Alan Viverette | 3da604b | 2020-06-10 18:34:39 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2014 The Android Open Source Project |
| 3 | * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved. |
| 4 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 5 | * |
| 6 | * This code is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 only, as |
| 8 | * published by the Free Software Foundation. Oracle designates this |
| 9 | * particular file as subject to the "Classpath" exception as provided |
| 10 | * by Oracle in the LICENSE file that accompanied this code. |
| 11 | * |
| 12 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 13 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 14 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 15 | * version 2 for more details (a copy is included in the LICENSE file that |
| 16 | * accompanied this code). |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License version |
| 19 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 20 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 21 | * |
| 22 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 23 | * or visit www.oracle.com if you need additional information or have any |
| 24 | * questions. |
| 25 | */ |
| 26 | |
| 27 | package java.lang; |
| 28 | import dalvik.annotation.optimization.CriticalNative; |
| 29 | import java.util.Random; |
| 30 | |
| 31 | import sun.misc.FloatConsts; |
| 32 | import sun.misc.DoubleConsts; |
| 33 | |
| 34 | // Android-note: Document that the results from Math are based on libm's behavior. |
| 35 | // For performance, Android implements many of the methods in this class in terms of the underlying |
| 36 | // OS's libm functions. libm has well-defined behavior for special cases. Where known these are |
| 37 | // marked with the tag above and the documentation has been modified as needed. |
| 38 | /** |
| 39 | * The class {@code Math} contains methods for performing basic |
| 40 | * numeric operations such as the elementary exponential, logarithm, |
| 41 | * square root, and trigonometric functions. |
| 42 | * |
| 43 | * <p>Unlike some of the numeric methods of class |
| 44 | * {@code StrictMath}, all implementations of the equivalent |
| 45 | * functions of class {@code Math} are not defined to return the |
| 46 | * bit-for-bit same results. This relaxation permits |
| 47 | * better-performing implementations where strict reproducibility is |
| 48 | * not required. |
| 49 | * |
| 50 | * <p>By default many of the {@code Math} methods simply call |
| 51 | * the equivalent method in {@code StrictMath} for their |
| 52 | * implementation. Code generators are encouraged to use |
| 53 | * platform-specific native libraries or microprocessor instructions, |
| 54 | * where available, to provide higher-performance implementations of |
| 55 | * {@code Math} methods. Such higher-performance |
| 56 | * implementations still must conform to the specification for |
| 57 | * {@code Math}. |
| 58 | * |
| 59 | * <p>The quality of implementation specifications concern two |
| 60 | * properties, accuracy of the returned result and monotonicity of the |
| 61 | * method. Accuracy of the floating-point {@code Math} methods is |
| 62 | * measured in terms of <i>ulps</i>, units in the last place. For a |
| 63 | * given floating-point format, an {@linkplain #ulp(double) ulp} of a |
| 64 | * specific real number value is the distance between the two |
| 65 | * floating-point values bracketing that numerical value. When |
| 66 | * discussing the accuracy of a method as a whole rather than at a |
| 67 | * specific argument, the number of ulps cited is for the worst-case |
| 68 | * error at any argument. If a method always has an error less than |
| 69 | * 0.5 ulps, the method always returns the floating-point number |
| 70 | * nearest the exact result; such a method is <i>correctly |
| 71 | * rounded</i>. A correctly rounded method is generally the best a |
| 72 | * floating-point approximation can be; however, it is impractical for |
| 73 | * many floating-point methods to be correctly rounded. Instead, for |
| 74 | * the {@code Math} class, a larger error bound of 1 or 2 ulps is |
| 75 | * allowed for certain methods. Informally, with a 1 ulp error bound, |
| 76 | * when the exact result is a representable number, the exact result |
| 77 | * should be returned as the computed result; otherwise, either of the |
| 78 | * two floating-point values which bracket the exact result may be |
| 79 | * returned. For exact results large in magnitude, one of the |
| 80 | * endpoints of the bracket may be infinite. Besides accuracy at |
| 81 | * individual arguments, maintaining proper relations between the |
| 82 | * method at different arguments is also important. Therefore, most |
| 83 | * methods with more than 0.5 ulp errors are required to be |
| 84 | * <i>semi-monotonic</i>: whenever the mathematical function is |
| 85 | * non-decreasing, so is the floating-point approximation, likewise, |
| 86 | * whenever the mathematical function is non-increasing, so is the |
| 87 | * floating-point approximation. Not all approximations that have 1 |
| 88 | * ulp accuracy will automatically meet the monotonicity requirements. |
| 89 | * |
| 90 | * <p> |
| 91 | * The platform uses signed two's complement integer arithmetic with |
| 92 | * int and long primitive types. The developer should choose |
| 93 | * the primitive type to ensure that arithmetic operations consistently |
| 94 | * produce correct results, which in some cases means the operations |
| 95 | * will not overflow the range of values of the computation. |
| 96 | * The best practice is to choose the primitive type and algorithm to avoid |
| 97 | * overflow. In cases where the size is {@code int} or {@code long} and |
| 98 | * overflow errors need to be detected, the methods {@code addExact}, |
| 99 | * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact} |
| 100 | * throw an {@code ArithmeticException} when the results overflow. |
| 101 | * For other arithmetic operations such as divide, absolute value, |
| 102 | * increment, decrement, and negation overflow occurs only with |
| 103 | * a specific minimum or maximum value and should be checked against |
| 104 | * the minimum or maximum as appropriate. |
| 105 | * |
| 106 | * @author unascribed |
| 107 | * @author Joseph D. Darcy |
| 108 | * @since JDK1.0 |
| 109 | */ |
| 110 | |
| 111 | public final class Math { |
| 112 | |
| 113 | // Android-changed: Numerous methods in this class are re-implemented in native for performance. |
| 114 | // Those methods are also annotated @CriticalNative. |
| 115 | |
| 116 | /** |
| 117 | * Don't let anyone instantiate this class. |
| 118 | */ |
| 119 | private Math() {} |
| 120 | |
| 121 | /** |
| 122 | * The {@code double} value that is closer than any other to |
| 123 | * <i>e</i>, the base of the natural logarithms. |
| 124 | */ |
| 125 | public static final double E = 2.7182818284590452354; |
| 126 | |
| 127 | /** |
| 128 | * The {@code double} value that is closer than any other to |
| 129 | * <i>pi</i>, the ratio of the circumference of a circle to its |
| 130 | * diameter. |
| 131 | */ |
| 132 | public static final double PI = 3.14159265358979323846; |
| 133 | |
| 134 | /** |
| 135 | * Returns the trigonometric sine of an angle. Special cases: |
| 136 | * <ul><li>If the argument is NaN or an infinity, then the |
| 137 | * result is NaN. |
| 138 | * <li>If the argument is zero, then the result is a zero with the |
| 139 | * same sign as the argument.</ul> |
| 140 | * |
| 141 | * <p>The computed result must be within 1 ulp of the exact result. |
| 142 | * Results must be semi-monotonic. |
| 143 | * |
| 144 | * @param a an angle, in radians. |
| 145 | * @return the sine of the argument. |
| 146 | */ |
| 147 | @CriticalNative |
| 148 | public static native double sin(double a); |
| 149 | |
| 150 | /** |
| 151 | * Returns the trigonometric cosine of an angle. Special cases: |
| 152 | * <ul><li>If the argument is NaN or an infinity, then the |
| 153 | * result is NaN.</ul> |
| 154 | * |
| 155 | * <p>The computed result must be within 1 ulp of the exact result. |
| 156 | * Results must be semi-monotonic. |
| 157 | * |
| 158 | * @param a an angle, in radians. |
| 159 | * @return the cosine of the argument. |
| 160 | */ |
| 161 | @CriticalNative |
| 162 | public static native double cos(double a); |
| 163 | |
| 164 | /** |
| 165 | * Returns the trigonometric tangent of an angle. Special cases: |
| 166 | * <ul><li>If the argument is NaN or an infinity, then the result |
| 167 | * is NaN. |
| 168 | * <li>If the argument is zero, then the result is a zero with the |
| 169 | * same sign as the argument.</ul> |
| 170 | * |
| 171 | * <p>The computed result must be within 1 ulp of the exact result. |
| 172 | * Results must be semi-monotonic. |
| 173 | * |
| 174 | * @param a an angle, in radians. |
| 175 | * @return the tangent of the argument. |
| 176 | */ |
| 177 | @CriticalNative |
| 178 | public static native double tan(double a); |
| 179 | |
| 180 | /** |
| 181 | * Returns the arc sine of a value; the returned angle is in the |
| 182 | * range -<i>pi</i>/2 through <i>pi</i>/2. Special cases: |
| 183 | * <ul><li>If the argument is NaN or its absolute value is greater |
| 184 | * than 1, then the result is NaN. |
| 185 | * <li>If the argument is zero, then the result is a zero with the |
| 186 | * same sign as the argument.</ul> |
| 187 | * |
| 188 | * <p>The computed result must be within 1 ulp of the exact result. |
| 189 | * Results must be semi-monotonic. |
| 190 | * |
| 191 | * @param a the value whose arc sine is to be returned. |
| 192 | * @return the arc sine of the argument. |
| 193 | */ |
| 194 | @CriticalNative |
| 195 | public static native double asin(double a); |
| 196 | |
| 197 | /** |
| 198 | * Returns the arc cosine of a value; the returned angle is in the |
| 199 | * range 0.0 through <i>pi</i>. Special case: |
| 200 | * <ul><li>If the argument is NaN or its absolute value is greater |
| 201 | * than 1, then the result is NaN.</ul> |
| 202 | * |
| 203 | * <p>The computed result must be within 1 ulp of the exact result. |
| 204 | * Results must be semi-monotonic. |
| 205 | * |
| 206 | * @param a the value whose arc cosine is to be returned. |
| 207 | * @return the arc cosine of the argument. |
| 208 | */ |
| 209 | @CriticalNative |
| 210 | public static native double acos(double a); |
| 211 | |
| 212 | /** |
| 213 | * Returns the arc tangent of a value; the returned angle is in the |
| 214 | * range -<i>pi</i>/2 through <i>pi</i>/2. Special cases: |
| 215 | * <ul><li>If the argument is NaN, then the result is NaN. |
| 216 | * <li>If the argument is zero, then the result is a zero with the |
| 217 | * same sign as the argument.</ul> |
| 218 | * |
| 219 | * <p>The computed result must be within 1 ulp of the exact result. |
| 220 | * Results must be semi-monotonic. |
| 221 | * |
| 222 | * @param a the value whose arc tangent is to be returned. |
| 223 | * @return the arc tangent of the argument. |
| 224 | */ |
| 225 | @CriticalNative |
| 226 | public static native double atan(double a); |
| 227 | |
| 228 | /** |
| 229 | * Converts an angle measured in degrees to an approximately |
| 230 | * equivalent angle measured in radians. The conversion from |
| 231 | * degrees to radians is generally inexact. |
| 232 | * |
| 233 | * @param angdeg an angle, in degrees |
| 234 | * @return the measurement of the angle {@code angdeg} |
| 235 | * in radians. |
| 236 | * @since 1.2 |
| 237 | */ |
| 238 | public static double toRadians(double angdeg) { |
| 239 | return angdeg / 180.0 * PI; |
| 240 | } |
| 241 | |
| 242 | /** |
| 243 | * Converts an angle measured in radians to an approximately |
| 244 | * equivalent angle measured in degrees. The conversion from |
| 245 | * radians to degrees is generally inexact; users should |
| 246 | * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly |
| 247 | * equal {@code 0.0}. |
| 248 | * |
| 249 | * @param angrad an angle, in radians |
| 250 | * @return the measurement of the angle {@code angrad} |
| 251 | * in degrees. |
| 252 | * @since 1.2 |
| 253 | */ |
| 254 | public static double toDegrees(double angrad) { |
| 255 | return angrad * 180.0 / PI; |
| 256 | } |
| 257 | |
| 258 | /** |
| 259 | * Returns Euler's number <i>e</i> raised to the power of a |
| 260 | * {@code double} value. Special cases: |
| 261 | * <ul><li>If the argument is NaN, the result is NaN. |
| 262 | * <li>If the argument is positive infinity, then the result is |
| 263 | * positive infinity. |
| 264 | * <li>If the argument is negative infinity, then the result is |
| 265 | * positive zero.</ul> |
| 266 | * |
| 267 | * <p>The computed result must be within 1 ulp of the exact result. |
| 268 | * Results must be semi-monotonic. |
| 269 | * |
| 270 | * @param a the exponent to raise <i>e</i> to. |
| 271 | * @return the value <i>e</i><sup>{@code a}</sup>, |
| 272 | * where <i>e</i> is the base of the natural logarithms. |
| 273 | */ |
| 274 | @CriticalNative |
