blob: 26688bbd64e9f2221d2a64a696ed05d037d4b5e1 [file] [log] [blame]
Dan Willemsenbbdf6642017-01-13 22:57:23 -08001// Copyright 2016 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package big
6
7import "math/rand"
8
9// ProbablyPrime reports whether x is probably prime,
10// applying the Miller-Rabin test with n pseudorandomly chosen bases
11// as well as a Baillie-PSW test.
12//
13// If x is prime, ProbablyPrime returns true.
14// If x is chosen randomly and not prime, ProbablyPrime probably returns false.
15// The probability of returning true for a randomly chosen non-prime is at most ¼ⁿ.
16//
17// ProbablyPrime is 100% accurate for inputs less than 2⁶⁴.
18// See Menezes et al., Handbook of Applied Cryptography, 1997, pp. 145-149,
19// and FIPS 186-4 Appendix F for further discussion of the error probabilities.
20//
21// ProbablyPrime is not suitable for judging primes that an adversary may
22// have crafted to fool the test.
23//
24// As of Go 1.8, ProbablyPrime(0) is allowed and applies only a Baillie-PSW test.
25// Before Go 1.8, ProbablyPrime applied only the Miller-Rabin tests, and ProbablyPrime(0) panicked.
26func (x *Int) ProbablyPrime(n int) bool {
27 // Note regarding the doc comment above:
28 // It would be more precise to say that the Baillie-PSW test uses the
29 // extra strong Lucas test as its Lucas test, but since no one knows
30 // how to tell any of the Lucas tests apart inside a Baillie-PSW test
31 // (they all work equally well empirically), that detail need not be
32 // documented or implicitly guaranteed.
33 // The comment does avoid saying "the" Baillie-PSW test
34 // because of this general ambiguity.
35
36 if n < 0 {
37 panic("negative n for ProbablyPrime")
38 }
39 if x.neg || len(x.abs) == 0 {
40 return false
41 }
42
43 // primeBitMask records the primes < 64.
44 const primeBitMask uint64 = 1<<2 | 1<<3 | 1<<5 | 1<<7 |
45 1<<11 | 1<<13 | 1<<17 | 1<<19 | 1<<23 | 1<<29 | 1<<31 |
46 1<<37 | 1<<41 | 1<<43 | 1<<47 | 1<<53 | 1<<59 | 1<<61
47
48 w := x.abs[0]
49 if len(x.abs) == 1 && w < 64 {
50 return primeBitMask&(1<<w) != 0
51 }
52
53 if w&1 == 0 {
Colin Cross1371fe42019-03-19 21:08:48 -070054 return false // x is even
Dan Willemsenbbdf6642017-01-13 22:57:23 -080055 }
56
57 const primesA = 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 37
58 const primesB = 29 * 31 * 41 * 43 * 47 * 53
59
60 var rA, rB uint32
61 switch _W {
62 case 32:
63 rA = uint32(x.abs.modW(primesA))
64 rB = uint32(x.abs.modW(primesB))
65 case 64:
66 r := x.abs.modW((primesA * primesB) & _M)
67 rA = uint32(r % primesA)
68 rB = uint32(r % primesB)
69 default:
70 panic("math/big: invalid word size")
71 }
72
73 if rA%3 == 0 || rA%5 == 0 || rA%7 == 0 || rA%11 == 0 || rA%13 == 0 || rA%17 == 0 || rA%19 == 0 || rA%23 == 0 || rA%37 == 0 ||
74 rB%29 == 0 || rB%31 == 0 || rB%41 == 0 || rB%43 == 0 || rB%47 == 0 || rB%53 == 0 {
75 return false
76 }
77
78 return x.abs.probablyPrimeMillerRabin(n+1, true) && x.abs.probablyPrimeLucas()
79}
80
81// probablyPrimeMillerRabin reports whether n passes reps rounds of the
82// Miller-Rabin primality test, using pseudo-randomly chosen bases.
83// If force2 is true, one of the rounds is forced to use base 2.
84// See Handbook of Applied Cryptography, p. 139, Algorithm 4.24.
85// The number n is known to be non-zero.
