HashtableEntry<?,?> tab[] = table; |
| 425 | if (count >= threshold) { |
| 426 | // Rehash the table if the threshold is exceeded |
| 427 | rehash(); |
| 428 | |
| 429 | tab = table; |
| 430 | hash = key.hashCode(); |
| 431 | index = (hash & 0x7FFFFFFF) % tab.length; |
| 432 | } |
| 433 | |
| 434 | // Creates the new entry. |
| 435 | @SuppressWarnings("unchecked") |
| 436 | HashtableEntry<K,V> e = (HashtableEntry<K,V>) tab[index]; |
| 437 | tab[index] = new HashtableEntry<>(hash, key, value, e); |
| 438 | count++; |
| 439 | } |
| 440 | |
| 441 | /** |
| 442 | * Maps the specified <code>key</code> to the specified |
| 443 | * <code>value</code> in this hashtable. Neither the key nor the |
| 444 | * value can be <code>null</code>. <p> |
| 445 | * |
| 446 | * The value can be retrieved by calling the <code>get</code> method |
| 447 | * with a key that is equal to the original key. |
| 448 | * |
| 449 | * @param key the hashtable key |
| 450 | * @param value the value |
| 451 | * @return the previous value of the specified key in this hashtable, |
| 452 | * or <code>null</code> if it did not have one |
| 453 | * @exception NullPointerException if the key or value is |
| 454 | * <code>null</code> |
| 455 | * @see Object#equals(Object) |
| 456 | * @see #get(Object) |
| 457 | */ |
| 458 | public synchronized V put(K key, V value) { |
| 459 | // Make sure the value is not null |
| 460 | if (value == null) { |
| 461 | throw new NullPointerException(); |
| 462 | } |
| 463 | |
| 464 | // Makes sure the key is not already in the hashtable. |
| 465 | HashtableEntry<?,?> tab[] = table; |
| 466 | int hash = key.hashCode(); |
| 467 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 468 | @SuppressWarnings("unchecked") |
| 469 | HashtableEntry<K,V> entry = (HashtableEntry<K,V>)tab[index]; |
| 470 | for(; entry != null ; entry = entry.next) { |
| 471 | if ((entry.hash == hash) && entry.key.equals(key)) { |
| 472 | V old = entry.value; |
| 473 | entry.value = value; |
| 474 | return old; |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | addEntry(hash, key, value, index); |
| 479 | return null; |
| 480 | } |
| 481 | |
| 482 | /** |
| 483 | * Removes the key (and its corresponding value) from this |
| 484 | * hashtable. This method does nothing if the key is not in the hashtable. |
| 485 | * |
| 486 | * @param key the key that needs to be removed |
| 487 | * @return the value to which the key had been mapped in this hashtable, |
| 488 | * or <code>null</code> if the key did not have a mapping |
| 489 | * @throws NullPointerException if the key is <code>null</code> |
| 490 | */ |
| 491 | public synchronized V remove(Object key) { |
| 492 | HashtableEntry<?,?> tab[] = table; |
| 493 | int hash = key.hashCode(); |
| 494 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 495 | @SuppressWarnings("unchecked") |
| 496 | HashtableEntry<K,V> e = (HashtableEntry<K,V>)tab[index]; |
| 497 | for(HashtableEntry<K,V> prev = null ; e != null ; prev = e, e = e.next) { |
| 498 | if ((e.hash == hash) && e.key.equals(key)) { |
| 499 | modCount++; |
| 500 | if (prev != null) { |
| 501 | prev.next = e.next; |
| 502 | } else { |
| 503 | tab[index] = e.next; |
| 504 | } |
| 505 | count--; |
| 506 | V oldValue = e.value; |
| 507 | e.value = null; |
| 508 | return oldValue; |
| 509 | } |
| 510 | } |
| 511 | return null; |
| 512 | } |
| 513 | |
| 514 | /** |
| 515 | * Copies all of the mappings from the specified map to this hashtable. |
| 516 | * These mappings will replace any mappings that this hashtable had for any |
| 517 | * of the keys currently in the specified map. |
| 518 | * |
| 519 | * @param t mappings to be stored in this map |
| 520 | * @throws NullPointerException if the specified map is null |
| 521 | * @since 1.2 |
| 522 | */ |
| 523 | public synchronized void putAll(Map<? extends K, ? extends V> t) { |
| 524 | for (Map.Entry<? extends K, ? extends V> e : t.entrySet()) |
| 525 | put(e.getKey(), e.getValue()); |
| 526 | } |
| 527 | |
| 528 | /** |
| 529 | * Clears this hashtable so that it contains no keys. |
| 530 | */ |
| 531 | public synchronized void clear() { |
| 532 | HashtableEntry<?,?> tab[] = table; |
| 533 | modCount++; |
| 534 | for (int index = tab.length; --index >= 0; ) |
| 535 | tab[index] = null; |
| 536 | count = 0; |
| 537 | } |
| 538 | |
| 539 | /** |
| 540 | * Creates a shallow copy of this hashtable. All the structure of the |
| 541 | * hashtable itself is copied, but the keys and values are not cloned. |
| 542 | * This is a relatively expensive operation. |
| 543 | * |
| 544 | * @return a clone of the hashtable |
| 545 | */ |
| 546 | public synchronized Object clone() { |