| 275 | public static native double exp(double a); |
| 276 | |
| 277 | /** |
| 278 | * Returns the natural logarithm (base <i>e</i>) of a {@code double} |
| 279 | * value. Special cases: |
| 280 | * <ul><li>If the argument is NaN or less than zero, then the result |
| 281 | * is NaN. |
| 282 | * <li>If the argument is positive infinity, then the result is |
| 283 | * positive infinity. |
| 284 | * <li>If the argument is positive zero or negative zero, then the |
| 285 | * result is negative infinity.</ul> |
| 286 | * |
| 287 | * <p>The computed result must be within 1 ulp of the exact result. |
| 288 | * Results must be semi-monotonic. |
| 289 | * |
| 290 | * @param a a value |
| 291 | * @return the value ln {@code a}, the natural logarithm of |
| 292 | * {@code a}. |
| 293 | */ |
| 294 | @CriticalNative |
| 295 | public static native double log(double a); |
| 296 | |
| 297 | /** |
| 298 | * Returns the base 10 logarithm of a {@code double} value. |
| 299 | * Special cases: |
| 300 | * |
| 301 | * <ul><li>If the argument is NaN or less than zero, then the result |
| 302 | * is NaN. |
| 303 | * <li>If the argument is positive infinity, then the result is |
| 304 | * positive infinity. |
| 305 | * <li>If the argument is positive zero or negative zero, then the |
| 306 | * result is negative infinity. |
| 307 | * <li> If the argument is equal to 10<sup><i>n</i></sup> for |
| 308 | * integer <i>n</i>, then the result is <i>n</i>. |
| 309 | * </ul> |
| 310 | * |
| 311 | * <p>The computed result must be within 1 ulp of the exact result. |
| 312 | * Results must be semi-monotonic. |
| 313 | * |
| 314 | * @param a a value |
| 315 | * @return the base 10 logarithm of {@code a}. |
| 316 | * @since 1.5 |
| 317 | */ |
| 318 | @CriticalNative |
| 319 | public static native double log10(double a); |
| 320 | |
| 321 | /** |
| 322 | * Returns the correctly rounded positive square root of a |
| 323 | * {@code double} value. |
| 324 | * Special cases: |
| 325 | * <ul><li>If the argument is NaN or less than zero, then the result |
| 326 | * is NaN. |
| 327 | * <li>If the argument is positive infinity, then the result is positive |
| 328 | * infinity. |
| 329 | * <li>If the argument is positive zero or negative zero, then the |
| 330 | * result is the same as the argument.</ul> |
| 331 | * Otherwise, the result is the {@code double} value closest to |
| 332 | * the true mathematical square root of the argument value. |
| 333 | * |
| 334 | * @param a a value. |
| 335 | * @return the positive square root of {@code a}. |
| 336 | * If the argument is NaN or less than zero, the result is NaN. |
| 337 | */ |
| 338 | @CriticalNative |
| 339 | public static native double sqrt(double a); |
| 340 | |
| 341 | |
| 342 | /** |
| 343 | * Returns the cube root of a {@code double} value. For |
| 344 | * positive finite {@code x}, {@code cbrt(-x) == |
| 345 | * -cbrt(x)}; that is, the cube root of a negative value is |
| 346 | * the negative of the cube root of that value's magnitude. |
| 347 | * |
| 348 | * Special cases: |
| 349 | * |
| 350 | * <ul> |
| 351 | * |
| 352 | * <li>If the argument is NaN, then the result is NaN. |
| 353 | * |
| 354 | * <li>If the argument is infinite, then the result is an infinity |
| 355 | * with the same sign as the argument. |
| 356 | * |
| 357 | * <li>If the argument is zero, then the result is a zero with the |
| 358 | * same sign as the argument. |
| 359 | * |
| 360 | * </ul> |
| 361 | * |
| 362 | * <p>The computed result must be within 1 ulp of the exact result. |
| 363 | * |
| 364 | * @param a a value. |
| 365 | * @return the cube root of {@code a}. |
| 366 | * @since 1.5 |
| 367 | */ |
| 368 | @CriticalNative |
| 369 | public static native double cbrt(double a); |
| 370 | |
| 371 | /** |
| 372 | * Computes the remainder operation on two arguments as prescribed |
| 373 | * by the IEEE 754 standard. |
| 374 | * The remainder value is mathematically equal to |
| 375 | * <code>f1 - f2</code> × <i>n</i>, |
| 376 | * where <i>n</i> is the mathematical integer closest to the exact |
| 377 | * mathematical value of the quotient {@code f1/f2}, and if two |
| 378 | * mathematical integers are equally close to {@code f1/f2}, |
| 379 | * then <i>n</i> is the integer that is even. If the remainder is |
| 380 | * zero, its sign is the same as the sign of the first argument. |
| 381 | * Special cases: |
| 382 | * <ul><li>If either argument is NaN, or the first argument is infinite, |
| 383 | * or the second argument is positive zero or negative zero, then the |
| 384 | * result is NaN. |
| 385 | * <li>If the first argument is finite and the second argument is |
| 386 | * infinite, then the result is the same as the first argument.</ul> |
| 387 | * |
| 388 | * @param f1 the dividend. |
| 389 | * @param f2 the divisor. |
| 390 | * @return the remainder when {@code f1} is divided by |
| 391 | * {@code f2}. |
| 392 | */ |
| 393 | @CriticalNative |
| 394 | public static native double IEEEremainder(double f1, double f2); |
| 395 | |
| 396 | /** |
| 397 | * Returns the smallest (closest to negative infinity) |
| 398 | * {@code double} value that is greater than or equal to the |
| 399 | * argument and is equal to a mathematical integer. Special cases: |
| 400 | * <ul><li>If the argument value is already equal to a |
| 401 | * mathematical integer, then the result is the same as the |
| 402 | * argument. <li>If the argument is NaN or an infinity or |
| 403 | * positive zero or negative zero, then the result is the same as |
| 404 | * the argument. <li>If the argument value is less than zero but |
| 405 | * greater than -1.0, then the result is negative zero.</ul> Note |
| 406 | * that the value of {@code Math.ceil(x)} is exactly the |
| 407 | * value of {@code -Math.floor(-x)}. |
| 408 | * |
| 409 | * |
| 410 | * @param a a value. |
| 411 | * @return the smallest (closest to negative infinity) |
| 412 | * floating-point value that is greater than or equal to |
| 413 | * the argument and is equal to a mathematical integer. |
| 414 | */ |
| 415 | @CriticalNative |
| 416 | public static native double ceil(double a); |
| 417 | |
| 418 | /** |
| 419 | * Returns the largest (closest to positive infinity) |
| 420 | * {@code double} value that is less than or equal to the |
| 421 | * argument and is equal to a mathematical integer. Special cases: |
| 422 | * <ul><li>If the argument value is already equal to a |
| 423 | * mathematical integer, then the result is the same as the |
| 424 | * argument. <li>If the argument is NaN or an infinity or |
| 425 | * positive zero or negative zero, then the result is the same as |
| 426 | * the argument.</ul> |
| 427 | * |
| 428 | * @param a a value. |
| 429 | * @return the largest (closest to positive infinity) |
| 430 | * floating-point value that less than or equal to the argument |
| 431 | * and is equal to a mathematical integer. |
| 432 | */ |
| 433 | @CriticalNative |
| 434 | public static native double floor(double a); |
| 435 | |
| 436 | /** |
| 437 | * Returns the {@code double} value that is closest in value |
| 438 | * to the argument and is equal to a mathematical integer. If two |
| 439 | * {@code double} values that are mathematical integers are |
| 440 | * equally close, the result is the integer value that is |
| 441 | * even. Special cases: |
| 442 | * <ul><li>If the argument value is already equal to a mathematical |
| 443 | * integer, then the result is the same as the argument. |
| 444 | * <li>If the argument is NaN or an infinity or positive zero or negative |
| 445 | * zero, then the result is the same as the argument.</ul> |
| 446 | * |
| 447 | * @param a a {@code double} value. |
| 448 | * @return the closest floating-point value to {@code a} that is |
| 449 | * equal to a mathematical integer. |
| 450 | */ |
| 451 | @CriticalNative |
| 452 | public static native double rint(double a); |
| 453 | |
| 454 | /** |
| 455 | * Returns the angle <i>theta</i> from the conversion of rectangular |
| 456 | * coordinates ({@code x}, {@code y}) to polar |
| 457 | * coordinates (r, <i>theta</i>). |
| 458 | * This method computes the phase <i>theta</i> by computing an arc tangent |
| 459 | * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special |
| 460 | * cases: |
| 461 | * <ul><li>If either argument is NaN, then the result is NaN. |
| 462 | * <li>If the first argument is positive zero and the second argument |
| 463 | * is positive, or the first argument is positive and finite and the |
| 464 | * second argument is positive infinity, then the result is positive |
| 465 | * zero. |
| 466 | * <li>If the first argument is negative zero and the second argument |
| 467 | * is positive, or the first argument is negative and finite and the |
| 468 | * second argument is positive infinity, then the result is negative zero. |
| 469 | * <li>If the first argument is positive zero and the second argument |
| 470 | * is negative, or the first argument is positive and finite and the |
| 471 | * second argument is negative infinity, then the result is the |
| 472 | * {@code double} value closest to <i>pi</i>. |
| 473 | * <li>If the first argument is negative zero and the second argument |
| 474 | * is negative, or the first argument is negative and finite and the |
| 475 | * second argument is negative infinity, then the result is the |
| 476 | * {@code double} value closest to -<i>pi</i>. |
| 477 | * <li>If the first argument is positive and the second argument is |
| 478 | * positive zero or negative zero, or the first argument is positive |
| 479 | * infinity and the second argument is finite, then the result is the |
| 480 | * {@code double} value closest to <i>pi</i>/2. |
| 481 | * <li>If the first argument is negative and the second argument is |
| 482 | * positive zero or negative zero, or the first argument is negative |
| 483 | * infinity and the second argument is finite, then the result is the |
| 484 | * {@code double} value closest to -<i>pi</i>/2. |
| 485 | * <li>If both arguments are positive infinity, then the result is the |
| 486 | * {@code double} value closest to <i>pi</i>/4. |
| 487 | * <li>If the first argument is positive infinity and the second argument |
| 488 | * is negative infinity, then the result is the {@code double} |
| 489 | * value closest to 3*<i>pi</i>/4. |
| 490 | * <li>If the first argument is negative infinity and the second argument |
| 491 | * is positive infinity, then the result is the {@code double} value |
| 492 | * closest to -<i>pi</i>/4. |
| 493 | * <li>If both arguments are negative infinity, then the result is the |
| 494 | * {@code double} value closest to -3*<i>pi</i>/4.</ul> |
| 495 | * |
| 496 | * <p>The computed result must be within 2 ulps of the exact result. |
| 497 | * Results must be semi-monotonic. |
| 498 | * |
| 499 | * @param y the ordinate coordinate |
| 500 | * @param x the abscissa coordinate |
| 501 | * @return the <i>theta</i> component of the point |
| 502 | * (<i>r</i>, <i>theta</i>) |
| 503 | * in polar coordinates that corresponds to the point |
| 504 | * (<i>x</i>, <i>y</i>) in Cartesian coordinates. |
| 505 | */ |
| 506 | @CriticalNative |
| 507 | public static native double atan2(double y, double x); |
| 508 | |
| 509 | // Android-changed: Document that the results from Math are based on libm's behavior. |
| 510 | // The cases known to differ with libm's pow(): |
| 511 | // If the first argument is 1.0 then result is always 1.0 (not NaN). |
| 512 | // If the first argument is -1.0 and the second argument is infinite, the result is 1.0 (not |
| 513 | // NaN). |
| 514 | /** |
| 515 | * Returns the value of the first argument raised to the power of the |
| 516 | * second argument. Special cases: |
| 517 | * |
| 518 | * <ul><li>If the second argument is positive or negative zero, then the |
| 519 | * result is 1.0. |
| 520 | * <li>If the second argument is 1.0, then the result is the same as the |
| 521 | * first argument. |
| 522 | * <li>If the first argument is 1.0, then the result is 1.0. |
| 523 | * <li>If the second argument is NaN, then the result is NaN except where the first argument is |
| 524 | * 1.0. |
| 525 | * <li>If the first argument is NaN and the second argument is nonzero, |
| 526 | * then the result is NaN. |
| 527 | * |
| 528 | * <li>If |
| 529 | * <ul> |
| 530 | * <li>the absolute value of the first argument is greater than 1 |
| 531 | * and the second argument is positive infinity, or |
| 532 | * <li>the absolute value of the first argument is less than 1 and |
| 533 | * the second argument is negative infinity, |
| 534 | * </ul> |
| 535 | * then the result is positive infinity. |
| 536 | * |
| 537 | * <li>If |
| 538 | * <ul> |
| 539 | * <li>the absolute value of the first argument is greater than 1 and |
| 540 | * the second argument is negative infinity, or |
| 541 | * <li>the absolute value of the |
| 542 | * first argument is less than 1 and the second argument is positive |
| 543 | * infinity, |
| 544 | * </ul> |
| 545 | * then the result is positive zero. |
| 546 | * |
