Josh Gao | f79bdee | 2015-09-23 20:45:19 -0700 | [diff] [blame] | 1 | /* The PyObject_ memory family: high-level object memory interfaces. |
| 2 | See pymem.h for the low-level PyMem_ family. |
| 3 | */ |
| 4 | |
| 5 | #ifndef Py_OBJIMPL_H |
| 6 | #define Py_OBJIMPL_H |
| 7 | |
| 8 | #include "pymem.h" |
| 9 | |
| 10 | #ifdef __cplusplus |
| 11 | extern "C" { |
| 12 | #endif |
| 13 | |
| 14 | /* BEWARE: |
| 15 | |
| 16 | Each interface exports both functions and macros. Extension modules should |
| 17 | use the functions, to ensure binary compatibility across Python versions. |
| 18 | Because the Python implementation is free to change internal details, and |
| 19 | the macros may (or may not) expose details for speed, if you do use the |
| 20 | macros you must recompile your extensions with each Python release. |
| 21 | |
| 22 | Never mix calls to PyObject_ memory functions with calls to the platform |
| 23 | malloc/realloc/ calloc/free, or with calls to PyMem_. |
| 24 | */ |
| 25 | |
| 26 | /* |
| 27 | Functions and macros for modules that implement new object types. |
| 28 | |
| 29 | - PyObject_New(type, typeobj) allocates memory for a new object of the given |
| 30 | type, and initializes part of it. 'type' must be the C structure type used |
| 31 | to represent the object, and 'typeobj' the address of the corresponding |
| 32 | type object. Reference count and type pointer are filled in; the rest of |
| 33 | the bytes of the object are *undefined*! The resulting expression type is |
| 34 | 'type *'. The size of the object is determined by the tp_basicsize field |
| 35 | of the type object. |
| 36 | |
| 37 | - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size |
| 38 | object with room for n items. In addition to the refcount and type pointer |
| 39 | fields, this also fills in the ob_size field. |
| 40 | |
| 41 | - PyObject_Del(op) releases the memory allocated for an object. It does not |
| 42 | run a destructor -- it only frees the memory. PyObject_Free is identical. |
| 43 | |
| 44 | - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't |
| 45 | allocate memory. Instead of a 'type' parameter, they take a pointer to a |
| 46 | new object (allocated by an arbitrary allocator), and initialize its object |
| 47 | header fields. |
| 48 | |
| 49 | Note that objects created with PyObject_{New, NewVar} are allocated using the |
| 50 | specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is |
| 51 | enabled. In addition, a special debugging allocator is used if PYMALLOC_DEBUG |
| 52 | is also #defined. |
| 53 | |
| 54 | In case a specific form of memory management is needed (for example, if you |
| 55 | must use the platform malloc heap(s), or shared memory, or C++ local storage or |
| 56 | operator new), you must first allocate the object with your custom allocator, |
| 57 | then pass its pointer to PyObject_{Init, InitVar} for filling in its Python- |
| 58 | specific fields: reference count, type pointer, possibly others. You should |
| 59 | be aware that Python no control over these objects because they don't |
| 60 | cooperate with the Python memory manager. Such objects may not be eligible |
| 61 | for automatic garbage collection and you have to make sure that they are |
| 62 | released accordingly whenever their destructor gets called (cf. the specific |
| 63 | form of memory management you're using). |
| 64 | |
| 65 | Unless you have specific memory management requirements, use |
| 66 | PyObject_{New, NewVar, Del}. |
| 67 | */ |
| 68 | |
| 69 | /* |
| 70 | * Raw object memory interface |
| 71 | * =========================== |
| 72 | */ |
| 73 | |
| 74 | /* Functions to call the same malloc/realloc/free as used by Python's |
| 75 | object allocator. If WITH_PYMALLOC is enabled, these may differ from |
| 76 | the platform malloc/realloc/free. The Python object allocator is |
| 77 | designed for fast, cache-conscious allocation of many "small" objects, |
| 78 | and with low hidden memory overhead. |
| 79 | |
| 80 | PyObject_Malloc(0) returns a unique non-NULL pointer if possible. |