| 547 | try { |
| 548 | Hashtable<?,?> t = (Hashtable<?,?>)super.clone(); |
| 549 | t.table = new HashtableEntry<?,?>[table.length]; |
| 550 | for (int i = table.length ; i-- > 0 ; ) { |
| 551 | t.table[i] = (table[i] != null) |
| 552 | ? (HashtableEntry<?,?>) table[i].clone() : null; |
| 553 | } |
| 554 | t.keySet = null; |
| 555 | t.entrySet = null; |
| 556 | t.values = null; |
| 557 | t.modCount = 0; |
| 558 | return t; |
| 559 | } catch (CloneNotSupportedException e) { |
| 560 | // this shouldn't happen, since we are Cloneable |
| 561 | throw new InternalError(e); |
| 562 | } |
| 563 | } |
| 564 | |
| 565 | /** |
| 566 | * Returns a string representation of this <tt>Hashtable</tt> object |
| 567 | * in the form of a set of entries, enclosed in braces and separated |
| 568 | * by the ASCII characters "<tt>, </tt>" (comma and space). Each |
| 569 | * entry is rendered as the key, an equals sign <tt>=</tt>, and the |
| 570 | * associated element, where the <tt>toString</tt> method is used to |
| 571 | * convert the key and element to strings. |
| 572 | * |
| 573 | * @return a string representation of this hashtable |
| 574 | */ |
| 575 | public synchronized String toString() { |
| 576 | int max = size() - 1; |
| 577 | if (max == -1) |
| 578 | return "{}"; |
| 579 | |
| 580 | StringBuilder sb = new StringBuilder(); |
| 581 | Iterator<Map.Entry<K,V>> it = entrySet().iterator(); |
| 582 | |
| 583 | sb.append('{'); |
| 584 | for (int i = 0; ; i++) { |
| 585 | Map.Entry<K,V> e = it.next(); |
| 586 | K key = e.getKey(); |
| 587 | V value = e.getValue(); |
| 588 | sb.append(key == this ? "(this Map)" : key.toString()); |
| 589 | sb.append('='); |
| 590 | sb.append(value == this ? "(this Map)" : value.toString()); |
| 591 | |
| 592 | if (i == max) |
| 593 | return sb.append('}').toString(); |
| 594 | sb.append(", "); |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | |
| 599 | private <T> Enumeration<T> getEnumeration(int type) { |
| 600 | if (count == 0) { |
| 601 | return Collections.emptyEnumeration(); |
| 602 | } else { |
| 603 | return new Enumerator<>(type, false); |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | private <T> Iterator<T> getIterator(int type) { |
| 608 | if (count == 0) { |
| 609 | return Collections.emptyIterator(); |
| 610 | } else { |
| 611 | return new Enumerator<>(type, true); |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | // Views |
| 616 | |
| 617 | /** |
| 618 | * Each of these fields are initialized to contain an instance of the |
| 619 | * appropriate view the first time this view is requested. The views are |
| 620 | * stateless, so there's no reason to create more than one of each. |
| 621 | */ |
| 622 | private transient volatile Set<K> keySet; |
| 623 | private transient volatile Set<Map.Entry<K,V>> entrySet; |
| 624 | private transient volatile Collection<V> values; |
| 625 | |
| 626 | /** |
| 627 | * Returns a {@link Set} view of the keys contained in this map. |
| 628 | * The set is backed by the map, so changes to the map are |
| 629 | * reflected in the set, and vice-versa. If the map is modified |
| 630 | * while an iteration over the set is in progress (except through |
| 631 | * the iterator's own <tt>remove</tt> operation), the results of |
| 632 | * the iteration are undefined. The set supports element removal, |
| 633 | * which removes the corresponding mapping from the map, via the |
| 634 | * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, |
| 635 | * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> |
| 636 | * operations. It does not support the <tt>add</tt> or <tt>addAll</tt> |
| 637 | * operations. |
| 638 | * |
| 639 | * @since 1.2 |
| 640 | */ |
| 641 | public Set<K> keySet() { |
| 642 | if (keySet == null) |
| 643 | keySet = Collections.synchronizedSet(new KeySet(), this); |
| 644 | return keySet; |
| 645 | } |
| 646 | |
| 647 | private class KeySet extends AbstractSet<K> { |
| 648 | public Iterator<K> iterator() { |
| 649 | return getIterator(KEYS); |
| 650 | } |
| 651 | public int size() { |
| 652 | return count; |
| 653 | } |
| 654 | public boolean contains(Object o) { |
| 655 | return containsKey(o); |
| 656 | } |
| 657 | public boolean remove(Object o) { |
| 658 | return Hashtable.this.remove(o) != null; |
| 659 | } |
| 660 | public void clear() { |
| 661 | Hashtable.this.clear(); |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | /** |
| 666 | * Returns a {@link Set} view of the mappings contained in this map. |
| 667 | * The set is backed by the map, so changes to the map are |
| 668 | * reflected in the set, and vice-versa. If the map is modified |