| 547 | * <li>If the absolute value of the first argument equals 1 and the |
| 548 | * second argument is infinite, then the result is 1.0. |
| 549 | * |
| 550 | * <li>If |
| 551 | * <ul> |
| 552 | * <li>the first argument is positive zero and the second argument |
| 553 | * is greater than zero, or |
| 554 | * <li>the first argument is positive infinity and the second |
| 555 | * argument is less than zero, |
| 556 | * </ul> |
| 557 | * then the result is positive zero. |
| 558 | * |
| 559 | * <li>If |
| 560 | * <ul> |
| 561 | * <li>the first argument is positive zero and the second argument |
| 562 | * is less than zero, or |
| 563 | * <li>the first argument is positive infinity and the second |
| 564 | * argument is greater than zero, |
| 565 | * </ul> |
| 566 | * then the result is positive infinity. |
| 567 | * |
| 568 | * <li>If |
| 569 | * <ul> |
| 570 | * <li>the first argument is negative zero and the second argument |
| 571 | * is greater than zero but not a finite odd integer, or |
| 572 | * <li>the first argument is negative infinity and the second |
| 573 | * argument is less than zero but not a finite odd integer, |
| 574 | * </ul> |
| 575 | * then the result is positive zero. |
| 576 | * |
| 577 | * <li>If |
| 578 | * <ul> |
| 579 | * <li>the first argument is negative zero and the second argument |
| 580 | * is a positive finite odd integer, or |
| 581 | * <li>the first argument is negative infinity and the second |
| 582 | * argument is a negative finite odd integer, |
| 583 | * </ul> |
| 584 | * then the result is negative zero. |
| 585 | * |
| 586 | * <li>If |
| 587 | * <ul> |
| 588 | * <li>the first argument is negative zero and the second argument |
| 589 | * is less than zero but not a finite odd integer, or |
| 590 | * <li>the first argument is negative infinity and the second |
| 591 | * argument is greater than zero but not a finite odd integer, |
| 592 | * </ul> |
| 593 | * then the result is positive infinity. |
| 594 | * |
| 595 | * <li>If |
| 596 | * <ul> |
| 597 | * <li>the first argument is negative zero and the second argument |
| 598 | * is a negative finite odd integer, or |
| 599 | * <li>the first argument is negative infinity and the second |
| 600 | * argument is a positive finite odd integer, |
| 601 | * </ul> |
| 602 | * then the result is negative infinity. |
| 603 | * |
| 604 | * <li>If the first argument is finite and less than zero |
| 605 | * <ul> |
| 606 | * <li> if the second argument is a finite even integer, the |
| 607 | * result is equal to the result of raising the absolute value of |
| 608 | * the first argument to the power of the second argument |
| 609 | * |
| 610 | * <li>if the second argument is a finite odd integer, the result |
| 611 | * is equal to the negative of the result of raising the absolute |
| 612 | * value of the first argument to the power of the second |
| 613 | * argument |
| 614 | * |
| 615 | * <li>if the second argument is finite and not an integer, then |
| 616 | * the result is NaN. |
| 617 | * </ul> |
| 618 | * |
| 619 | * <li>If both arguments are integers, then the result is exactly equal |
| 620 | * to the mathematical result of raising the first argument to the power |
| 621 | * of the second argument if that result can in fact be represented |
| 622 | * exactly as a {@code double} value.</ul> |
| 623 | * |
| 624 | * <p>(In the foregoing descriptions, a floating-point value is |
| 625 | * considered to be an integer if and only if it is finite and a |
| 626 | * fixed point of the method {@link #ceil ceil} or, |
| 627 | * equivalently, a fixed point of the method {@link #floor |
| 628 | * floor}. A value is a fixed point of a one-argument |
| 629 | * method if and only if the result of applying the method to the |
| 630 | * value is equal to the value.) |
| 631 | * |
| 632 | * <p>The computed result must be within 1 ulp of the exact result. |
| 633 | * Results must be semi-monotonic. |
| 634 | * |
| 635 | * @param a the base. |
| 636 | * @param b the exponent. |
| 637 | * @return the value {@code a}<sup>{@code b}</sup>. |
| 638 | */ |
| 639 | @CriticalNative |
| 640 | public static native double pow(double a, double b); |
| 641 | |
| 642 | /** |
| 643 | * Returns the closest {@code int} to the argument, with ties |
| 644 | * rounding to positive infinity. |
| 645 | * |
| 646 | * <p> |
| 647 | * Special cases: |
| 648 | * <ul><li>If the argument is NaN, the result is 0. |
| 649 | * <li>If the argument is negative infinity or any value less than or |
| 650 | * equal to the value of {@code Integer.MIN_VALUE}, the result is |
| 651 | * equal to the value of {@code Integer.MIN_VALUE}. |
| 652 | * <li>If the argument is positive infinity or any value greater than or |
| 653 | * equal to the value of {@code Integer.MAX_VALUE}, the result is |
| 654 | * equal to the value of {@code Integer.MAX_VALUE}.</ul> |
| 655 | * |
| 656 | * @param a a floating-point value to be rounded to an integer. |
| 657 | * @return the value of the argument rounded to the nearest |
| 658 | * {@code int} value. |
| 659 | * @see java.lang.Integer#MAX_VALUE |
| 660 | * @see java.lang.Integer#MIN_VALUE |
| 661 | */ |
| 662 | public static int round(float a) { |
| 663 | int intBits = Float.floatToRawIntBits(a); |
| 664 | int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK) |
| 665 | >> (FloatConsts.SIGNIFICAND_WIDTH - 1); |
| 666 | int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2 |
| 667 | + FloatConsts.EXP_BIAS) - biasedExp; |
| 668 | if ((shift & -32) == 0) { // shift >= 0 && shift < 32 |
| 669 | // a is a finite number such that pow(2,-32) <= ulp(a) < 1 |
| 670 | int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK) |
| 671 | | (FloatConsts.SIGNIF_BIT_MASK + 1)); |
| 672 | if (intBits < 0) { |
| 673 | r = -r; |
| 674 | } |
| 675 | // In the comments below each Java expression evaluates to the value |
| 676 | // the corresponding mathematical expression: |
| 677 | // (r) evaluates to a / ulp(a) |
| 678 | // (r >> shift) evaluates to floor(a * 2) |
| 679 | // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2) |
| 680 | // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2) |
| 681 | return ((r >> shift) + 1) >> 1; |
| 682 | } else { |
| 683 | // a is either |
| 684 | // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2 |
| 685 | // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer |
| 686 | // - an infinity or NaN |
| 687 | return (int) a; |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | /** |
| 692 | * Returns the closest {@code long} to the argument, with ties |
| 693 | * rounding to positive infinity. |
| 694 | * |
| 695 | * <p>Special cases: |
| 696 | * <ul><li>If the argument is NaN, the result is 0. |
| 697 | * <li>If the argument is negative infinity or any value less than or |
| 698 | * equal to the value of {@code Long.MIN_VALUE}, the result is |
| 699 | * equal to the value of {@code Long.MIN_VALUE}. |
| 700 | * <li>If the argument is positive infinity or any value greater than or |
| 701 | * equal to the value of {@code Long.MAX_VALUE}, the result is |
| 702 | * equal to the value of {@code Long.MAX_VALUE}.</ul> |
| 703 | * |
| 704 | * @param a a floating-point value to be rounded to a |
| 705 | * {@code long}. |
| 706 | * @return the value of the argument rounded to the nearest |
| 707 | * {@code long} value. |
| 708 | * @see java.lang.Long#MAX_VALUE |
| 709 | * @see java.lang.Long#MIN_VALUE |
| 710 | */ |
| 711 | public static long round(double a) { |
| 712 | long longBits = Double.doubleToRawLongBits(a); |
| 713 | long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK) |
| 714 | >> (DoubleConsts.SIGNIFICAND_WIDTH - 1); |
| 715 | long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2 |
| 716 | + DoubleConsts.EXP_BIAS) - biasedExp; |
| 717 | if ((shift & -64) == 0) { // shift >= 0 && shift < 64 |
| 718 | // a is a finite number such that pow(2,-64) <= ulp(a) < 1 |
| 719 | long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK) |
| 720 | | (DoubleConsts.SIGNIF_BIT_MASK + 1)); |
| 721 | if (longBits < 0) { |
| 722 | r = -r; |
| 723 | } |
| 724 | // In the comments below each Java expression evaluates to the value |
| 725 | // the corresponding mathematical expression: |
| 726 | // (r) evaluates to a / ulp(a) |
| 727 | // (r >> shift) evaluates to floor(a * 2) |
| 728 | // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2) |
| 729 | // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2) |
| 730 | return ((r >> shift) + 1) >> 1; |
| 731 | } else { |
| 732 | // a is either |
| 733 | // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2 |
| 734 | // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer |
| 735 | // - an infinity or NaN |
| 736 | return (long) a; |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | private static final class RandomNumberGeneratorHolder { |
| 741 | static final Random randomNumberGenerator = new Random(); |
| 742 | } |
| 743 | |
| 744 | /** |
| 745 | * Returns a {@code double} value with a positive sign, greater |
| 746 | * than or equal to {@code 0.0} and less than {@code 1.0}. |
| 747 | * Returned values are chosen pseudorandomly with (approximately) |
| 748 | * uniform distribution from that range. |
| 749 | * |
| 750 | * <p>When this method is first called, it creates a single new |
| 751 | * pseudorandom-number generator, exactly as if by the expression |
| 752 | * |
| 753 | * <blockquote>{@code new java.util.Random()}</blockquote> |
| 754 | * |
| 755 | * This new pseudorandom-number generator is used thereafter for |
| 756 | * all calls to this method and is used nowhere else. |
| 757 | * |
| 758 | * <p>This method is properly synchronized to allow correct use by |
| 759 | * more than one thread. However, if many threads need to generate |
| 760 | * pseudorandom numbers at a great rate, it may reduce contention |
| 761 | * for each thread to have its own pseudorandom-number generator. |
| 762 | * |
| 763 | * @return a pseudorandom {@code double} greater than or equal |
| 764 | * to {@code 0.0} and less than {@code 1.0}. |
| 765 | * @see Random#nextDouble() |
| 766 | */ |
| 767 | public static double random() { |
| 768 | return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble(); |
| 769 | } |
| 770 | |
| 771 | // Android-added: setRandomSeedInternal(long), called after zygote forks. |
| 772 | // This allows different processes to have different random seeds. |
| 773 | /** |
| 774 | * Set the seed for the pseudo random generator used by {@link #random()} |
| 775 | * and {@link #randomIntInternal()}. |
| 776 | * |
| 777 | * @hide for internal use only. |
| 778 | */ |
| 779 | public static void setRandomSeedInternal(long seed) { |
| 780 | RandomNumberGeneratorHolder.randomNumberGenerator.setSeed(seed); |
| 781 | } |
| 782 | |
| 783 | // Android-added: randomIntInternal() method: like random() but for int. |
| 784 | /** |
| 785 | * @hide for internal use only. |
| 786 | */ |
| 787 | public static int randomIntInternal() { |
| 788 | return RandomNumberGeneratorHolder.randomNumberGenerator.nextInt(); |
| 789 | } |
| 790 | |
| 791 | // Android-added: randomLongInternal() method: like random() but for long. |
| 792 | /** |
| 793 | * @hide for internal use only. |
| 794 | */ |
| 795 | public static long randomLongInternal() { |
| 796 | return RandomNumberGeneratorHolder.randomNumberGenerator.nextLong(); |
| 797 | } |
| 798 | |
| 799 | /** |
| 800 | * Returns the sum of its arguments, |
| 801 | * throwing an exception if the result overflows an {@code int}. |
| 802 | * |
| 803 | * @param x the first value |
| 804 | * @param y the second value |
| 805 | * @return the result |
| 806 | * @throws ArithmeticException if the result overflows an int |
| 807 | * @since 1.8 |
| 808 | */ |
| 809 | public static int addExact(int x, int y) { |
| 810 | int r = x + y; |
| 811 | // HD 2-12 Overflow iff both arguments have the opposite sign of the result |
| 812 | if (((x ^ r) & (y ^ r)) < 0) { |
| 813 | throw new ArithmeticException("integer overflow"); |
| 814 | } |
| 815 | return r; |
| 816 | } |
| 817 | |
| 818 | /** |
| 819 | * Returns the sum of its arguments, |
| 820 | * throwing an exception if the result overflows a {@code long}. |
| 821 | * |
| 822 | * @param x the first value |
| 823 | * @param y the second value |
| 824 | * @return the result |
| 825 | * @throws ArithmeticException if the result overflows a long |
| 826 | * @since 1.8 |
| 827 | */ |
| 828 | public static long addExact(long x, long y) { |
| 829 | long r = x + y; |
| 830 | // HD 2-12 Overflow iff both arguments have the opposite sign of the result |
| 831 | if (((x ^ r) & (y ^ r)) < 0) { |
| 832 | throw new ArithmeticException("long overflow"); |
| 833 | } |
| 834 | return r; |
| 835 | } |
| 836 | |
| 837 | /** |
| 838 | * Returns the difference of the arguments, |
| 839 | * throwing an exception if the result overflows an {@code int}. |
| 840 | * |
| 841 | * @param x the first value |
| 842 | * @param y the second value to subtract from the first |
| 843 | * @return the result |
| 844 | * @throws ArithmeticException if the result overflows an int |