| 81 | |
| 82 | PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n). |
| 83 | PyObject_Realloc(p != NULL, 0) does not return NULL, or free the memory |
| 84 | at p. |
| 85 | |
| 86 | Returned pointers must be checked for NULL explicitly; no action is |
| 87 | performed on failure other than to return NULL (no warning it printed, no |
| 88 | exception is set, etc). |
| 89 | |
| 90 | For allocating objects, use PyObject_{New, NewVar} instead whenever |
| 91 | possible. The PyObject_{Malloc, Realloc, Free} family is exposed |
| 92 | so that you can exploit Python's small-block allocator for non-object |
| 93 | uses. If you must use these routines to allocate object memory, make sure |
| 94 | the object gets initialized via PyObject_{Init, InitVar} after obtaining |
| 95 | the raw memory. |
| 96 | */ |
| 97 | PyAPI_FUNC(void *) PyObject_Malloc(size_t); |
| 98 | PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t); |
| 99 | PyAPI_FUNC(void) PyObject_Free(void *); |
| 100 | |
| 101 | |
| 102 | /* Macros */ |
| 103 | #ifdef WITH_PYMALLOC |
| 104 | #ifdef PYMALLOC_DEBUG /* WITH_PYMALLOC && PYMALLOC_DEBUG */ |
| 105 | PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes); |
| 106 | PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes); |
| 107 | PyAPI_FUNC(void) _PyObject_DebugFree(void *p); |
| 108 | PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p); |
| 109 | PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p); |
| 110 | PyAPI_FUNC(void) _PyObject_DebugMallocStats(void); |
| 111 | PyAPI_FUNC(void *) _PyObject_DebugMallocApi(char api, size_t nbytes); |
| 112 | PyAPI_FUNC(void *) _PyObject_DebugReallocApi(char api, void *p, size_t nbytes); |
| 113 | PyAPI_FUNC(void) _PyObject_DebugFreeApi(char api, void *p); |
| 114 | PyAPI_FUNC(void) _PyObject_DebugCheckAddressApi(char api, const void *p); |
| 115 | PyAPI_FUNC(void *) _PyMem_DebugMalloc(size_t nbytes); |
| 116 | PyAPI_FUNC(void *) _PyMem_DebugRealloc(void *p, size_t nbytes); |
| 117 | PyAPI_FUNC(void) _PyMem_DebugFree(void *p); |
| 118 | #define PyObject_MALLOC _PyObject_DebugMalloc |
| 119 | #define PyObject_Malloc _PyObject_DebugMalloc |
| 120 | #define PyObject_REALLOC _PyObject_DebugRealloc |
| 121 | #define PyObject_Realloc _PyObject_DebugRealloc |
| 122 | #define PyObject_FREE _PyObject_DebugFree |
| 123 | #define PyObject_Free _PyObject_DebugFree |
| 124 | |
| 125 | #else /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */ |
| 126 | #define PyObject_MALLOC PyObject_Malloc |
| 127 | #define PyObject_REALLOC PyObject_Realloc |
| 128 | #define PyObject_FREE PyObject_Free |
| 129 | #endif |
| 130 | |
| 131 | #else /* ! WITH_PYMALLOC */ |
| 132 | #define PyObject_MALLOC PyMem_MALLOC |
| 133 | #define PyObject_REALLOC PyMem_REALLOC |
| 134 | #define PyObject_FREE PyMem_FREE |
| 135 | |
| 136 | #endif /* WITH_PYMALLOC */ |
| 137 | |
| 138 | #define PyObject_Del PyObject_Free |
| 139 | #define PyObject_DEL PyObject_FREE |
| 140 | |
| 141 | /* for source compatibility with 2.2 */ |
| 142 | #define _PyObject_Del PyObject_Free |
| 143 | |
| 144 | /* |
| 145 | * Generic object allocator interface |
| 146 | * ================================== |
| 147 | */ |
| 148 | |
| 149 | /* Functions */ |
| 150 | PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *); |
| 151 | PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *, |
| 152 | PyTypeObject *, Py_ssize_t); |
| 153 | PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *); |
| 154 | PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t); |
| 155 | |
| 156 | #define PyObject_New(type, typeobj) \ |
| 157 | ( (type *) _PyObject_New(typeobj) ) |
| 158 | #define PyObject_NewVar(type, typeobj, n) \ |
| 159 | ( (type *) _PyObject_NewVar((typeobj), (n)) ) |
| 160 | |
| 161 | /* Macros trading binary compatibility for speed. See also pymem.h. |
| 162 | Note that these macros expect non-NULL object pointers.*/ |
| 163 | #define PyObject_INIT(op, typeobj) \ |
| 164 | ( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) ) |
| 165 | #define PyObject_INIT_VAR(op, typeobj, size) \ |