| 669 | * while an iteration over the set is in progress (except through |
| 670 | * the iterator's own <tt>remove</tt> operation, or through the |
| 671 | * <tt>setValue</tt> operation on a map entry returned by the |
| 672 | * iterator) the results of the iteration are undefined. The set |
| 673 | * supports element removal, which removes the corresponding |
| 674 | * mapping from the map, via the <tt>Iterator.remove</tt>, |
| 675 | * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and |
| 676 | * <tt>clear</tt> operations. It does not support the |
| 677 | * <tt>add</tt> or <tt>addAll</tt> operations. |
| 678 | * |
| 679 | * @since 1.2 |
| 680 | */ |
| 681 | public Set<Map.Entry<K,V>> entrySet() { |
| 682 | if (entrySet==null) |
| 683 | entrySet = Collections.synchronizedSet(new EntrySet(), this); |
| 684 | return entrySet; |
| 685 | } |
| 686 | |
| 687 | private class EntrySet extends AbstractSet<Map.Entry<K,V>> { |
| 688 | public Iterator<Map.Entry<K,V>> iterator() { |
| 689 | return getIterator(ENTRIES); |
| 690 | } |
| 691 | |
| 692 | public boolean add(Map.Entry<K,V> o) { |
| 693 | return super.add(o); |
| 694 | } |
| 695 | |
| 696 | public boolean contains(Object o) { |
| 697 | if (!(o instanceof Map.Entry)) |
| 698 | return false; |
| 699 | Map.Entry<?,?> entry = (Map.Entry<?,?>)o; |
| 700 | Object key = entry.getKey(); |
| 701 | HashtableEntry<?,?>[] tab = table; |
| 702 | int hash = key.hashCode(); |
| 703 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 704 | |
| 705 | for (HashtableEntry<?,?> e = tab[index]; e != null; e = e.next) |
| 706 | if (e.hash==hash && e.equals(entry)) |
| 707 | return true; |
| 708 | return false; |
| 709 | } |
| 710 | |
| 711 | public boolean remove(Object o) { |
| 712 | if (!(o instanceof Map.Entry)) |
| 713 | return false; |
| 714 | Map.Entry<?,?> entry = (Map.Entry<?,?>) o; |
| 715 | Object key = entry.getKey(); |
| 716 | HashtableEntry<?,?>[] tab = table; |
| 717 | int hash = key.hashCode(); |
| 718 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 719 | |
| 720 | @SuppressWarnings("unchecked") |
| 721 | HashtableEntry<K,V> e = (HashtableEntry<K,V>)tab[index]; |
| 722 | for(HashtableEntry<K,V> prev = null; e != null; prev = e, e = e.next) { |
| 723 | if (e.hash==hash && e.equals(entry)) { |
| 724 | modCount++; |
| 725 | if (prev != null) |
| 726 | prev.next = e.next; |
| 727 | else |
| 728 | tab[index] = e.next; |
| 729 | |
| 730 | count--; |
| 731 | e.value = null; |
| 732 | return true; |
| 733 | } |
| 734 | } |
| 735 | return false; |
| 736 | } |
| 737 | |
| 738 | public int size() { |
| 739 | return count; |
| 740 | } |
| 741 | |
| 742 | public void clear() { |
| 743 | Hashtable.this.clear(); |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | /** |
| 748 | * Returns a {@link Collection} view of the values contained in this map. |
| 749 | * The collection is backed by the map, so changes to the map are |
| 750 | * reflected in the collection, and vice-versa. If the map is |
| 751 | * modified while an iteration over the collection is in progress |
| 752 | * (except through the iterator's own <tt>remove</tt> operation), |
| 753 | * the results of the iteration are undefined. The collection |
| 754 | * supports element removal, which removes the corresponding |
| 755 | * mapping from the map, via the <tt>Iterator.remove</tt>, |
| 756 | * <tt>Collection.remove</tt>, <tt>removeAll</tt>, |
| 757 | * <tt>retainAll</tt> and <tt>clear</tt> operations. It does not |
| 758 | * support the <tt>add</tt> or <tt>addAll</tt> operations. |
| 759 | * |
| 760 | * @since 1.2 |
| 761 | */ |
| 762 | public Collection<V> values() { |
| 763 | if (values==null) |
| 764 | values = Collections.synchronizedCollection(new ValueCollection(), |
| 765 | this); |
| 766 | return values; |
| 767 | } |
| 768 | |
| 769 | private class ValueCollection extends AbstractCollection<V> { |
| 770 | public Iterator<V> iterator() { |
| 771 | return getIterator(VALUES); |
| 772 | } |
| 773 | public int size() { |
| 774 | return count; |
| 775 | } |
| 776 | public boolean contains(Object o) { |
| 777 | return containsValue(o); |
| 778 | } |
| 779 | public void clear() { |
| 780 | Hashtable.this.clear(); |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | // Comparison and hashing |
| 785 | |
| 786 | /** |
| 787 | * Compares the specified Object with this Map for equality, |
| 788 | * as per the definition in the Map interface. |
| 789 | * |
| 790 | * @param o object to be compared for equality with this hashtable |
| 791 | * @return true if the specified Object is equal to this Map |
| 792 | * @see Map#equals(Object) |
| 793 | * @since 1.2 |