| 845 | * @since 1.8 |
| 846 | */ |
| 847 | public static int subtractExact(int x, int y) { |
| 848 | int r = x - y; |
| 849 | // HD 2-12 Overflow iff the arguments have different signs and |
| 850 | // the sign of the result is different than the sign of x |
| 851 | if (((x ^ y) & (x ^ r)) < 0) { |
| 852 | throw new ArithmeticException("integer overflow"); |
| 853 | } |
| 854 | return r; |
| 855 | } |
| 856 | |
| 857 | /** |
| 858 | * Returns the difference of the arguments, |
| 859 | * throwing an exception if the result overflows a {@code long}. |
| 860 | * |
| 861 | * @param x the first value |
| 862 | * @param y the second value to subtract from the first |
| 863 | * @return the result |
| 864 | * @throws ArithmeticException if the result overflows a long |
| 865 | * @since 1.8 |
| 866 | */ |
| 867 | public static long subtractExact(long x, long y) { |
| 868 | long r = x - y; |
| 869 | // HD 2-12 Overflow iff the arguments have different signs and |
| 870 | // the sign of the result is different than the sign of x |
| 871 | if (((x ^ y) & (x ^ r)) < 0) { |
| 872 | throw new ArithmeticException("long overflow"); |
| 873 | } |
| 874 | return r; |
| 875 | } |
| 876 | |
| 877 | /** |
| 878 | * Returns the product of the arguments, |
| 879 | * throwing an exception if the result overflows an {@code int}. |
| 880 | * |
| 881 | * @param x the first value |
| 882 | * @param y the second value |
| 883 | * @return the result |
| 884 | * @throws ArithmeticException if the result overflows an int |
| 885 | * @since 1.8 |
| 886 | */ |
| 887 | public static int multiplyExact(int x, int y) { |
| 888 | long r = (long)x * (long)y; |
| 889 | if ((int)r != r) { |
| 890 | throw new ArithmeticException("integer overflow"); |
| 891 | } |
| 892 | return (int)r; |
| 893 | } |
| 894 | |
| 895 | /** |
| 896 | * Returns the product of the arguments, |
| 897 | * throwing an exception if the result overflows a {@code long}. |
| 898 | * |
| 899 | * @param x the first value |
| 900 | * @param y the second value |
| 901 | * @return the result |
| 902 | * @throws ArithmeticException if the result overflows a long |
| 903 | * @since 1.8 |
| 904 | */ |
| 905 | public static long multiplyExact(long x, long y) { |
| 906 | long r = x * y; |
| 907 | long ax = Math.abs(x); |
| 908 | long ay = Math.abs(y); |
| 909 | if (((ax | ay) >>> 31 != 0)) { |
| 910 | // Some bits greater than 2^31 that might cause overflow |
| 911 | // Check the result using the divide operator |
| 912 | // and check for the special case of Long.MIN_VALUE * -1 |
| 913 | if (((y != 0) && (r / y != x)) || |
| 914 | (x == Long.MIN_VALUE && y == -1)) { |
| 915 | throw new ArithmeticException("long overflow"); |
| 916 | } |
| 917 | } |
| 918 | return r; |
| 919 | } |
| 920 | |
| 921 | /** |
| 922 | * Returns the argument incremented by one, throwing an exception if the |
| 923 | * result overflows an {@code int}. |
| 924 | * |
| 925 | * @param a the value to increment |
| 926 | * @return the result |
| 927 | * @throws ArithmeticException if the result overflows an int |
| 928 | * @since 1.8 |
| 929 | */ |
| 930 | public static int incrementExact(int a) { |
| 931 | if (a == Integer.MAX_VALUE) { |
| 932 | throw new ArithmeticException("integer overflow"); |
| 933 | } |
| 934 | |
| 935 | return a + 1; |
| 936 | } |
| 937 | |
| 938 | /** |
| 939 | * Returns the argument incremented by one, throwing an exception if the |
| 940 | * result overflows a {@code long}. |
| 941 | * |
| 942 | * @param a the value to increment |
| 943 | * @return the result |
| 944 | * @throws ArithmeticException if the result overflows a long |
| 945 | * @since 1.8 |
| 946 | */ |
| 947 | public static long incrementExact(long a) { |
| 948 | if (a == Long.MAX_VALUE) { |
| 949 | throw new ArithmeticException("long overflow"); |
| 950 | } |
| 951 | |
| 952 | return a + 1L; |
| 953 | } |
| 954 | |
| 955 | /** |
| 956 | * Returns the argument decremented by one, throwing an exception if the |
| 957 | * result overflows an {@code int}. |
| 958 | * |
| 959 | * @param a the value to decrement |
| 960 | * @return the result |
| 961 | * @throws ArithmeticException if the result overflows an int |
| 962 | * @since 1.8 |
| 963 | */ |
| 964 | public static int decrementExact(int a) { |
| 965 | if (a == Integer.MIN_VALUE) { |
| 966 | throw new ArithmeticException("integer overflow"); |
| 967 | } |
| 968 | |
| 969 | return a - 1; |
| 970 | } |
| 971 | |
| 972 | /** |
| 973 | * Returns the argument decremented by one, throwing an exception if the |
| 974 | * result overflows a {@code long}. |
| 975 | * |
| 976 | * @param a the value to decrement |
| 977 | * @return the result |
| 978 | * @throws ArithmeticException if the result overflows a long |
| 979 | * @since 1.8 |
| 980 | */ |
| 981 | public static long decrementExact(long a) { |
| 982 | if (a == Long.MIN_VALUE) { |
| 983 | throw new ArithmeticException("long overflow"); |
| 984 | } |
| 985 | |
| 986 | return a - 1L; |
| 987 | } |
| 988 | |
| 989 | /** |
| 990 | * Returns the negation of the argument, throwing an exception if the |
| 991 | * result overflows an {@code int}. |
| 992 | * |
| 993 | * @param a the value to negate |
| 994 | * @return the result |
| 995 | * @throws ArithmeticException if the result overflows an int |
| 996 | * @since 1.8 |
| 997 | */ |
| 998 | public static int negateExact(int a) { |
| 999 | if (a == Integer.MIN_VALUE) { |
| 1000 | throw new ArithmeticException("integer overflow"); |
| 1001 | } |
| 1002 | |
| 1003 | return -a; |
| 1004 | } |
| 1005 | |
| 1006 | /** |
| 1007 | * Returns the negation of the argument, throwing an exception if the |
| 1008 | * result overflows a {@code long}. |
| 1009 | * |
| 1010 | * @param a the value to negate |
| 1011 | * @return the result |
| 1012 | * @throws ArithmeticException if the result overflows a long |
| 1013 | * @since 1.8 |
| 1014 | */ |
| 1015 | public static long negateExact(long a) { |
| 1016 | if (a == Long.MIN_VALUE) { |
| 1017 | throw new ArithmeticException("long overflow"); |
| 1018 | } |
| 1019 | |
| 1020 | return -a; |
| 1021 | } |
| 1022 | |
| 1023 | /** |
| 1024 | * Returns the value of the {@code long} argument; |
| 1025 | * throwing an exception if the value overflows an {@code int}. |
| 1026 | * |
| 1027 | * @param value the long value |
| 1028 | * @return the argument as an int |
| 1029 | * @throws ArithmeticException if the {@code argument} overflows an int |
| 1030 | * @since 1.8 |
| 1031 | */ |
| 1032 | public static int toIntExact(long value) { |
| 1033 | if ((int)value != value) { |
| 1034 | throw new ArithmeticException("integer overflow"); |
| 1035 | } |
| 1036 | return (int)value; |
| 1037 | } |
| 1038 | |
| 1039 | /** |
| 1040 | * Returns the largest (closest to positive infinity) |
| 1041 | * {@code int} value that is less than or equal to the algebraic quotient. |
| 1042 | * There is one special case, if the dividend is the |
| 1043 | * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1}, |
| 1044 | * then integer overflow occurs and |
| 1045 | * the result is equal to the {@code Integer.MIN_VALUE}. |
| 1046 | * <p> |
| 1047 | * Normal integer division operates under the round to zero rounding mode |
| 1048 | * (truncation). This operation instead acts under the round toward |
| 1049 | * negative infinity (floor) rounding mode. |
| 1050 | * The floor rounding mode gives different results than truncation |
| 1051 | * when the exact result is negative. |
| 1052 | * <ul> |
| 1053 | * <li>If the signs of the arguments are the same, the results of |
| 1054 | * {@code floorDiv} and the {@code /} operator are the same. <br> |
| 1055 | * For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li> |
| 1056 | * <li>If the signs of the arguments are different, the quotient is negative and |
| 1057 | * {@code floorDiv} returns the integer less than or equal to the quotient |
| 1058 | * and the {@code /} operator returns the integer closest to zero.<br> |
| 1059 | * For example, {@code floorDiv(-4, 3) == -2}, |
| 1060 | * whereas {@code (-4 / 3) == -1}. |
| 1061 | * </li> |
| 1062 | * </ul> |
| 1063 | * <p> |
| 1064 | * |
| 1065 | * @param x the dividend |
| 1066 | * @param y the divisor |
| 1067 | * @return the largest (closest to positive infinity) |
| 1068 | * {@code int} value that is less than or equal to the algebraic quotient. |
| 1069 | * @throws ArithmeticException if the divisor {@code y} is zero |
| 1070 | * @see #floorMod(int, int) |
| 1071 | * @see #floor(double) |
| 1072 | * @since 1.8 |
| 1073 | */ |
| 1074 | public static int floorDiv(int x, int y) { |
| 1075 | int r = x / y; |
| 1076 | // if the signs are different and modulo not zero, round down |
| 1077 | if ((x ^ y) < 0 && (r * y != x)) { |
| 1078 | r--; |
| 1079 | } |
| 1080 | return r; |
| 1081 | } |
| 1082 | |
| 1083 | /** |
| 1084 | * Returns the largest (closest to positive infinity) |
| 1085 | * {@code long} value that is less than or equal to the algebraic quotient. |
| 1086 | * There is one special case, if the dividend is the |
| 1087 | * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1}, |
| 1088 | * then integer overflow occurs and |
| 1089 | * the result is equal to the {@code Long.MIN_VALUE}. |
| 1090 | * <p> |
| 1091 | * Normal integer division operates under the round to zero rounding mode |
| 1092 | * (truncation). This operation instead acts under the round toward |
| 1093 | * negative infinity (floor) rounding mode. |
| 1094 | * The floor rounding mode gives different results than truncation |
| 1095 | * when the exact result is negative. |
| 1096 | * <p> |
| 1097 | * For examples, see {@link #floorDiv(int, int)}. |
| 1098 | * |
| 1099 | * @param x the dividend |
| 1100 | * @param y the divisor |
| 1101 | * @return the largest (closest to positive infinity) |
| 1102 | * {@code long} value that is less than or equal to the algebraic quotient. |
| 1103 | * @throws ArithmeticException if the divisor {@code y} is zero |
| 1104 | * @see #floorMod(long, long) |
| 1105 | * @see #floor(double) |
| 1106 | * @since 1.8 |
| 1107 | */ |
| 1108 | public static long floorDiv(long x, long y) { |
| 1109 | long r = x / y; |
| 1110 | // if the signs are different and modulo not zero, round down |
| 1111 | if ((x ^ y) < 0 && (r * y != x)) { |
| 1112 | r--; |
| 1113 | } |
| 1114 | return r; |
| 1115 | } |
| 1116 | |
| 1117 | /** |
| 1118 | * Returns the floor modulus of the {@code int} arguments. |
| 1119 | * <p> |
| 1120 | * The floor modulus is {@code x - (floorDiv(x, y) * y)}, |
| 1121 | * has the same sign as the divisor {@code y}, and |
| 1122 | * is in the range of {@code -abs(y) < r < +abs(y)}. |
| 1123 | * |
| 1124 | * <p> |
| 1125 | * The relationship between {@code floorDiv} and {@code floorMod} is such that: |
| 1126 | * <ul> |
| 1127 | * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x} |
| 1128 | * </ul> |
| 1129 | * <p> |
| 1130 | * The difference in values between {@code floorMod} and |
| 1131 | * the {@code %} operator is due to the difference between |
| 1132 | * {@code floorDiv} that returns the integer less than or equal to the quotient |
| 1133 | * and the {@code /} operator that returns the integer closest to zero. |
| 1134 | * <p> |
| 1135 | * Examples: |
| 1136 | * <ul> |
| 1137 | * <li>If the signs of the arguments are the same, the results |
| 1138 | * of {@code floorMod} and the {@code %} operator are the same. <br> |
| 1139 | * <ul> |
| 1140 | * <li>{@code floorMod(4, 3) == 1}; and {@code (4 % 3) == 1}</li> |
| 1141 | * </ul> |
| 1142 | * <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br> |
| 1143 | * <ul> |
| 1144 | * <li>{@code floorMod(+4, -3) == -2}; and {@code (+4 % -3) == +1} </li> |
| 1145 | * <li>{@code floorMod(-4, +3) == +2}; and {@code (-4 % +3) == -1} </li> |
| 1146 | * <li>{@code floorMod(-4, -3) == -1}; and {@code (-4 % -3) == -1 } </li> |
| 1147 | * </ul> |
| 1148 | * </li> |
| 1149 | * </ul> |
| 1150 | * <p> |
| 1151 | * If the signs of arguments are unknown and a positive modulus |
| 1152 | * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}. |
| 1153 | * |
| 1154 | * @param x the dividend |
| 1155 | * @param y the divisor |
| 1156 | * @return the floor modulus {@code x - (floorDiv(x, y) * y)} |
| 1157 | * @throws ArithmeticException if the divisor {@code y} is zero |
| 1158 | * @see #floorDiv(int, int) |
| 1159 | * @since 1.8 |
| 1160 | */ |
| 1161 | public static int floorMod(int x, int y) { |
| 1162 | int r = x - floorDiv(x, y) * y; |
| 1163 | return r; |
| 1164 | } |
| 1165 | |
| 1166 | /** |
| 1167 | * Returns the floor modulus of the {@code long} arguments. |
| 1168 | * <p> |
| 1169 | * The floor modulus is {@code x - (floorDiv(x, y) * y)}, |
| 1170 | * has the same sign as the divisor {@code y}, and |
| 1171 | * is in the range of {@code -abs(y) < r < +abs(y)}. |
| 1172 | * |
| 1173 | * <p> |
| 1174 | * The relationship between {@code floorDiv} and {@code floorMod} is such that: |
| 1175 | * <ul> |
| 1176 | * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x} |
| 1177 | * </ul> |
| 1178 | * <p> |