| 166 | ( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) ) |
| 167 | |
| 168 | #define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize ) |
| 169 | |
| 170 | /* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a |
| 171 | vrbl-size object with nitems items, exclusive of gc overhead (if any). The |
| 172 | value is rounded up to the closest multiple of sizeof(void *), in order to |
| 173 | ensure that pointer fields at the end of the object are correctly aligned |
| 174 | for the platform (this is of special importance for subclasses of, e.g., |
| 175 | str or long, so that pointers can be stored after the embedded data). |
| 176 | |
| 177 | Note that there's no memory wastage in doing this, as malloc has to |
| 178 | return (at worst) pointer-aligned memory anyway. |
| 179 | */ |
| 180 | #if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0 |
| 181 | # error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2" |
| 182 | #endif |
| 183 | |
| 184 | #define _PyObject_VAR_SIZE(typeobj, nitems) \ |
| 185 | (size_t) \ |
| 186 | ( ( (typeobj)->tp_basicsize + \ |
| 187 | (nitems)*(typeobj)->tp_itemsize + \ |
| 188 | (SIZEOF_VOID_P - 1) \ |
| 189 | ) & ~(SIZEOF_VOID_P - 1) \ |
| 190 | ) |
| 191 | |
| 192 | #define PyObject_NEW(type, typeobj) \ |
| 193 | ( (type *) PyObject_Init( \ |
| 194 | (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) ) |
| 195 | |
| 196 | #define PyObject_NEW_VAR(type, typeobj, n) \ |
| 197 | ( (type *) PyObject_InitVar( \ |
| 198 | (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\ |
| 199 | (typeobj), (n)) ) |
| 200 | |
| 201 | /* This example code implements an object constructor with a custom |
| 202 | allocator, where PyObject_New is inlined, and shows the important |
| 203 | distinction between two steps (at least): |
| 204 | 1) the actual allocation of the object storage; |
| 205 | 2) the initialization of the Python specific fields |
| 206 | in this storage with PyObject_{Init, InitVar}. |
| 207 | |
| 208 | PyObject * |
| 209 | YourObject_New(...) |
| 210 | { |
| 211 | PyObject *op; |
| 212 | |
| 213 | op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct)); |
| 214 | if (op == NULL) |
| 215 | return PyErr_NoMemory(); |
| 216 | |
| 217 | PyObject_Init(op, &YourTypeStruct); |
| 218 | |
| 219 | op->ob_field = value; |
| 220 | ... |
| 221 | return op; |
| 222 | } |
| 223 | |
| 224 | Note that in C++, the use of the new operator usually implies that |
| 225 | the 1st step is performed automatically for you, so in a C++ class |
| 226 | constructor you would start directly with PyObject_Init/InitVar |
| 227 | */ |
| 228 | |
| 229 | /* |
| 230 | * Garbage Collection Support |
| 231 | * ========================== |
| 232 | */ |
| 233 | |
| 234 | /* C equivalent of gc.collect(). */ |
| 235 | PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void); |
| 236 | |
| 237 | /* Test if a type has a GC head */ |
| 238 | #define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC) |
| 239 | |
| 240 | /* Test if an object has a GC head */ |
| 241 | #define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \ |
| 242 | (Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o))) |
| 243 | |
| 244 | PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t); |
| 245 | #define PyObject_GC_Resize(type, op, n) \ |
| 246 | ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) ) |
| 247 | |
| 248 | /* for source compatibility with 2.2 */ |
| 249 | #define _PyObject_GC_Del PyObject_GC_Del |
| 250 | |
| 251 | /* GC information is stored BEFORE the object structure. */ |
| 252 | typedef union _gc_head { |
| 253 | struct { |
| 254 | union _gc_head *gc_next; |
| 255 | union _gc_head *gc_prev; |
| 256 | Py_ssize_t gc_refs; |
| 257 | } gc; |
| 258 | long double dummy; /* force worst-case alignment */ |
| 259 | #if defined(__MINGW32__) |
| 260 | /* FIXME: what about 64-bit platforms ? |
| 261 | * see http://mail.python.org/pipermail/python-dev/2009-July/090724.html |
| 262 | */ |
| 263 | double dummy1; |
| 264 | #endif |
| 265 | } PyGC_Head; |