86func (n nat) probablyPrimeMillerRabin(reps int, force2 bool) bool {
87 nm1 := nat(nil).sub(n, natOne)
88 // determine q, k such that nm1 = q << k
89 k := nm1.trailingZeroBits()
90 q := nat(nil).shr(nm1, k)
91
92 nm3 := nat(nil).sub(nm1, natTwo)
93 rand := rand.New(rand.NewSource(int64(n[0])))
94
95 var x, y, quotient nat
96 nm3Len := nm3.bitLen()
97
98NextRandom:
99 for i := 0; i < reps; i++ {
100 if i == reps-1 && force2 {
101 x = x.set(natTwo)
102 } else {
103 x = x.random(rand, nm3, nm3Len)
104 x = x.add(x, natTwo)
105 }
Dan Willemsenb8ef64a2023-04-04 01:48:15 -0400106 y = y.expNN(x, q, n, false)
Dan Willemsenbbdf6642017-01-13 22:57:23 -0800107 if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
108 continue
109 }
110 for j := uint(1); j < k; j++ {
Dan Willemsene1b3b182018-02-27 19:36:27 -0800111 y = y.sqr(y)
Dan Willemsenbbdf6642017-01-13 22:57:23 -0800112 quotient, y = quotient.div(y, y, n)
113 if y.cmp(nm1) == 0 {
114 continue NextRandom
115 }
116 if y.cmp(natOne) == 0 {
117 return false
118 }
119 }
120 return false
121 }
122
123 return true
124}
125
126// probablyPrimeLucas reports whether n passes the "almost extra strong" Lucas probable prime test,
127// using Baillie-OEIS parameter selection. This corresponds to "AESLPSP" on Jacobsen's tables (link below).
128// The combination of this test and a Miller-Rabin/Fermat test with base 2 gives a Baillie-PSW test.
129//
130// References:
131//
132// Baillie and Wagstaff, "Lucas Pseudoprimes", Mathematics of Computation 35(152),
133// October 1980, pp. 1391-1417, especially page 1401.
Dan Willemsenf3f2eb62018-08-28 11:28:58 -0700134// https://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583518-6/S0025-5718-1980-0583518-6.pdf
Dan Willemsenbbdf6642017-01-13 22:57:23 -0800135//
136// Grantham, "Frobenius Pseudoprimes", Mathematics of Computation 70(234),
137// March 2000, pp. 873-891.
Dan Willemsenf3f2eb62018-08-28 11:28:58 -0700138// https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/S0025-5718-00-01197-2.pdf
Dan Willemsenbbdf6642017-01-13 22:57:23 -0800139//
140// Baillie, "Extra strong Lucas pseudoprimes", OEIS A217719, https://oeis.org/A217719.
141//
142// Jacobsen, "Pseudoprime Statistics, Tables, and Data", http://ntheory.org/pseudoprimes.html.
143//
Dan Willemsenb8ef64a2023-04-04 01:48:15 -0400144// Nicely, "The Baillie-PSW Primality Test", https://web.archive.org/web/20191121062007/http://www.trnicely.net/misc/bpsw.html.
Dan Willemsenbbdf6642017-01-13 22:57:23 -0800145// (Note that Nicely's definition of the "extra strong" test gives the wrong Jacobi condition,
146// as pointed out by Jacobsen.)
147//
148// Crandall and Pomerance, Prime Numbers: A Computational Perspective, 2nd ed.
149// Springer, 2005.
150func (n nat) probablyPrimeLucas() bool {
151 // Discard 0, 1.
152 if len(n) == 0 || n.cmp(natOne) == 0 {
153 return false
154 }
155 // Two is the only even prime.
156 // Already checked by caller, but here to allow testing in isolation.
157 if n[0]&1 == 0 {
158 return n.cmp(natTwo) == 0
159 }
160
161 // Baillie-OEIS "method C" for choosing D, P, Q,
162 // as in https://oeis.org/A217719/a217719.txt:
163 // try increasing P ≥ 3 such that D = P² - 4 (so Q = 1)
164 // until Jacobi(D, n) = -1.
165 // The search is expected to succeed for non-square n after just a few trials.
166 // After more than expected failures, check whether n is square
167 // (which would cause Jacobi(D, n) = 1 for all D not dividing n).
168 p := Word(3)
169 d := nat{1}
170 t1 := nat(nil) // temp
171 intD := &Int{abs: d}
172 intN := &Int{abs: n}
173 for ; ; p++ {
174 if p > 10000 {
175 // This is widely believed to be impossible.
176 // If we get a report, we'll want the exact number n.