| 1179 | * For examples, see {@link #floorMod(int, int)}. |
| 1180 | * |
| 1181 | * @param x the dividend |
| 1182 | * @param y the divisor |
| 1183 | * @return the floor modulus {@code x - (floorDiv(x, y) * y)} |
| 1184 | * @throws ArithmeticException if the divisor {@code y} is zero |
| 1185 | * @see #floorDiv(long, long) |
| 1186 | * @since 1.8 |
| 1187 | */ |
| 1188 | public static long floorMod(long x, long y) { |
| 1189 | return x - floorDiv(x, y) * y; |
| 1190 | } |
| 1191 | |
| 1192 | /** |
| 1193 | * Returns the absolute value of an {@code int} value. |
| 1194 | * If the argument is not negative, the argument is returned. |
| 1195 | * If the argument is negative, the negation of the argument is returned. |
| 1196 | * |
| 1197 | * <p>Note that if the argument is equal to the value of |
| 1198 | * {@link Integer#MIN_VALUE}, the most negative representable |
| 1199 | * {@code int} value, the result is that same value, which is |
| 1200 | * negative. |
| 1201 | * |
| 1202 | * @param a the argument whose absolute value is to be determined |
| 1203 | * @return the absolute value of the argument. |
| 1204 | */ |
| 1205 | public static int abs(int a) { |
| 1206 | return (a < 0) ? -a : a; |
| 1207 | } |
| 1208 | |
| 1209 | /** |
| 1210 | * Returns the absolute value of a {@code long} value. |
| 1211 | * If the argument is not negative, the argument is returned. |
| 1212 | * If the argument is negative, the negation of the argument is returned. |
| 1213 | * |
| 1214 | * <p>Note that if the argument is equal to the value of |
| 1215 | * {@link Long#MIN_VALUE}, the most negative representable |
| 1216 | * {@code long} value, the result is that same value, which |
| 1217 | * is negative. |
| 1218 | * |
| 1219 | * @param a the argument whose absolute value is to be determined |
| 1220 | * @return the absolute value of the argument. |
| 1221 | */ |
| 1222 | public static long abs(long a) { |
| 1223 | return (a < 0) ? -a : a; |
| 1224 | } |
| 1225 | |
| 1226 | /** |
| 1227 | * Returns the absolute value of a {@code float} value. |
| 1228 | * If the argument is not negative, the argument is returned. |
| 1229 | * If the argument is negative, the negation of the argument is returned. |
| 1230 | * Special cases: |
| 1231 | * <ul><li>If the argument is positive zero or negative zero, the |
| 1232 | * result is positive zero. |
| 1233 | * <li>If the argument is infinite, the result is positive infinity. |
| 1234 | * <li>If the argument is NaN, the result is NaN.</ul> |
| 1235 | * In other words, the result is the same as the value of the expression: |
| 1236 | * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))} |
| 1237 | * |
| 1238 | * @param a the argument whose absolute value is to be determined |
| 1239 | * @return the absolute value of the argument. |
| 1240 | */ |
| 1241 | public static float abs(float a) { |
| 1242 | // Android-changed: Implementation modified to exactly match ART intrinsics behavior. |
| 1243 | // Note, as a "quality of implementation", rather than pure "spec compliance", |
| 1244 | // we require that Math.abs() clears the sign bit (but changes nothing else) |
| 1245 | // for all numbers, including NaN (signaling NaN may become quiet though). |
| 1246 | // http://b/30758343 |
| 1247 | return Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a)); |
| 1248 | } |
| 1249 | |
| 1250 | /** |
| 1251 | * Returns the absolute value of a {@code double} value. |
| 1252 | * If the argument is not negative, the argument is returned. |
| 1253 | * If the argument is negative, the negation of the argument is returned. |
| 1254 | * Special cases: |
| 1255 | * <ul><li>If the argument is positive zero or negative zero, the result |
| 1256 | * is positive zero. |
| 1257 | * <li>If the argument is infinite, the result is positive infinity. |
| 1258 | * <li>If the argument is NaN, the result is NaN.</ul> |
| 1259 | * In other words, the result is the same as the value of the expression: |
| 1260 | * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)} |
| 1261 | * |
| 1262 | * @param a the argument whose absolute value is to be determined |
| 1263 | * @return the absolute value of the argument. |
| 1264 | */ |
| 1265 | public static double abs(double a) { |
| 1266 | // Android-changed: Implementation modified to exactly match ART intrinsics behavior. |
| 1267 | // Note, as a "quality of implementation", rather than pure "spec compliance", |
| 1268 | // we require that Math.abs() clears the sign bit (but changes nothing else) |
| 1269 | // for all numbers, including NaN (signaling NaN may become quiet though). |
| 1270 | // http://b/30758343 |
| 1271 | return Double.longBitsToDouble(0x7fffffffffffffffL & Double.doubleToRawLongBits(a)); |
| 1272 | } |
| 1273 | |
| 1274 | /** |
| 1275 | * Returns the greater of two {@code int} values. That is, the |
| 1276 | * result is the argument closer to the value of |
| 1277 | * {@link Integer#MAX_VALUE}. If the arguments have the same value, |
| 1278 | * the result is that same value. |
| 1279 | * |
| 1280 | * @param a an argument. |
| 1281 | * @param b another argument. |
| 1282 | * @return the larger of {@code a} and {@code b}. |
| 1283 | */ |
| 1284 | public static int max(int a, int b) { |
| 1285 | return (a >= b) ? a : b; |
| 1286 | } |
| 1287 | |
| 1288 | /** |
| 1289 | * Returns the greater of two {@code long} values. That is, the |
| 1290 | * result is the argument closer to the value of |
| 1291 | * {@link Long#MAX_VALUE}. If the arguments have the same value, |
| 1292 | * the result is that same value. |
| 1293 | * |
| 1294 | * @param a an argument. |
| 1295 | * @param b another argument. |
| 1296 | * @return the larger of {@code a} and {@code b}. |
| 1297 | */ |
| 1298 | public static long max(long a, long b) { |
| 1299 | return (a >= b) ? a : b; |
| 1300 | } |
| 1301 | |
| 1302 | // Use raw bit-wise conversions on guaranteed non-NaN arguments. |
| 1303 | private static long negativeZeroFloatBits = Float.floatToRawIntBits(-0.0f); |
| 1304 | private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d); |
| 1305 | |
| 1306 | /** |
| 1307 | * Returns the greater of two {@code float} values. That is, |
| 1308 | * the result is the argument closer to positive infinity. If the |
| 1309 | * arguments have the same value, the result is that same |
| 1310 | * value. If either value is NaN, then the result is NaN. Unlike |
| 1311 | * the numerical comparison operators, this method considers |
| 1312 | * negative zero to be strictly smaller than positive zero. If one |
| 1313 | * argument is positive zero and the other negative zero, the |
| 1314 | * result is positive zero. |
| 1315 | * |
| 1316 | * @param a an argument. |
| 1317 | * @param b another argument. |
| 1318 | * @return the larger of {@code a} and {@code b}. |
| 1319 | */ |
| 1320 | public static float max(float a, float b) { |
| 1321 | if (a != a) |
| 1322 | return a; // a is NaN |
| 1323 | if ((a == 0.0f) && |
| 1324 | (b == 0.0f) && |
| 1325 | (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) { |
| 1326 | // Raw conversion ok since NaN can't map to -0.0. |
| 1327 | return b; |
| 1328 | } |
| 1329 | return (a >= b) ? a : b; |
| 1330 | } |
| 1331 | |
| 1332 | /** |
| 1333 | * Returns the greater of two {@code double} values. That |
| 1334 | * is, the result is the argument closer to positive infinity. If |
| 1335 | * the arguments have the same value, the result is that same |
| 1336 | * value. If either value is NaN, then the result is NaN. Unlike |
| 1337 | * the numerical comparison operators, this method considers |
| 1338 | * negative zero to be strictly smaller than positive zero. If one |
| 1339 | * argument is positive zero and the other negative zero, the |
| 1340 | * result is positive zero. |
| 1341 | * |
| 1342 | * @param a an argument. |
| 1343 | * @param b another argument. |
| 1344 | * @return the larger of {@code a} and {@code b}. |
| 1345 | */ |
| 1346 | public static double max(double a, double b) { |
| 1347 | if (a != a) |
| 1348 | return a; // a is NaN |
| 1349 | if ((a == 0.0d) && |
| 1350 | (b == 0.0d) && |
| 1351 | (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) { |
| 1352 | // Raw conversion ok since NaN can't map to -0.0. |
| 1353 | return b; |
| 1354 | } |
| 1355 | return (a >= b) ? a : b; |
| 1356 | } |
| 1357 | |
| 1358 | /** |
| 1359 | * Returns the smaller of two {@code int} values. That is, |
| 1360 | * the result the argument closer to the value of |
| 1361 | * {@link Integer#MIN_VALUE}. If the arguments have the same |
| 1362 | * value, the result is that same value. |
| 1363 | * |
| 1364 | * @param a an argument. |
| 1365 | * @param b another argument. |
| 1366 | * @return the smaller of {@code a} and {@code b}. |
| 1367 | */ |
| 1368 | public static int min(int a, int b) { |
| 1369 | return (a <= b) ? a : b; |
| 1370 | } |
| 1371 | |
| 1372 | /** |
| 1373 | * Returns the smaller of two {@code long} values. That is, |
| 1374 | * the result is the argument closer to the value of |
| 1375 | * {@link Long#MIN_VALUE}. If the arguments have the same |
| 1376 | * value, the result is that same value. |
| 1377 | * |
| 1378 | * @param a an argument. |
| 1379 | * @param b another argument. |
| 1380 | * @return the smaller of {@code a} and {@code b}. |
| 1381 | */ |
| 1382 | public static long min(long a, long b) { |
| 1383 | return (a <= b) ? a : b; |
| 1384 | } |
| 1385 | |
| 1386 | /** |
| 1387 | * Returns the smaller of two {@code float} values. That is, |
| 1388 | * the result is the value closer to negative infinity. If the |
| 1389 | * arguments have the same value, the result is that same |
| 1390 | * value. If either value is NaN, then the result is NaN. Unlike |
| 1391 | * the numerical comparison operators, this method considers |
| 1392 | * negative zero to be strictly smaller than positive zero. If |
| 1393 | * one argument is positive zero and the other is negative zero, |
| 1394 | * the result is negative zero. |
| 1395 | * |
| 1396 | * @param a an argument. |
| 1397 | * @param b another argument. |
| 1398 | * @return the smaller of {@code a} and {@code b}. |
| 1399 | */ |
| 1400 | public static float min(float a, float b) { |
| 1401 | if (a != a) |
| 1402 | return a; // a is NaN |
| 1403 | if ((a == 0.0f) && |
| 1404 | (b == 0.0f) && |
| 1405 | (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) { |
| 1406 | // Raw conversion ok since NaN can't map to -0.0. |
| 1407 | return b; |
| 1408 | } |
| 1409 | return (a <= b) ? a : b; |
| 1410 | } |
| 1411 | |
| 1412 | /** |
| 1413 | * Returns the smaller of two {@code double} values. That |
| 1414 | * is, the result is the value closer to negative infinity. If the |
| 1415 | * arguments have the same value, the result is that same |
| 1416 | * value. If either value is NaN, then the result is NaN. Unlike |
| 1417 | * the numerical comparison operators, this method considers |
| 1418 | * negative zero to be strictly smaller than positive zero. If one |
| 1419 | * argument is positive zero and the other is negative zero, the |
| 1420 | * result is negative zero. |
| 1421 | * |
| 1422 | * @param a an argument. |
| 1423 | * @param b another argument. |
| 1424 | * @return the smaller of {@code a} and {@code b}. |
| 1425 | */ |
| 1426 | public static double min(double a, double b) { |
| 1427 | if (a != a) |
| 1428 | return a; // a is NaN |
| 1429 | if ((a == 0.0d) && |
| 1430 | (b == 0.0d) && |
| 1431 | (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) { |
| 1432 | // Raw conversion ok since NaN can't map to -0.0. |
| 1433 | return b; |
| 1434 | } |
| 1435 | return (a <= b) ? a : b; |
| 1436 | } |
| 1437 | |
| 1438 | /** |
| 1439 | * Returns the size of an ulp of the argument. An ulp, unit in |
| 1440 | * the last place, of a {@code double} value is the positive |
| 1441 | * distance between this floating-point value and the {@code |
| 1442 | * double} value next larger in magnitude. Note that for non-NaN |
| 1443 | * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. |
| 1444 | * |
| 1445 | * <p>Special Cases: |
| 1446 | * <ul> |
| 1447 | * <li> If the argument is NaN, then the result is NaN. |
| 1448 | * <li> If the argument is positive or negative infinity, then the |
| 1449 | * result is positive infinity. |
| 1450 | * <li> If the argument is positive or negative zero, then the result is |
| 1451 | * {@code Double.MIN_VALUE}. |
| 1452 | * <li> If the argument is ±{@code Double.MAX_VALUE}, then |
| 1453 | * the result is equal to 2<sup>971</sup>. |
| 1454 | * </ul> |
| 1455 | * |
| 1456 | * @param d the floating-point value whose ulp is to be returned |
| 1457 | * @return the size of an ulp of the argument |
| 1458 | * @author Joseph D. Darcy |
| 1459 | * @since 1.5 |
| 1460 | */ |
| 1461 | public static double ulp(double d) { |
| 1462 | int exp = getExponent(d); |
| 1463 | |
| 1464 | switch(exp) { |
| 1465 | case DoubleConsts.MAX_EXPONENT+1: // NaN or infinity |
| 1466 | return Math.abs(d); |
| 1467 | |
| 1468 | case DoubleConsts.MIN_EXPONENT-1: // zero or subnormal |
| 1469 | return Double.MIN_VALUE; |
| 1470 | |