| 794 | */ |
| 795 | public synchronized boolean equals(Object o) { |
| 796 | if (o == this) |
| 797 | return true; |
| 798 | |
| 799 | if (!(o instanceof Map)) |
| 800 | return false; |
| 801 | Map<?,?> t = (Map<?,?>) o; |
| 802 | if (t.size() != size()) |
| 803 | return false; |
| 804 | |
| 805 | try { |
| 806 | Iterator<Map.Entry<K,V>> i = entrySet().iterator(); |
| 807 | while (i.hasNext()) { |
| 808 | Map.Entry<K,V> e = i.next(); |
| 809 | K key = e.getKey(); |
| 810 | V value = e.getValue(); |
| 811 | if (value == null) { |
| 812 | if (!(t.get(key)==null && t.containsKey(key))) |
| 813 | return false; |
| 814 | } else { |
| 815 | if (!value.equals(t.get(key))) |
| 816 | return false; |
| 817 | } |
| 818 | } |
| 819 | } catch (ClassCastException unused) { |
| 820 | return false; |
| 821 | } catch (NullPointerException unused) { |
| 822 | return false; |
| 823 | } |
| 824 | |
| 825 | return true; |
| 826 | } |
| 827 | |
| 828 | /** |
| 829 | * Returns the hash code value for this Map as per the definition in the |
| 830 | * Map interface. |
| 831 | * |
| 832 | * @see Map#hashCode() |
| 833 | * @since 1.2 |
| 834 | */ |
| 835 | public synchronized int hashCode() { |
| 836 | /* |
| 837 | * This code detects the recursion caused by computing the hash code |
| 838 | * of a self-referential hash table and prevents the stack overflow |
| 839 | * that would otherwise result. This allows certain 1.1-era |
| 840 | * applets with self-referential hash tables to work. This code |
| 841 | * abuses the loadFactor field to do double-duty as a hashCode |
| 842 | * in progress flag, so as not to worsen the space performance. |
| 843 | * A negative load factor indicates that hash code computation is |
| 844 | * in progress. |
| 845 | */ |
| 846 | int h = 0; |
| 847 | if (count == 0 || loadFactor < 0) |
| 848 | return h; // Returns zero |
| 849 | |
| 850 | loadFactor = -loadFactor; // Mark hashCode computation in progress |
| 851 | HashtableEntry<?,?>[] tab = table; |
| 852 | for (HashtableEntry<?,?> entry : tab) { |
| 853 | while (entry != null) { |
| 854 | h += entry.hashCode(); |
| 855 | entry = entry.next; |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | loadFactor = -loadFactor; // Mark hashCode computation complete |
| 860 | |
| 861 | return h; |
| 862 | } |
| 863 | |
| 864 | @Override |
| 865 | public synchronized V getOrDefault(Object key, V defaultValue) { |
| 866 | V result = get(key); |
| 867 | return (null == result) ? defaultValue : result; |
| 868 | } |
| 869 | |
| 870 | @SuppressWarnings("unchecked") |
| 871 | @Override |
| 872 | public synchronized void forEach(BiConsumer<? super K, ? super V> action) { |
| 873 | Objects.requireNonNull(action); // explicit check required in case |
| 874 | // table is empty. |
| 875 | final int expectedModCount = modCount; |
| 876 | |
| 877 | HashtableEntry<?, ?>[] tab = table; |
| 878 | for (HashtableEntry<?, ?> entry : tab) { |
| 879 | while (entry != null) { |
| 880 | action.accept((K)entry.key, (V)entry.value); |
| 881 | entry = entry.next; |
| 882 | |
| 883 | if (expectedModCount != modCount) { |
| 884 | throw new ConcurrentModificationException(); |
| 885 | } |
| 886 | } |
| 887 | } |
| 888 | } |
| 889 | |
| 890 | @SuppressWarnings("unchecked") |
| 891 | @Override |
| 892 | public synchronized void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { |
| 893 | Objects.requireNonNull(function); // explicit check required in case |
| 894 | // table is empty. |
| 895 | final int expectedModCount = modCount; |
| 896 | |
| 897 | HashtableEntry<K, V>[] tab = (HashtableEntry<K, V>[])table; |
| 898 | for (HashtableEntry<K, V> entry : tab) { |
| 899 | while (entry != null) { |
| 900 | entry.value = Objects.requireNonNull( |
| 901 | function.apply(entry.key, entry.value)); |
| 902 | entry = entry.next; |
| 903 | |
| 904 | if (expectedModCount != modCount) { |
| 905 | throw new ConcurrentModificationException(); |
| 906 | } |
| 907 | } |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | @Override |
| 912 | public synchronized V putIfAbsent(K key, V value) { |
| 913 | Objects.requireNonNull(value); |
| 914 | |
| 915 | // Makes sure the key is not already in the hashtable. |
| 916 | HashtableEntry<?,?> tab[] = table; |
| 917 | int hash = key.hashCode(); |
| 918 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 919 | @SuppressWarnings("unchecked") |
| 920 | HashtableEntry<K,V> entry = (HashtableEntry<K,V>)tab[index]; |
| 921 | for (; entry != null; entry = entry.next) { |
| 922 | if ((entry.hash == hash) && entry.key.equals(key)) { |
| 923 | V old = entry.value; |
| 924 | if (old == null) { |