| 266 | |
| 267 | extern PyGC_Head *_PyGC_generation0; |
| 268 | |
| 269 | #define _Py_AS_GC(o) ((PyGC_Head *)(o)-1) |
| 270 | |
| 271 | #define _PyGC_REFS_UNTRACKED (-2) |
| 272 | #define _PyGC_REFS_REACHABLE (-3) |
| 273 | #define _PyGC_REFS_TENTATIVELY_UNREACHABLE (-4) |
| 274 | |
| 275 | /* Tell the GC to track this object. NB: While the object is tracked the |
| 276 | * collector it must be safe to call the ob_traverse method. */ |
| 277 | #define _PyObject_GC_TRACK(o) do { \ |
| 278 | PyGC_Head *g = _Py_AS_GC(o); \ |
| 279 | if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \ |
| 280 | Py_FatalError("GC object already tracked"); \ |
| 281 | g->gc.gc_refs = _PyGC_REFS_REACHABLE; \ |
| 282 | g->gc.gc_next = _PyGC_generation0; \ |
| 283 | g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \ |
| 284 | g->gc.gc_prev->gc.gc_next = g; \ |
| 285 | _PyGC_generation0->gc.gc_prev = g; \ |
| 286 | } while (0); |
| 287 | |
| 288 | /* Tell the GC to stop tracking this object. |
| 289 | * gc_next doesn't need to be set to NULL, but doing so is a good |
| 290 | * way to provoke memory errors if calling code is confused. |
| 291 | */ |
| 292 | #define _PyObject_GC_UNTRACK(o) do { \ |
| 293 | PyGC_Head *g = _Py_AS_GC(o); \ |
| 294 | assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \ |
| 295 | g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \ |
| 296 | g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \ |
| 297 | g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \ |
| 298 | g->gc.gc_next = NULL; \ |
| 299 | } while (0); |
| 300 | |
| 301 | /* True if the object is currently tracked by the GC. */ |
| 302 | #define _PyObject_GC_IS_TRACKED(o) \ |
| 303 | ((_Py_AS_GC(o))->gc.gc_refs != _PyGC_REFS_UNTRACKED) |
| 304 | |
| 305 | /* True if the object may be tracked by the GC in the future, or already is. |
| 306 | This can be useful to implement some optimizations. */ |
| 307 | #define _PyObject_GC_MAY_BE_TRACKED(obj) \ |
| 308 | (PyObject_IS_GC(obj) && \ |
| 309 | (!PyTuple_CheckExact(obj) || _PyObject_GC_IS_TRACKED(obj))) |
| 310 | |
| 311 | |
| 312 | PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t); |
| 313 | PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *); |
| 314 | PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t); |
| 315 | PyAPI_FUNC(void) PyObject_GC_Track(void *); |
| 316 | PyAPI_FUNC(void) PyObject_GC_UnTrack(void *); |
| 317 | PyAPI_FUNC(void) PyObject_GC_Del(void *); |
| 318 | |
| 319 | #define PyObject_GC_New(type, typeobj) \ |
| 320 | ( (type *) _PyObject_GC_New(typeobj) ) |
| 321 | #define PyObject_GC_NewVar(type, typeobj, n) \ |
| 322 | ( (type *) _PyObject_GC_NewVar((typeobj), (n)) ) |
| 323 | |
| 324 | |
| 325 | /* Utility macro to help write tp_traverse functions. |
| 326 | * To use this macro, the tp_traverse function must name its arguments |
| 327 | * "visit" and "arg". This is intended to keep tp_traverse functions |
| 328 | * looking as much alike as possible. |
| 329 | */ |
| 330 | #define Py_VISIT(op) \ |
| 331 | do { \ |
| 332 | if (op) { \ |
| 333 | int vret = visit((PyObject *)(op), arg); \ |
| 334 | if (vret) \ |
| 335 | return vret; \ |
| 336 | } \ |
| 337 | } while (0) |
| 338 | |
| 339 | /* This is here for the sake of backwards compatibility. Extensions that |
| 340 | * use the old GC API will still compile but the objects will not be |
| 341 | * tracked by the GC. */ |
| 342 | #define PyGC_HEAD_SIZE 0 |
| 343 | #define PyObject_GC_Init(op) |
| 344 | #define PyObject_GC_Fini(op) |
| 345 | #define PyObject_AS_GC(op) (op) |
| 346 | #define PyObject_FROM_GC(op) (op) |
| 347 | |
| 348 | |
| 349 | /* Test if a type supports weak references */ |
| 350 | #define PyType_SUPPORTS_WEAKREFS(t) \ |
| 351 | (PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \ |
| 352 | && ((t)->tp_weaklistoffset > 0)) |
| 353 | |
| 354 | #define PyObject_GET_WEAKREFS_LISTPTR(o) \ |
| 355 | ((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset)) |
| 356 | |
| 357 | #ifdef __cplusplus |
| 358 | } |
| 359 | #endif |
| 360 | #endif /* !Py_OBJIMPL_H */ |