| 1471 | default: |
| 1472 | assert exp <= DoubleConsts.MAX_EXPONENT && exp >= DoubleConsts.MIN_EXPONENT; |
| 1473 | |
| 1474 | // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x)) |
| 1475 | exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH-1); |
| 1476 | if (exp >= DoubleConsts.MIN_EXPONENT) { |
| 1477 | return powerOfTwoD(exp); |
| 1478 | } |
| 1479 | else { |
| 1480 | // return a subnormal result; left shift integer |
| 1481 | // representation of Double.MIN_VALUE appropriate |
| 1482 | // number of positions |
| 1483 | return Double.longBitsToDouble(1L << |
| 1484 | (exp - (DoubleConsts.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1)) )); |
| 1485 | } |
| 1486 | } |
| 1487 | } |
| 1488 | |
| 1489 | /** |
| 1490 | * Returns the size of an ulp of the argument. An ulp, unit in |
| 1491 | * the last place, of a {@code float} value is the positive |
| 1492 | * distance between this floating-point value and the {@code |
| 1493 | * float} value next larger in magnitude. Note that for non-NaN |
| 1494 | * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. |
| 1495 | * |
| 1496 | * <p>Special Cases: |
| 1497 | * <ul> |
| 1498 | * <li> If the argument is NaN, then the result is NaN. |
| 1499 | * <li> If the argument is positive or negative infinity, then the |
| 1500 | * result is positive infinity. |
| 1501 | * <li> If the argument is positive or negative zero, then the result is |
| 1502 | * {@code Float.MIN_VALUE}. |
| 1503 | * <li> If the argument is ±{@code Float.MAX_VALUE}, then |
| 1504 | * the result is equal to 2<sup>104</sup>. |
| 1505 | * </ul> |
| 1506 | * |
| 1507 | * @param f the floating-point value whose ulp is to be returned |
| 1508 | * @return the size of an ulp of the argument |
| 1509 | * @author Joseph D. Darcy |
| 1510 | * @since 1.5 |
| 1511 | */ |
| 1512 | public static float ulp(float f) { |
| 1513 | int exp = getExponent(f); |
| 1514 | |
| 1515 | switch(exp) { |
| 1516 | case FloatConsts.MAX_EXPONENT+1: // NaN or infinity |
| 1517 | return Math.abs(f); |
| 1518 | |
| 1519 | case FloatConsts.MIN_EXPONENT-1: // zero or subnormal |
| 1520 | return FloatConsts.MIN_VALUE; |
| 1521 | |
| 1522 | default: |
| 1523 | assert exp <= FloatConsts.MAX_EXPONENT && exp >= FloatConsts.MIN_EXPONENT; |
| 1524 | |
| 1525 | // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x)) |
| 1526 | exp = exp - (FloatConsts.SIGNIFICAND_WIDTH-1); |
| 1527 | if (exp >= FloatConsts.MIN_EXPONENT) { |
| 1528 | return powerOfTwoF(exp); |
| 1529 | } |
| 1530 | else { |
| 1531 | // return a subnormal result; left shift integer |
| 1532 | // representation of FloatConsts.MIN_VALUE appropriate |
| 1533 | // number of positions |
| 1534 | return Float.intBitsToFloat(1 << |
| 1535 | (exp - (FloatConsts.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1)) )); |
| 1536 | } |
| 1537 | } |
| 1538 | } |
| 1539 | |
| 1540 | /** |
| 1541 | * Returns the signum function of the argument; zero if the argument |
| 1542 | * is zero, 1.0 if the argument is greater than zero, -1.0 if the |
| 1543 | * argument is less than zero. |
| 1544 | * |
| 1545 | * <p>Special Cases: |
| 1546 | * <ul> |
| 1547 | * <li> If the argument is NaN, then the result is NaN. |
| 1548 | * <li> If the argument is positive zero or negative zero, then the |
| 1549 | * result is the same as the argument. |
| 1550 | * </ul> |
| 1551 | * |
| 1552 | * @param d the floating-point value whose signum is to be returned |
| 1553 | * @return the signum function of the argument |
| 1554 | * @author Joseph D. Darcy |
| 1555 | * @since 1.5 |
| 1556 | */ |
| 1557 | public static double signum(double d) { |
| 1558 | return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d); |
| 1559 | } |
| 1560 | |
| 1561 | /** |
| 1562 | * Returns the signum function of the argument; zero if the argument |
| 1563 | * is zero, 1.0f if the argument is greater than zero, -1.0f if the |
| 1564 | * argument is less than zero. |
| 1565 | * |
| 1566 | * <p>Special Cases: |
| 1567 | * <ul> |
| 1568 | * <li> If the argument is NaN, then the result is NaN. |
| 1569 | * <li> If the argument is positive zero or negative zero, then the |
| 1570 | * result is the same as the argument. |
| 1571 | * </ul> |
| 1572 | * |
| 1573 | * @param f the floating-point value whose signum is to be returned |
| 1574 | * @return the signum function of the argument |
| 1575 | * @author Joseph D. Darcy |
| 1576 | * @since 1.5 |
| 1577 | */ |
| 1578 | public static float signum(float f) { |
| 1579 | return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f); |
| 1580 | } |
| 1581 | |
| 1582 | /** |
| 1583 | * Returns the hyperbolic sine of a {@code double} value. |
| 1584 | * The hyperbolic sine of <i>x</i> is defined to be |
| 1585 | * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/2 |
| 1586 | * where <i>e</i> is {@linkplain Math#E Euler's number}. |
| 1587 | * |
| 1588 | * <p>Special cases: |
| 1589 | * <ul> |
| 1590 | * |
| 1591 | * <li>If the argument is NaN, then the result is NaN. |
| 1592 | * |
| 1593 | * <li>If the argument is infinite, then the result is an infinity |
| 1594 | * with the same sign as the argument. |
| 1595 | * |
| 1596 | * <li>If the argument is zero, then the result is a zero with the |
| 1597 | * same sign as the argument. |
| 1598 | * |
| 1599 | * </ul> |
| 1600 | * |
| 1601 | * <p>The computed result must be within 2.5 ulps of the exact result. |
| 1602 | * |
| 1603 | * @param x The number whose hyperbolic sine is to be returned. |
| 1604 | * @return The hyperbolic sine of {@code x}. |
| 1605 | * @since 1.5 |
| 1606 | */ |
| 1607 | @CriticalNative |
| 1608 | public static native double sinh(double x); |
| 1609 | |
| 1610 | /** |
| 1611 | * Returns the hyperbolic cosine of a {@code double} value. |
| 1612 | * The hyperbolic cosine of <i>x</i> is defined to be |
| 1613 | * (<i>e<sup>x</sup> + e<sup>-x</sup></i>)/2 |
| 1614 | * where <i>e</i> is {@linkplain Math#E Euler's number}. |
| 1615 | * |
| 1616 | * <p>Special cases: |
| 1617 | * <ul> |
| 1618 | * |
| 1619 | * <li>If the argument is NaN, then the result is NaN. |
| 1620 | * |
| 1621 | * <li>If the argument is infinite, then the result is positive |
| 1622 | * infinity. |
| 1623 | * |
| 1624 | * <li>If the argument is zero, then the result is {@code 1.0}. |
| 1625 | * |
| 1626 | * </ul> |
| 1627 | * |
| 1628 | * <p>The computed result must be within 2.5 ulps of the exact result. |
| 1629 | * |
| 1630 | * @param x The number whose hyperbolic cosine is to be returned. |
| 1631 | * @return The hyperbolic cosine of {@code x}. |
| 1632 | * @since 1.5 |
| 1633 | */ |
| 1634 | @CriticalNative |
| 1635 | public static native double cosh(double x); |
| 1636 | |
| 1637 | /** |
| 1638 | * Returns the hyperbolic tangent of a {@code double} value. |
| 1639 | * The hyperbolic tangent of <i>x</i> is defined to be |
| 1640 | * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/(<i>e<sup>x</sup> + e<sup>-x</sup></i>), |
| 1641 | * in other words, {@linkplain Math#sinh |
| 1642 | * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}. Note |
| 1643 | * that the absolute value of the exact tanh is always less than |
| 1644 | * 1. |
| 1645 | * |
| 1646 | * <p>Special cases: |
| 1647 | * <ul> |
| 1648 | * |
| 1649 | * <li>If the argument is NaN, then the result is NaN. |
| 1650 | * |
| 1651 | * <li>If the argument is zero, then the result is a zero with the |
| 1652 | * same sign as the argument. |
| 1653 | * |
| 1654 | * <li>If the argument is positive infinity, then the result is |
| 1655 | * {@code +1.0}. |
| 1656 | * |
| 1657 | * <li>If the argument is negative infinity, then the result is |
| 1658 | * {@code -1.0}. |
| 1659 | * |
| 1660 | * </ul> |
| 1661 | * |
| 1662 | * <p>The computed result must be within 2.5 ulps of the exact result. |
| 1663 | * The result of {@code tanh} for any finite input must have |
| 1664 | * an absolute value less than or equal to 1. Note that once the |
| 1665 | * exact result of tanh is within 1/2 of an ulp of the limit value |
| 1666 | * of ±1, correctly signed ±{@code 1.0} should |
| 1667 | * be returned. |
| 1668 | * |
| 1669 | * @param x The number whose hyperbolic tangent is to be returned. |
| 1670 | * @return The hyperbolic tangent of {@code x}. |
| 1671 | * @since 1.5 |
| 1672 | */ |
| 1673 | @CriticalNative |
| 1674 | public static native double tanh(double x); |
| 1675 | |
| 1676 | /** |
| 1677 | * Returns sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>) |
| 1678 | * without intermediate overflow or underflow. |
| 1679 | * |
| 1680 | * <p>Special cases: |
| 1681 | * <ul> |
| 1682 | * |
| 1683 | * <li> If either argument is infinite, then the result |
| 1684 | * is positive infinity. |
| 1685 | * |
| 1686 | * <li> If either argument is NaN and neither argument is infinite, |
| 1687 | * then the result is NaN. |
| 1688 | * |
| 1689 | * </ul> |
| 1690 | * |
| 1691 | * <p>The computed result must be within 1 ulp of the exact |
| 1692 | * result. If one parameter is held constant, the results must be |
| 1693 | * semi-monotonic in the other parameter. |
| 1694 | * |
| 1695 | * @param x a value |
| 1696 | * @param y a value |
| 1697 | * @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>) |
| 1698 | * without intermediate overflow or underflow |
| 1699 | * @since 1.5 |
| 1700 | */ |
| 1701 | @CriticalNative |
| 1702 | public static native double hypot(double x, double y); |
| 1703 | |
| 1704 | /** |
| 1705 | * Returns <i>e</i><sup>x</sup> -1. Note that for values of |
| 1706 | * <i>x</i> near 0, the exact sum of |
| 1707 | * {@code expm1(x)} + 1 is much closer to the true |
| 1708 | * result of <i>e</i><sup>x</sup> than {@code exp(x)}. |
| 1709 | * |
| 1710 | * <p>Special cases: |
| 1711 | * <ul> |
| 1712 | * <li>If the argument is NaN, the result is NaN. |
| 1713 | * |
| 1714 | * <li>If the argument is positive infinity, then the result is |
| 1715 | * positive infinity. |
| 1716 | * |
| 1717 | * <li>If the argument is negative infinity, then the result is |
| 1718 | * -1.0. |
| 1719 | * |
| 1720 | * <li>If the argument is zero, then the result is a zero with the |
| 1721 | * same sign as the argument. |
| 1722 | * |
| 1723 | * </ul> |
| 1724 | * |
| 1725 | * <p>The computed result must be within 1 ulp of the exact result. |
| 1726 | * Results must be semi-monotonic. The result of |
| 1727 | * {@code expm1} for any finite input must be greater than or |
| 1728 | * equal to {@code -1.0}. Note that once the exact result of |
| 1729 | * <i>e</i><sup>{@code x}</sup> - 1 is within 1/2 |
| 1730 | * ulp of the limit value -1, {@code -1.0} should be |
| 1731 | * returned. |
| 1732 | * |
| 1733 | * @param x the exponent to raise <i>e</i> to in the computation of |
| 1734 | * <i>e</i><sup>{@code x}</sup> -1. |
| 1735 | * @return the value <i>e</i><sup>{@code x}</sup> - 1. |
| 1736 | * @since 1.5 |
| 1737 | */ |
| 1738 | @CriticalNative |
| 1739 | public static native double expm1(double x); |
| 1740 | |
| 1741 | /** |
| 1742 | * Returns the natural logarithm of the sum of the argument and 1. |
| 1743 | * Note that for small values {@code x}, the result of |
| 1744 | * {@code log1p(x)} is much closer to the true result of ln(1 |
| 1745 | * + {@code x}) than the floating-point evaluation of |
| 1746 | * {@code log(1.0+x)}. |
| 1747 | * |
| 1748 | * <p>Special cases: |
| 1749 | * |
| 1750 | * <ul> |
| 1751 | * |
| 1752 | * <li>If the argument is NaN or less than -1, then the result is |
| 1753 | * NaN. |
| 1754 | * |
| 1755 | * <li>If the argument is positive infinity, then the result is |
| 1756 | * positive infinity. |
| 1757 | * |
| 1758 | * <li>If the argument is negative one, then the result is |
| 1759 | * negative infinity. |
| 1760 | * |
| 1761 | * <li>If the argument is zero, then the result is a zero with the |
| 1762 | * same sign as the argument. |
| 1763 | * |
| 1764 | * </ul> |
| 1765 | * |
| 1766 | * <p>The computed result must be within 1 ulp of the exact result. |
| 1767 | * Results must be semi-monotonic. |
| 1768 | * |
| 1769 | * @param x a value |
| 1770 | * @return the value ln({@code x} + 1), the natural |
| 1771 | * log of {@code x} + 1 |
| 1772 | * @since 1.5 |
| 1773 | */ |
| 1774 | @CriticalNative |
| 1775 | public static native double log1p(double x); |
| 1776 | |
| 1777 | /** |
| 1778 | * Returns the first floating-point argument with the sign of the |
| 1779 | * second floating-point argument. Note that unlike the {@link |
| 1780 | * StrictMath#copySign(double, double) StrictMath.copySign} |
| 1781 | * method, this method does not require NaN {@code sign} |
| 1782 | * arguments to be treated as positive values; implementations are |
| 1783 | * permitted to treat some NaN arguments as positive and other NaN |
| 1784 | * arguments as negative to allow greater performance. |
| 1785 | * |
| 1786 | * @param magnitude the parameter providing the magnitude of the result |
| 1787 | * @param sign the parameter providing the sign of the result |
| 1788 | * @return a value with the magnitude of {@code magnitude} |
| 1789 | * and the sign of {@code sign}. |
| 1790 | * @since 1.6 |