| 925 | entry.value = value; |
| 926 | } |
| 927 | return old; |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | addEntry(hash, key, value, index); |
| 932 | return null; |
| 933 | } |
| 934 | |
| 935 | @Override |
| 936 | public synchronized boolean remove(Object key, Object value) { |
| 937 | Objects.requireNonNull(value); |
| 938 | |
| 939 | HashtableEntry<?,?> tab[] = table; |
| 940 | int hash = key.hashCode(); |
| 941 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 942 | @SuppressWarnings("unchecked") |
| 943 | HashtableEntry<K,V> e = (HashtableEntry<K,V>)tab[index]; |
| 944 | for (HashtableEntry<K,V> prev = null; e != null; prev = e, e = e.next) { |
| 945 | if ((e.hash == hash) && e.key.equals(key) && e.value.equals(value)) { |
| 946 | modCount++; |
| 947 | if (prev != null) { |
| 948 | prev.next = e.next; |
| 949 | } else { |
| 950 | tab[index] = e.next; |
| 951 | } |
| 952 | count--; |
| 953 | e.value = null; |
| 954 | return true; |
| 955 | } |
| 956 | } |
| 957 | return false; |
| 958 | } |
| 959 | |
| 960 | @Override |
| 961 | public synchronized boolean replace(K key, V oldValue, V newValue) { |
| 962 | Objects.requireNonNull(oldValue); |
| 963 | Objects.requireNonNull(newValue); |
| 964 | HashtableEntry<?,?> tab[] = table; |
| 965 | int hash = key.hashCode(); |
| 966 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 967 | @SuppressWarnings("unchecked") |
| 968 | HashtableEntry<K,V> e = (HashtableEntry<K,V>)tab[index]; |
| 969 | for (; e != null; e = e.next) { |
| 970 | if ((e.hash == hash) && e.key.equals(key)) { |
| 971 | if (e.value.equals(oldValue)) { |
| 972 | e.value = newValue; |
| 973 | return true; |
| 974 | } else { |
| 975 | return false; |
| 976 | } |
| 977 | } |
| 978 | } |
| 979 | return false; |
| 980 | } |
| 981 | |
| 982 | @Override |
| 983 | public synchronized V replace(K key, V value) { |
| 984 | Objects.requireNonNull(value); |
| 985 | HashtableEntry<?,?> tab[] = table; |
| 986 | int hash = key.hashCode(); |
| 987 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 988 | @SuppressWarnings("unchecked") |
| 989 | HashtableEntry<K,V> e = (HashtableEntry<K,V>)tab[index]; |
| 990 | for (; e != null; e = e.next) { |
| 991 | if ((e.hash == hash) && e.key.equals(key)) { |
| 992 | V oldValue = e.value; |
| 993 | e.value = value; |
| 994 | return oldValue; |
| 995 | } |
| 996 | } |
| 997 | return null; |
| 998 | } |
| 999 | |
| 1000 | @Override |
| 1001 | public synchronized V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { |
| 1002 | Objects.requireNonNull(mappingFunction); |
| 1003 | |
| 1004 | HashtableEntry<?,?> tab[] = table; |
| 1005 | int hash = key.hashCode(); |
| 1006 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 1007 | @SuppressWarnings("unchecked") |
| 1008 | HashtableEntry<K,V> e = (HashtableEntry<K,V>)tab[index]; |
| 1009 | for (; e != null; e = e.next) { |
| 1010 | if (e.hash == hash && e.key.equals(key)) { |
| 1011 | // Hashtable not accept null value |
| 1012 | return e.value; |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | V newValue = mappingFunction.apply(key); |
| 1017 | if (newValue != null) { |
| 1018 | addEntry(hash, key, newValue, index); |
| 1019 | } |
| 1020 | |
| 1021 | return newValue; |
| 1022 | } |
| 1023 | |
| 1024 | @Override |
| 1025 | public synchronized V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
| 1026 | Objects.requireNonNull(remappingFunction); |
| 1027 | |
| 1028 | HashtableEntry<?,?> tab[] = table; |
| 1029 | int hash = key.hashCode(); |
| 1030 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 1031 | @SuppressWarnings("unchecked") |
| 1032 | HashtableEntry<K,V> e = (HashtableEntry<K,V>)tab[index]; |
| 1033 | for (HashtableEntry<K,V> prev = null; e != null; prev = e, e = e.next) { |
| 1034 | if (e.hash == hash && e.key.equals(key)) { |
| 1035 | V newValue = remappingFunction.apply(key, e.value); |
| 1036 | if (newValue == null) { |
| 1037 | modCount++; |
| 1038 | if (prev != null) { |
| 1039 | prev.next = e.next; |
| 1040 | } else { |
| 1041 | tab[index] = e.next; |
| 1042 | } |
| 1043 | count--; |
| 1044 | } else { |
| 1045 | e.value = newValue; |
| 1046 | } |
| 1047 | return newValue; |
| 1048 | } |
| 1049 | } |
| 1050 | return null; |
| 1051 | } |
| 1052 | |
| 1053 | @Override |
| 1054 | public synchronized V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { |
| 1055 | Objects.requireNonNull(remappingFunction); |
| 1056 | |
| 1057 | HashtableEntry<?,?> tab[] = table; |
| 1058 | int hash = key.hashCode(); |
| 1059 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 1060 | @SuppressWarnings("unchecked") |
| 1061 | HashtableEntry<K,V> e = (HashtableEntry<K,V>)tab[index]; |
| 1062 | for (HashtableEntry<K,V> prev = null; e != null; prev = e, e = e.next) { |
| 1063 | if (e.hash == hash && Objects.equals(e.key, key)) { |
| 1064 | V newValue = remappingFunction.apply(key, e.value); |
| 1065 | if (newValue == null) { |
| 1066 | modCount++; |
| 1067 | if (prev != null) { |
| 1068 | prev.next = e.next; |
| 1069 | } else { |
| 1070 | tab[index] = e.next; |
| 1071 | } |
| 1072 | count--; |
| 1073 | } else { |
| 1074 | e.value = newValue; |
| 1075 | } |
| 1076 | return newValue; |
| 1077 | } |
| 1078 | } |
| 1079 | |
| 1080 | V newValue = remappingFunction.apply(key, null); |
| 1081 | if (newValue != null) { |
| 1082 | addEntry(hash, key, newValue, index); |
| 1083 | } |
| 1084 | |
| 1085 | return newValue; |
| 1086 | } |
| 1087 | |
| 1088 | @Override |
| 1089 | public synchronized V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { |
| 1090 | Objects.requireNonNull(remappingFunction); |
| 1091 | |
| 1092 | HashtableEntry<?,?> tab[] = table; |
| 1093 | int hash = key.hashCode(); |
| 1094 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 1095 | @SuppressWarnings("unchecked") |
| 1096 | HashtableEntry<K,V> e = (HashtableEntry<K,V>)tab[index]; |
| 1097 | for (HashtableEntry<K,V> prev = null; e != null; prev = e, e = e.next) { |
| 1098 | if (e.hash == hash && e.key.equals(key)) { |
| 1099 | V newValue = remappingFunction.apply(e.value, value); |
| 1100 | if (newValue == null) { |
| 1101 | modCount++; |
| 1102 | if (prev != null) { |
| 1103 | prev.next = e.next; |
| 1104 | } else { |
| 1105 | tab[index] = e.next; |
| 1106 | } |
| 1107 | count--; |
| 1108 | } else { |
| 1109 | e.value = newValue; |
| 1110 | } |
| 1111 | return newValue; |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | if (value != null) { |
| 1116 | addEntry(hash, key, value, index); |
| 1117 | } |
| 1118 | |
| 1119 | return value; |
| 1120 | } |
| 1121 | |
| 1122 | /** |
| 1123 | * Save the state of the Hashtable to a stream (i.e., serialize it). |
| 1124 | * |
| 1125 | * @serialData The <i>capacity</i> of the Hashtable (the length of the |
| 1126 | * bucket array) is emitted (int), followed by the |
| 1127 | * <i>size</i> of the Hashtable (the number of key-value |
| 1128 | * mappings), followed by the key (Object) and value (Object) |
| 1129 | * for each key-value mapping represented by the Hashtable |
| 1130 | * The key-value mappings are emitted in no particular order. |
| 1131 | */ |
| 1132 | private void writeObject(java.io.ObjectOutputStream s) |
| 1133 | throws IOException { |
| 1134 | HashtableEntry<Object, Object> entryStack = null; |
| 1135 | |
| 1136 | synchronized (this) { |
| 1137 | // Write out the threshold and loadFactor |
| 1138 | s.defaultWriteObject(); |
| 1139 | |
| 1140 | // Write out the length and count of elements |
| 1141 | s.writeInt(table.length); |
| 1142 | s.writeInt(count); |
| 1143 | |
| 1144 | // Stack copies of the entries in the table |
| 1145 | for (int index = 0; index < table.length; index++) { |
| 1146 | HashtableEntry<?,?> entry = table[index]; |
| 1147 | |
| 1148 | while (entry != null) { |
| 1149 | entryStack = |
| 1150 | new HashtableEntry<>(0, entry.key, entry.value, entryStack); |
| 1151 | entry = entry.next; |
| 1152 | } |
| 1153 | } |
| 1154 | } |
| 1155 | |
| 1156 | // Write out the key/value objects from the stacked entries |
| 1157 | while (entryStack != null) { |
| 1158 | s.writeObject(entryStack.key); |
| 1159 | s.writeObject(entryStack.value); |
| 1160 | entryStack = entryStack.next; |
| 1161 | } |
| 1162 | } |
| 1163 | |
| 1164 | /** |
| 1165 | * Reconstitute the Hashtable from a stream (i.e., deserialize it). |
| 1166 | */ |
| 1167 | private void readObject(java.io.ObjectInputStream s) |
| 1168 | throws IOException, ClassNotFoundException |
| 1169 | { |
| 1170 | // Read in the threshold and loadFactor |
| 1171 | s.defaultReadObject(); |
| 1172 | |
| 1173 | // Validate loadFactor (ignore threshold - it will be re-computed) |
| 1174 | if (loadFactor <= 0 || Float.isNaN(loadFactor)) |
| 1175 | throw new StreamCorruptedException("Illegal Load: " + loadFactor); |
| 1176 | |
| 1177 | // Read the original length of the array and number of elements |
| 1178 | int origlength = s.readInt(); |
| 1179 | int elements = s.readInt(); |
| 1180 | |
| 1181 | // Validate # of elements |
| 1182 | if (elements < 0) |
| 1183 | throw new StreamCorruptedException("Illegal # of Elements: " + elements); |
| 1184 | |
| 1185 | // Clamp original length to be more than elements / loadFactor |
| 1186 | // (this is the invariant enforced with auto-growth) |
| 1187 | origlength = Math.max(origlength, (int)(elements / loadFactor) + 1); |