| 1791 | */ |
| 1792 | public static double copySign(double magnitude, double sign) { |
| 1793 | return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) & |
| 1794 | (DoubleConsts.SIGN_BIT_MASK)) | |
| 1795 | (Double.doubleToRawLongBits(magnitude) & |
| 1796 | (DoubleConsts.EXP_BIT_MASK | |
| 1797 | DoubleConsts.SIGNIF_BIT_MASK))); |
| 1798 | } |
| 1799 | |
| 1800 | /** |
| 1801 | * Returns the first floating-point argument with the sign of the |
| 1802 | * second floating-point argument. Note that unlike the {@link |
| 1803 | * StrictMath#copySign(float, float) StrictMath.copySign} |
| 1804 | * method, this method does not require NaN {@code sign} |
| 1805 | * arguments to be treated as positive values; implementations are |
| 1806 | * permitted to treat some NaN arguments as positive and other NaN |
| 1807 | * arguments as negative to allow greater performance. |
| 1808 | * |
| 1809 | * @param magnitude the parameter providing the magnitude of the result |
| 1810 | * @param sign the parameter providing the sign of the result |
| 1811 | * @return a value with the magnitude of {@code magnitude} |
| 1812 | * and the sign of {@code sign}. |
| 1813 | * @since 1.6 |
| 1814 | */ |
| 1815 | public static float copySign(float magnitude, float sign) { |
| 1816 | return Float.intBitsToFloat((Float.floatToRawIntBits(sign) & |
| 1817 | (FloatConsts.SIGN_BIT_MASK)) | |
| 1818 | (Float.floatToRawIntBits(magnitude) & |
| 1819 | (FloatConsts.EXP_BIT_MASK | |
| 1820 | FloatConsts.SIGNIF_BIT_MASK))); |
| 1821 | } |
| 1822 | |
| 1823 | /** |
| 1824 | * Returns the unbiased exponent used in the representation of a |
| 1825 | * {@code float}. Special cases: |
| 1826 | * |
| 1827 | * <ul> |
| 1828 | * <li>If the argument is NaN or infinite, then the result is |
| 1829 | * {@link Float#MAX_EXPONENT} + 1. |
| 1830 | * <li>If the argument is zero or subnormal, then the result is |
| 1831 | * {@link Float#MIN_EXPONENT} -1. |
| 1832 | * </ul> |
| 1833 | * @param f a {@code float} value |
| 1834 | * @return the unbiased exponent of the argument |
| 1835 | * @since 1.6 |
| 1836 | */ |
| 1837 | public static int getExponent(float f) { |
| 1838 | /* |
| 1839 | * Bitwise convert f to integer, mask out exponent bits, shift |
| 1840 | * to the right and then subtract out float's bias adjust to |
| 1841 | * get true exponent value |
| 1842 | */ |
| 1843 | return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >> |
| 1844 | (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS; |
| 1845 | } |
| 1846 | |
| 1847 | /** |
| 1848 | * Returns the unbiased exponent used in the representation of a |
| 1849 | * {@code double}. Special cases: |
| 1850 | * |
| 1851 | * <ul> |
| 1852 | * <li>If the argument is NaN or infinite, then the result is |
| 1853 | * {@link Double#MAX_EXPONENT} + 1. |
| 1854 | * <li>If the argument is zero or subnormal, then the result is |
| 1855 | * {@link Double#MIN_EXPONENT} -1. |
| 1856 | * </ul> |
| 1857 | * @param d a {@code double} value |
| 1858 | * @return the unbiased exponent of the argument |
| 1859 | * @since 1.6 |
| 1860 | */ |
| 1861 | public static int getExponent(double d) { |
| 1862 | /* |
| 1863 | * Bitwise convert d to long, mask out exponent bits, shift |
| 1864 | * to the right and then subtract out double's bias adjust to |
| 1865 | * get true exponent value. |
| 1866 | */ |
| 1867 | return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >> |
| 1868 | (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS); |
| 1869 | } |
| 1870 | |
| 1871 | /** |
| 1872 | * Returns the floating-point number adjacent to the first |
| 1873 | * argument in the direction of the second argument. If both |
| 1874 | * arguments compare as equal the second argument is returned. |
| 1875 | * |
| 1876 | * <p> |
| 1877 | * Special cases: |
| 1878 | * <ul> |
| 1879 | * <li> If either argument is a NaN, then NaN is returned. |
| 1880 | * |
| 1881 | * <li> If both arguments are signed zeros, {@code direction} |
| 1882 | * is returned unchanged (as implied by the requirement of |
| 1883 | * returning the second argument if the arguments compare as |
| 1884 | * equal). |
| 1885 | * |
| 1886 | * <li> If {@code start} is |
| 1887 | * ±{@link Double#MIN_VALUE} and {@code direction} |
| 1888 | * has a value such that the result should have a smaller |
| 1889 | * magnitude, then a zero with the same sign as {@code start} |
| 1890 | * is returned. |
| 1891 | * |
| 1892 | * <li> If {@code start} is infinite and |
| 1893 | * {@code direction} has a value such that the result should |
| 1894 | * have a smaller magnitude, {@link Double#MAX_VALUE} with the |
| 1895 | * same sign as {@code start} is returned. |
| 1896 | * |
| 1897 | * <li> If {@code start} is equal to ± |
| 1898 | * {@link Double#MAX_VALUE} and {@code direction} has a |
| 1899 | * value such that the result should have a larger magnitude, an |
| 1900 | * infinity with same sign as {@code start} is returned. |
| 1901 | * </ul> |
| 1902 | * |
| 1903 | * @param start starting floating-point value |
| 1904 | * @param direction value indicating which of |
| 1905 | * {@code start}'s neighbors or {@code start} should |
| 1906 | * be returned |
| 1907 | * @return The floating-point number adjacent to {@code start} in the |
| 1908 | * direction of {@code direction}. |
| 1909 | * @since 1.6 |
| 1910 | */ |
| 1911 | public static double nextAfter(double start, double direction) { |
| 1912 | /* |
| 1913 | * The cases: |
| 1914 | * |
| 1915 | * nextAfter(+infinity, 0) == MAX_VALUE |
| 1916 | * nextAfter(+infinity, +infinity) == +infinity |
| 1917 | * nextAfter(-infinity, 0) == -MAX_VALUE |
| 1918 | * nextAfter(-infinity, -infinity) == -infinity |
| 1919 | * |
| 1920 | * are naturally handled without any additional testing |
| 1921 | */ |
| 1922 | |
| 1923 | // First check for NaN values |
| 1924 | if (Double.isNaN(start) || Double.isNaN(direction)) { |
| 1925 | // return a NaN derived from the input NaN(s) |
| 1926 | return start + direction; |
| 1927 | } else if (start == direction) { |
| 1928 | return direction; |
| 1929 | } else { // start > direction or start < direction |
| 1930 | // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0) |
| 1931 | // then bitwise convert start to integer. |
| 1932 | long transducer = Double.doubleToRawLongBits(start + 0.0d); |
| 1933 | |
| 1934 | /* |
| 1935 | * IEEE 754 floating-point numbers are lexicographically |
| 1936 | * ordered if treated as signed- magnitude integers . |
| 1937 | * Since Java's integers are two's complement, |
| 1938 | * incrementing" the two's complement representation of a |
| 1939 | * logically negative floating-point value *decrements* |
| 1940 | * the signed-magnitude representation. Therefore, when |
| 1941 | * the integer representation of a floating-point values |
| 1942 | * is less than zero, the adjustment to the representation |
| 1943 | * is in the opposite direction than would be expected at |
| 1944 | * first . |
| 1945 | */ |
| 1946 | if (direction > start) { // Calculate next greater value |
| 1947 | transducer = transducer + (transducer >= 0L ? 1L:-1L); |
| 1948 | } else { // Calculate next lesser value |
| 1949 | assert direction < start; |
| 1950 | if (transducer > 0L) |
| 1951 | --transducer; |
| 1952 | else |
| 1953 | if (transducer < 0L ) |
| 1954 | ++transducer; |
| 1955 | /* |
| 1956 | * transducer==0, the result is -MIN_VALUE |
| 1957 | * |
| 1958 | * The transition from zero (implicitly |
| 1959 | * positive) to the smallest negative |
| 1960 | * signed magnitude value must be done |
| 1961 | * explicitly. |
| 1962 | */ |
| 1963 | else |
| 1964 | transducer = DoubleConsts.SIGN_BIT_MASK | 1L; |
| 1965 | } |
| 1966 | |
| 1967 | return Double.longBitsToDouble(transducer); |
| 1968 | } |
| 1969 | } |
| 1970 | |
| 1971 | /** |
| 1972 | * Returns the floating-point number adjacent to the first |
| 1973 | * argument in the direction of the second argument. If both |
| 1974 | * arguments compare as equal a value equivalent to the second argument |
| 1975 | * is returned. |
| 1976 | * |
| 1977 | * <p> |
| 1978 | * Special cases: |
| 1979 | * <ul> |
| 1980 | * <li> If either argument is a NaN, then NaN is returned. |
| 1981 | * |
| 1982 | * <li> If both arguments are signed zeros, a value equivalent |
| 1983 | * to {@code direction} is returned. |
| 1984 | * |
| 1985 | * <li> If {@code start} is |
| 1986 | * ±{@link Float#MIN_VALUE} and {@code direction} |
| 1987 | * has a value such that the result should have a smaller |
| 1988 | * magnitude, then a zero with the same sign as {@code start} |
| 1989 | * is returned. |
| 1990 | * |
| 1991 | * <li> If {@code start} is infinite and |
| 1992 | * {@code direction} has a value such that the result should |
| 1993 | * have a smaller magnitude, {@link Float#MAX_VALUE} with the |
| 1994 | * same sign as {@code start} is returned. |
| 1995 | * |
| 1996 | * <li> If {@code start} is equal to ± |
| 1997 | * {@link Float#MAX_VALUE} and {@code direction} has a |
| 1998 | * value such that the result should have a larger magnitude, an |
| 1999 | * infinity with same sign as {@code start} is returned. |
| 2000 | * </ul> |
| 2001 | * |
| 2002 | * @param start starting floating-point value |
| 2003 | * @param direction value indicating which of |
| 2004 | * {@code start}'s neighbors or {@code start} should |
| 2005 | * be returned |
| 2006 | * @return The floating-point number adjacent to {@code start} in the |
| 2007 | * direction of {@code direction}. |
| 2008 | * @since 1.6 |
| 2009 | */ |
| 2010 | public static float nextAfter(float start, double direction) { |
| 2011 | /* |
| 2012 | * The cases: |
| 2013 | * |
| 2014 | * nextAfter(+infinity, 0) == MAX_VALUE |
| 2015 | * nextAfter(+infinity, +infinity) == +infinity |
| 2016 | * nextAfter(-infinity, 0) == -MAX_VALUE |
| 2017 | * nextAfter(-infinity, -infinity) == -infinity |
| 2018 | * |
| 2019 | * are naturally handled without any additional testing |
| 2020 | */ |
| 2021 | |
| 2022 | // First check for NaN values |
| 2023 | if (Float.isNaN(start) || Double.isNaN(direction)) { |
| 2024 | // return a NaN derived from the input NaN(s) |
| 2025 | return start + (float)direction; |
| 2026 | } else if (start == direction) { |
| 2027 | return (float)direction; |
| 2028 | } else { // start > direction or start < direction |
| 2029 | // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0) |
| 2030 | // then bitwise convert start to integer. |
| 2031 | int transducer = Float.floatToRawIntBits(start + 0.0f); |
| 2032 | |
| 2033 | /* |
| 2034 | * IEEE 754 floating-point numbers are lexicographically |
| 2035 | * ordered if treated as signed- magnitude integers . |
| 2036 | * Since Java's integers are two's complement, |
| 2037 | * incrementing" the two's complement representation of a |
| 2038 | * logically negative floating-point value *decrements* |
| 2039 | * the signed-magnitude representation. Therefore, when |
| 2040 | * the integer representation of a floating-point values |
| 2041 | * is less than zero, the adjustment to the representation |
| 2042 | * is in the opposite direction than would be expected at |
| 2043 | * first. |
| 2044 | */ |
| 2045 | if (direction > start) {// Calculate next greater value |
| 2046 | transducer = transducer + (transducer >= 0 ? 1:-1); |
| 2047 | } else { // Calculate next lesser value |
| 2048 | assert direction < start; |
| 2049 | if (transducer > 0) |
| 2050 | --transducer; |
| 2051 | else |
| 2052 | if (transducer < 0 ) |
| 2053 | ++transducer; |
| 2054 | /* |
| 2055 | * transducer==0, the result is -MIN_VALUE |
| 2056 | * |
| 2057 | * The transition from zero (implicitly |
| 2058 | * positive) to the smallest negative |
| 2059 | * signed magnitude value must be done |
| 2060 | * explicitly. |
| 2061 | */ |
| 2062 | else |
| 2063 | transducer = FloatConsts.SIGN_BIT_MASK | 1; |
| 2064 | } |
| 2065 | |
| 2066 | return Float.intBitsToFloat(transducer); |
| 2067 | } |
| 2068 | } |
| 2069 | |
| 2070 | /** |
| 2071 | * Returns the floating-point value adjacent to {@code d} in |
| 2072 | * the direction of positive infinity. This method is |
| 2073 | * semantically equivalent to {@code nextAfter(d, |
| 2074 | * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} |
| 2075 | * implementation may run faster than its equivalent |
| 2076 | * {@code nextAfter} call. |
| 2077 | * |
| 2078 | * <p>Special Cases: |
| 2079 | * <ul> |
| 2080 | * <li> If the argument is NaN, the result is NaN. |
| 2081 | * |
| 2082 | * <li> If the argument is positive infinity, the result is |
| 2083 | * positive infinity. |
| 2084 | * |
| 2085 | * <li> If the argument is zero, the result is |
| 2086 | * {@link Double#MIN_VALUE} |
| 2087 | * |
| 2088 | * </ul> |
| 2089 | * |
| 2090 | * @param d starting floating-point value |
| 2091 | * @return The adjacent floating-point value closer to positive |
| 2092 | * infinity. |
| 2093 | * @since 1.6 |
| 2094 | */ |
| 2095 | public static double nextUp(double d) { |
| 2096 | if( Double.isNaN(d) || d == Double.POSITIVE_INFINITY) |
| 2097 | return d; |
| 2098 | else { |