| 1188 | |
| 1189 | // Compute new length with a bit of room 5% + 3 to grow but |
| 1190 | // no larger than the clamped original length. Make the length |
| 1191 | // odd if it's large enough, this helps distribute the entries. |
| 1192 | // Guard against the length ending up zero, that's not valid. |
| 1193 | int length = (int)((elements + elements / 20) / loadFactor) + 3; |
| 1194 | if (length > elements && (length & 1) == 0) |
| 1195 | length--; |
| 1196 | length = Math.min(length, origlength); |
| 1197 | table = new HashtableEntry<?,?>[length]; |
| 1198 | threshold = (int)Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1); |
| 1199 | count = 0; |
| 1200 | |
| 1201 | // Read the number of elements and then all the key/value objects |
| 1202 | for (; elements > 0; elements--) { |
| 1203 | @SuppressWarnings("unchecked") |
| 1204 | K key = (K)s.readObject(); |
| 1205 | @SuppressWarnings("unchecked") |
| 1206 | V value = (V)s.readObject(); |
| 1207 | // sync is eliminated for performance |
| 1208 | reconstitutionPut(table, key, value); |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | /** |
| 1213 | * The put method used by readObject. This is provided because put |
| 1214 | * is overridable and should not be called in readObject since the |
| 1215 | * subclass will not yet be initialized. |
| 1216 | * |
| 1217 | * <p>This differs from the regular put method in several ways. No |
| 1218 | * checking for rehashing is necessary since the number of elements |
| 1219 | * initially in the table is known. The modCount is not incremented and |
| 1220 | * there's no synchronization because we are creating a new instance. |
| 1221 | * Also, no return value is needed. |
| 1222 | */ |
| 1223 | private void reconstitutionPut(HashtableEntry<?,?>[] tab, K key, V value) |
| 1224 | throws StreamCorruptedException |
| 1225 | { |
| 1226 | if (value == null) { |
| 1227 | throw new java.io.StreamCorruptedException(); |
| 1228 | } |
| 1229 | // Makes sure the key is not already in the hashtable. |
| 1230 | // This should not happen in deserialized version. |
| 1231 | int hash = key.hashCode(); |
| 1232 | int index = (hash & 0x7FFFFFFF) % tab.length; |
| 1233 | for (HashtableEntry<?,?> e = tab[index] ; e != null ; e = e.next) { |
| 1234 | if ((e.hash == hash) && e.key.equals(key)) { |
| 1235 | throw new java.io.StreamCorruptedException(); |
| 1236 | } |
| 1237 | } |
| 1238 | // Creates the new entry. |
| 1239 | @SuppressWarnings("unchecked") |
| 1240 | HashtableEntry<K,V> e = (HashtableEntry<K,V>)tab[index]; |
| 1241 | tab[index] = new HashtableEntry<>(hash, key, value, e); |
| 1242 | count++; |
| 1243 | } |
| 1244 | |
| 1245 | /** |
| 1246 | * Hashtable bucket collision list entry |
| 1247 | */ |
| 1248 | // BEGIN Android-changed: Renamed Entry -> HashtableEntry. |
| 1249 | // Code references to "HashTable.Entry" must mean Map.Entry |
| 1250 | // |
| 1251 | // This mirrors the corresponding rename of LinkedHashMap's |
| 1252 | // Entry->LinkedHashMapEntry. |
| 1253 | // |
| 1254 | // This is for source compatibility with earlier versions of Android. |
| 1255 | // Otherwise, it would hide Map.Entry which would break compilation |
| 1256 | // of code like: |
| 1257 | // |
| 1258 | // Hashtable.Entry<K, V> entry = hashtable.entrySet().iterator.next(); |
| 1259 | // |
| 1260 | // To compile, that code snippet's "HashtableMap.Entry" must |
| 1261 | // mean java.util.Map.Entry which is the compile time type of |
| 1262 | // entrySet()'s elements. |
| 1263 | // |
| 1264 | private static class HashtableEntry<K,V> implements Map.Entry<K,V> { |
| 1265 | // END Android-changed: Renamed Entry -> HashtableEntry. |
| 1266 | final int hash; |
| 1267 | final K key; |
| 1268 | V value; |
| 1269 | HashtableEntry<K,V> next; |
| 1270 | |
| 1271 | protected HashtableEntry(int hash, K key, V value, HashtableEntry<K,V> next) { |
| 1272 | this.hash = hash; |
| 1273 | this.key = key; |
| 1274 | this.value = value; |
| 1275 | this.next = next; |
| 1276 | } |
| 1277 | |
| 1278 | @SuppressWarnings("unchecked") |
| 1279 | protected Object clone() { |
| 1280 | return new HashtableEntry<>(hash, key, value, |
| 1281 | (next==null ? null : (HashtableEntry<K,V>) next.clone())); |
| 1282 | } |
| 1283 | |
| 1284 | // Map.Entry Ops |
| 1285 | |
| 1286 | public K getKey() { |
| 1287 | return key; |
| 1288 | } |
| 1289 | |
| 1290 | public V getValue() { |
| 1291 | return value; |
| 1292 | } |
| 1293 | |
| 1294 | public V setValue(V value) { |
| 1295 | if (value == null) |
| 1296 | throw new NullPointerException(); |
| 1297 | |
| 1298 | V oldValue = this.value; |
| 1299 | this.value = value; |
| 1300 | return oldValue; |
| 1301 | } |
| 1302 | |
| 1303 | public boolean equals(Object o) { |
| 1304 | if (!(o instanceof Map.Entry)) |
| 1305 | return false; |
| 1306 | Map.Entry<?,?> e = (Map.Entry<?,?>)o; |
| 1307 | |
| 1308 | return (key==null ? e.getKey()==null : key.equals(e.getKey())) && |
| 1309 | (value==null ? e.getValue()==null : value.equals(e.getValue())); |
| 1310 | } |
| 1311 | |
| 1312 | public int hashCode() { |
| 1313 | return hash ^ Objects.hashCode(value); |
| 1314 | } |
| 1315 | |
| 1316 | public String toString() { |
| 1317 | return key.toString()+"="+value.toString(); |
| 1318 | } |
| 1319 | } |
| 1320 | |
| 1321 | // Types of Enumerations/Iterations |
| 1322 | private static final int KEYS = 0; |
| 1323 | private static final int VALUES = 1; |
| 1324 | private static final int ENTRIES = 2; |
| 1325 | |
| 1326 | /** |
| 1327 | * A hashtable enumerator class. This class implements both the |
| 1328 | * Enumeration and Iterator interfaces, but individual instances |
| 1329 | * can be created with the Iterator methods disabled. This is necessary |
| 1330 | * to avoid unintentionally increasing the capabilities granted a user |
| 1331 | * by passing an Enumeration. |
| 1332 | */ |
| 1333 | private class Enumerator<T> implements Enumeration<T>, Iterator<T> { |
| 1334 | HashtableEntry<?,?>[] table = Hashtable.this.table; |
| 1335 | int index = table.length; |
| 1336 | HashtableEntry<?,?> entry; |
| 1337 | HashtableEntry<?,?> lastReturned; |
| 1338 | int type; |
| 1339 | |
| 1340 | /** |
| 1341 | * Indicates whether this Enumerator is serving as an Iterator |
| 1342 | * or an Enumeration. (true -> Iterator). |
| 1343 | */ |
| 1344 | boolean iterator; |
| 1345 | |
| 1346 | /** |
| 1347 | * The modCount value that the iterator believes that the backing |
| 1348 | * Hashtable should have. If this expectation is violated, the iterator |
| 1349 | * has detected concurrent modification. |
| 1350 | */ |
| 1351 | protected int expectedModCount = modCount; |
| 1352 | |
| 1353 | Enumerator(int type, boolean iterator) { |
| 1354 | this.type = type; |
| 1355 | this.iterator = iterator; |
| 1356 | } |
| 1357 | |
| 1358 | public boolean hasMoreElements() { |
| 1359 | HashtableEntry<?,?> e = entry; |
| 1360 | int i = index; |
| 1361 | HashtableEntry<?,?>[] t = table; |
| 1362 | /* Use locals for faster loop iteration */ |
| 1363 | while (e == null && i > 0) { |
| 1364 | e = t[--i]; |
| 1365 | } |
| 1366 | entry = e; |
| 1367 | index = i; |
| 1368 | return e != null; |
| 1369 | } |
| 1370 | |
| 1371 | @SuppressWarnings("unchecked") |
| 1372 | public T nextElement() { |
| 1373 | HashtableEntry<?,?> et = entry; |
| 1374 | int i = index; |
| 1375 | HashtableEntry<?,?>[] t = table; |
| 1376 | /* Use locals for faster loop iteration */ |
| 1377 | while (et == null && i > 0) { |
| 1378 | et = t[--i]; |
| 1379 | } |
| 1380 | entry = et; |
| 1381 | index = i; |
| 1382 | if (et != null) { |
| 1383 | HashtableEntry<?,?> e = lastReturned = entry; |
| 1384 | entry = e.next; |
| 1385 | return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e); |
| 1386 | } |
| 1387 | throw new NoSuchElementException("Hashtable Enumerator"); |
| 1388 | } |
| 1389 | |
| 1390 | // Iterator methods |
| 1391 | public boolean hasNext() { |
| 1392 | return hasMoreElements(); |
| 1393 | } |
| 1394 | |
| 1395 | public T next() { |
| 1396 | if (modCount != expectedModCount) |
| 1397 | throw new ConcurrentModificationException(); |
| 1398 | return nextElement(); |
| 1399 | } |
| 1400 | |
| 1401 | public void remove() { |
| 1402 | if (!iterator) |
| 1403 | throw new UnsupportedOperationException(); |
| 1404 | if (lastReturned == null) |
| 1405 | throw new IllegalStateException("Hashtable Enumerator"); |
| 1406 | if (modCount != expectedModCount) |
| 1407 | throw new ConcurrentModificationException(); |
| 1408 | |
| 1409 | synchronized(Hashtable.this) { |
| 1410 | HashtableEntry<?,?>[] tab = Hashtable.this.table; |
| 1411 | int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; |
| 1412 | |
| 1413 | @SuppressWarnings("unchecked") |
| 1414 | HashtableEntry<K,V> e = (HashtableEntry<K,V>)tab[index]; |
| 1415 | for(HashtableEntry<K,V> prev = null; e != null; prev = e, e = e.next) { |
| 1416 | if (e == lastReturned) { |
| 1417 | modCount++; |
| 1418 | expectedModCount++; |
| 1419 | if (prev == null) |
| 1420 | tab[index] = e.next; |
| 1421 | else |
| 1422 | prev.next = e.next; |
| 1423 | count--; |
| 1424 | lastReturned = null; |
| 1425 | return; |
| 1426 | } |
| 1427 | } |
| 1428 | throw new ConcurrentModificationException(); |
| 1429 | } |
| 1430 | } |
| 1431 | } |
| 1432 | } |