| 2099 | d += 0.0d; |
| 2100 | return Double.longBitsToDouble(Double.doubleToRawLongBits(d) + |
| 2101 | ((d >= 0.0d)?+1L:-1L)); |
| 2102 | } |
| 2103 | } |
| 2104 | |
| 2105 | /** |
| 2106 | * Returns the floating-point value adjacent to {@code f} in |
| 2107 | * the direction of positive infinity. This method is |
| 2108 | * semantically equivalent to {@code nextAfter(f, |
| 2109 | * Float.POSITIVE_INFINITY)}; however, a {@code nextUp} |
| 2110 | * implementation may run faster than its equivalent |
| 2111 | * {@code nextAfter} call. |
| 2112 | * |
| 2113 | * <p>Special Cases: |
| 2114 | * <ul> |
| 2115 | * <li> If the argument is NaN, the result is NaN. |
| 2116 | * |
| 2117 | * <li> If the argument is positive infinity, the result is |
| 2118 | * positive infinity. |
| 2119 | * |
| 2120 | * <li> If the argument is zero, the result is |
| 2121 | * {@link Float#MIN_VALUE} |
| 2122 | * |
| 2123 | * </ul> |
| 2124 | * |
| 2125 | * @param f starting floating-point value |
| 2126 | * @return The adjacent floating-point value closer to positive |
| 2127 | * infinity. |
| 2128 | * @since 1.6 |
| 2129 | */ |
| 2130 | public static float nextUp(float f) { |
| 2131 | if( Float.isNaN(f) || f == FloatConsts.POSITIVE_INFINITY) |
| 2132 | return f; |
| 2133 | else { |
| 2134 | f += 0.0f; |
| 2135 | return Float.intBitsToFloat(Float.floatToRawIntBits(f) + |
| 2136 | ((f >= 0.0f)?+1:-1)); |
| 2137 | } |
| 2138 | } |
| 2139 | |
| 2140 | /** |
| 2141 | * Returns the floating-point value adjacent to {@code d} in |
| 2142 | * the direction of negative infinity. This method is |
| 2143 | * semantically equivalent to {@code nextAfter(d, |
| 2144 | * Double.NEGATIVE_INFINITY)}; however, a |
| 2145 | * {@code nextDown} implementation may run faster than its |
| 2146 | * equivalent {@code nextAfter} call. |
| 2147 | * |
| 2148 | * <p>Special Cases: |
| 2149 | * <ul> |
| 2150 | * <li> If the argument is NaN, the result is NaN. |
| 2151 | * |
| 2152 | * <li> If the argument is negative infinity, the result is |
| 2153 | * negative infinity. |
| 2154 | * |
| 2155 | * <li> If the argument is zero, the result is |
| 2156 | * {@code -Double.MIN_VALUE} |
| 2157 | * |
| 2158 | * </ul> |
| 2159 | * |
| 2160 | * @param d starting floating-point value |
| 2161 | * @return The adjacent floating-point value closer to negative |
| 2162 | * infinity. |
| 2163 | * @since 1.8 |
| 2164 | */ |
| 2165 | public static double nextDown(double d) { |
| 2166 | if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY) |
| 2167 | return d; |
| 2168 | else { |
| 2169 | if (d == 0.0) |
| 2170 | return -Double.MIN_VALUE; |
| 2171 | else |
| 2172 | return Double.longBitsToDouble(Double.doubleToRawLongBits(d) + |
| 2173 | ((d > 0.0d)?-1L:+1L)); |
| 2174 | } |
| 2175 | } |
| 2176 | |
| 2177 | /** |
| 2178 | * Returns the floating-point value adjacent to {@code f} in |
| 2179 | * the direction of negative infinity. This method is |
| 2180 | * semantically equivalent to {@code nextAfter(f, |
| 2181 | * Float.NEGATIVE_INFINITY)}; however, a |
| 2182 | * {@code nextDown} implementation may run faster than its |
| 2183 | * equivalent {@code nextAfter} call. |
| 2184 | * |
| 2185 | * <p>Special Cases: |
| 2186 | * <ul> |
| 2187 | * <li> If the argument is NaN, the result is NaN. |
| 2188 | * |
| 2189 | * <li> If the argument is negative infinity, the result is |
| 2190 | * negative infinity. |
| 2191 | * |
| 2192 | * <li> If the argument is zero, the result is |
| 2193 | * {@code -Float.MIN_VALUE} |
| 2194 | * |
| 2195 | * </ul> |
| 2196 | * |
| 2197 | * @param f starting floating-point value |
| 2198 | * @return The adjacent floating-point value closer to negative |
| 2199 | * infinity. |
| 2200 | * @since 1.8 |
| 2201 | */ |
| 2202 | public static float nextDown(float f) { |
| 2203 | if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY) |
| 2204 | return f; |
| 2205 | else { |
| 2206 | if (f == 0.0f) |
| 2207 | return -Float.MIN_VALUE; |
| 2208 | else |
| 2209 | return Float.intBitsToFloat(Float.floatToRawIntBits(f) + |
| 2210 | ((f > 0.0f)?-1:+1)); |
| 2211 | } |
| 2212 | } |
| 2213 | |
| 2214 | /** |
| 2215 | * Returns {@code d} × |
| 2216 | * 2<sup>{@code scaleFactor}</sup> rounded as if performed |
| 2217 | * by a single correctly rounded floating-point multiply to a |
| 2218 | * member of the double value set. See the Java |
| 2219 | * Language Specification for a discussion of floating-point |
| 2220 | * value sets. If the exponent of the result is between {@link |
| 2221 | * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the |
| 2222 | * answer is calculated exactly. If the exponent of the result |
| 2223 | * would be larger than {@code Double.MAX_EXPONENT}, an |
| 2224 | * infinity is returned. Note that if the result is subnormal, |
| 2225 | * precision may be lost; that is, when {@code scalb(x, n)} |
| 2226 | * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal |
| 2227 | * <i>x</i>. When the result is non-NaN, the result has the same |
| 2228 | * sign as {@code d}. |
| 2229 | * |
| 2230 | * <p>Special cases: |
| 2231 | * <ul> |
| 2232 | * <li> If the first argument is NaN, NaN is returned. |
| 2233 | * <li> If the first argument is infinite, then an infinity of the |
| 2234 | * same sign is returned. |
| 2235 | * <li> If the first argument is zero, then a zero of the same |
| 2236 | * sign is returned. |
| 2237 | * </ul> |
| 2238 | * |
| 2239 | * @param d number to be scaled by a power of two. |
| 2240 | * @param scaleFactor power of 2 used to scale {@code d} |
| 2241 | * @return {@code d} × 2<sup>{@code scaleFactor}</sup> |
| 2242 | * @since 1.6 |
| 2243 | */ |
| 2244 | public static double scalb(double d, int scaleFactor) { |
| 2245 | /* |
| 2246 | * This method does not need to be declared strictfp to |
| 2247 | * compute the same correct result on all platforms. When |
| 2248 | * scaling up, it does not matter what order the |
| 2249 | * multiply-store operations are done; the result will be |
| 2250 | * finite or overflow regardless of the operation ordering. |
| 2251 | * However, to get the correct result when scaling down, a |
| 2252 | * particular ordering must be used. |
| 2253 | * |
| 2254 | * When scaling down, the multiply-store operations are |
| 2255 | * sequenced so that it is not possible for two consecutive |
| 2256 | * multiply-stores to return subnormal results. If one |
| 2257 | * multiply-store result is subnormal, the next multiply will |
| 2258 | * round it away to zero. This is done by first multiplying |
| 2259 | * by 2 ^ (scaleFactor % n) and then multiplying several |
| 2260 | * times by by 2^n as needed where n is the exponent of number |
| 2261 | * that is a covenient power of two. In this way, at most one |
| 2262 | * real rounding error occurs. If the double value set is |
| 2263 | * being used exclusively, the rounding will occur on a |
| 2264 | * multiply. If the double-extended-exponent value set is |
| 2265 | * being used, the products will (perhaps) be exact but the |
| 2266 | * stores to d are guaranteed to round to the double value |
| 2267 | * set. |
| 2268 | * |
| 2269 | * It is _not_ a valid implementation to first multiply d by |
| 2270 | * 2^MIN_EXPONENT and then by 2 ^ (scaleFactor % |
| 2271 | * MIN_EXPONENT) since even in a strictfp program double |
| 2272 | * rounding on underflow could occur; e.g. if the scaleFactor |
| 2273 | * argument was (MIN_EXPONENT - n) and the exponent of d was a |
| 2274 | * little less than -(MIN_EXPONENT - n), meaning the final |
| 2275 | * result would be subnormal. |
| 2276 | * |
| 2277 | * Since exact reproducibility of this method can be achieved |
| 2278 | * without any undue performance burden, there is no |
| 2279 | * compelling reason to allow double rounding on underflow in |
| 2280 | * scalb. |
| 2281 | */ |
| 2282 | |
| 2283 | // magnitude of a power of two so large that scaling a finite |
| 2284 | // nonzero value by it would be guaranteed to over or |
| 2285 | // underflow; due to rounding, scaling down takes takes an |
| 2286 | // additional power of two which is reflected here |
| 2287 | final int MAX_SCALE = DoubleConsts.MAX_EXPONENT + -DoubleConsts.MIN_EXPONENT + |
| 2288 | DoubleConsts.SIGNIFICAND_WIDTH + 1; |
| 2289 | int exp_adjust = 0; |
| 2290 | int scale_increment = 0; |
| 2291 | double exp_delta = Double.NaN; |
| 2292 | |
| 2293 | // Make sure scaling factor is in a reasonable range |
| 2294 | |
| 2295 | if(scaleFactor < 0) { |
| 2296 | scaleFactor = Math.max(scaleFactor, -MAX_SCALE); |
| 2297 | scale_increment = -512; |
| 2298 | exp_delta = twoToTheDoubleScaleDown; |
| 2299 | } |
| 2300 | else { |
| 2301 | scaleFactor = Math.min(scaleFactor, MAX_SCALE); |
| 2302 | scale_increment = 512; |
| 2303 | exp_delta = twoToTheDoubleScaleUp; |
| 2304 | } |
| 2305 | |
| 2306 | // Calculate (scaleFactor % +/-512), 512 = 2^9, using |
| 2307 | // technique from "Hacker's Delight" section 10-2. |
| 2308 | int t = (scaleFactor >> 9-1) >>> 32 - 9; |
| 2309 | exp_adjust = ((scaleFactor + t) & (512 -1)) - t; |
| 2310 | |
| 2311 | d *= powerOfTwoD(exp_adjust); |
| 2312 | scaleFactor -= exp_adjust; |
| 2313 | |
| 2314 | while(scaleFactor != 0) { |
| 2315 | d *= exp_delta; |
| 2316 | scaleFactor -= scale_increment; |
| 2317 | } |
| 2318 | return d; |
| 2319 | } |
| 2320 | |
| 2321 | /** |
| 2322 | * Returns {@code f} × |
| 2323 | * 2<sup>{@code scaleFactor}</sup> rounded as if performed |
| 2324 | * by a single correctly rounded floating-point multiply to a |
| 2325 | * member of the float value set. See the Java |
| 2326 | * Language Specification for a discussion of floating-point |
| 2327 | * value sets. If the exponent of the result is between {@link |
| 2328 | * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the |
| 2329 | * answer is calculated exactly. If the exponent of the result |
| 2330 | * would be larger than {@code Float.MAX_EXPONENT}, an |
| 2331 | * infinity is returned. Note that if the result is subnormal, |
| 2332 | * precision may be lost; that is, when {@code scalb(x, n)} |
| 2333 | * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal |
| 2334 | * <i>x</i>. When the result is non-NaN, the result has the same |
| 2335 | * sign as {@code f}. |
| 2336 | * |
| 2337 | * <p>Special cases: |
| 2338 | * <ul> |
| 2339 | * <li> If the first argument is NaN, NaN is returned. |
| 2340 | * <li> If the first argument is infinite, then an infinity of the |
| 2341 | * same sign is returned. |
| 2342 | * <li> If the first argument is zero, then a zero of the same |
| 2343 | * sign is returned. |
| 2344 | * </ul> |
| 2345 | * |
| 2346 | * @param f number to be scaled by a power of two. |
| 2347 | * @param scaleFactor power of 2 used to scale {@code f} |
| 2348 | * @return {@code f} × 2<sup>{@code scaleFactor}</sup> |
| 2349 | * @since 1.6 |
| 2350 | */ |
| 2351 | public static float scalb(float f, int scaleFactor) { |
| 2352 | // magnitude of a power of two so large that scaling a finite |
| 2353 | // nonzero value by it would be guaranteed to over or |
| 2354 | // underflow; due to rounding, scaling down takes takes an |
| 2355 | // additional power of two which is reflected here |
| 2356 | final int MAX_SCALE = FloatConsts.MAX_EXPONENT + -FloatConsts.MIN_EXPONENT + |
| 2357 | FloatConsts.SIGNIFICAND_WIDTH + 1; |
| 2358 | |
| 2359 | // Make sure scaling factor is in a reasonable range |
| 2360 | scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE); |
| 2361 | |
| 2362 | /* |
| 2363 | * Since + MAX_SCALE for float fits well within the double |
| 2364 | * exponent range and + float -> double conversion is exact |
| 2365 | * the multiplication below will be exact. Therefore, the |
| 2366 | * rounding that occurs when the double product is cast to |
| 2367 | * float will be the correctly rounded float result. Since |
| 2368 | * all operations other than the final multiply will be exact, |
| 2369 | * it is not necessary to declare this method strictfp. |
| 2370 | */ |
| 2371 | return (float)((double)f*powerOfTwoD(scaleFactor)); |
| 2372 | } |
| 2373 | |
| 2374 | // Constants used in scalb |
| 2375 | static double twoToTheDoubleScaleUp = powerOfTwoD(512); |
| 2376 | static double twoToTheDoubleScaleDown = powerOfTwoD(-512); |
| 2377 | |
| 2378 | /** |
| 2379 | * Returns a floating-point power of two in the normal range. |
| 2380 | */ |
| 2381 | static double powerOfTwoD(int n) { |
| 2382 | assert(n >= DoubleConsts.MIN_EXPONENT && n <= DoubleConsts.MAX_EXPONENT); |
| 2383 | return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) << |
| 2384 | (DoubleConsts.SIGNIFICAND_WIDTH-1)) |
| 2385 | & DoubleConsts.EXP_BIT_MASK); |
| 2386 | } |
| 2387 | |
| 2388 | /** |
| 2389 | * Returns a floating-point power of two in the normal range. |
| 2390 | */ |
| 2391 | static float powerOfTwoF(int n) { |
| 2392 | assert(n >= FloatConsts.MIN_EXPONENT && n <= FloatConsts.MAX_EXPONENT); |
| 2393 | return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) << |
| 2394 | (FloatConsts.SIGNIFICAND_WIDTH-1)) |
| 2395 | & FloatConsts.EXP_BIT_MASK); |
| 2396 | } |
| 2397 | } |