177 panic("math/big: internal error: cannot find (D/n) = -1 for " + intN.String())
178 }
179 d[0] = p*p - 4
180 j := Jacobi(intD, intN)
181 if j == -1 {
182 break
183 }
184 if j == 0 {
185 // d = p²-4 = (p-2)(p+2).
186 // If (d/n) == 0 then d shares a prime factor with n.
187 // Since the loop proceeds in increasing p and starts with p-2==1,
188 // the shared prime factor must be p+2.
189 // If p+2 == n, then n is prime; otherwise p+2 is a proper factor of n.
190 return len(n) == 1 && n[0] == p+2
191 }
192 if p == 40 {
193 // We'll never find (d/n) = -1 if n is a square.
194 // If n is a non-square we expect to find a d in just a few attempts on average.
195 // After 40 attempts, take a moment to check if n is indeed a square.
196 t1 = t1.sqrt(n)
Dan Willemsene1b3b182018-02-27 19:36:27 -0800197 t1 = t1.sqr(t1)
Dan Willemsenbbdf6642017-01-13 22:57:23 -0800198 if t1.cmp(n) == 0 {
199 return false
200 }
201 }
202 }
203
204 // Grantham definition of "extra strong Lucas pseudoprime", after Thm 2.3 on p. 876
205 // (D, P, Q above have become Δ, b, 1):
206 //
207 // Let U_n = U_n(b, 1), V_n = V_n(b, 1), and Δ = b²-4.
208 // An extra strong Lucas pseudoprime to base b is a composite n = 2^r s + Jacobi(Δ, n),
209 // where s is odd and gcd(n, 2*Δ) = 1, such that either (i) U_s ≡ 0 mod n and V_s ≡ ±2 mod n,
210 // or (ii) V_{2^t s} ≡ 0 mod n for some 0 ≤ t < r-1.
211 //
212 // We know gcd(n, Δ) = 1 or else we'd have found Jacobi(d, n) == 0 above.
213 // We know gcd(n, 2) = 1 because n is odd.
214 //
215 // Arrange s = (n - Jacobi(Δ, n)) / 2^r = (n+1) / 2^r.
216 s := nat(nil).add(n, natOne)
217 r := int(s.trailingZeroBits())
218 s = s.shr(s, uint(r))
219 nm2 := nat(nil).sub(n, natTwo) // n-2
220
221 // We apply the "almost extra strong" test, which checks the above conditions
222 // except for U_s ≡ 0 mod n, which allows us to avoid computing any U_k values.
223 // Jacobsen points out that maybe we should just do the full extra strong test:
224 // "It is also possible to recover U_n using Crandall and Pomerance equation 3.13:
225 // U_n = D^-1 (2V_{n+1} - PV_n) allowing us to run the full extra-strong test
226 // at the cost of a single modular inversion. This computation is easy and fast in GMP,
227 // so we can get the full extra-strong test at essentially the same performance as the
228 // almost extra strong test."
229
230 // Compute Lucas sequence V_s(b, 1), where:
231 //
232 // V(0) = 2
233 // V(1) = P
234 // V(k) = P V(k-1) - Q V(k-2).
235 //
236 // (Remember that due to method C above, P = b, Q = 1.)
237 //
238 // In general V(k) = α^k + β^k, where α and β are roots of x² - Px + Q.
239 // Crandall and Pomerance (p.147) observe that for 0 ≤ j ≤ k,
240 //
241 // V(j+k) = V(j)V(k) - V(k-j).
242 //
243 // So in particular, to quickly double the subscript:
244 //
245 // V(2k) = V(k)² - 2
246 // V(2k+1) = V(k) V(k+1) - P
247 //
248 // We can therefore start with k=0 and build up to k=s in log₂(s) steps.
249 natP := nat(nil).setWord(p)
250 vk := nat(nil).setWord(2)
251 vk1 := nat(nil).setWord(p)
252 t2 := nat(nil) // temp
253 for i := int(s.bitLen()); i >= 0; i-- {
254 if s.bit(uint(i)) != 0 {
255 // k' = 2k+1
256 // V(k') = V(2k+1) = V(k) V(k+1) - P.
257 t1 = t1.mul(vk, vk1)
258 t1 = t1.add(t1, n)
259 t1 = t1.sub(t1, natP)
260 t2, vk = t2.div(vk, t1, n)
261 // V(k'+1) = V(2k+2) = V(k+1)² - 2.
Dan Willemsene1b3b182018-02-27 19:36:27 -0800262 t1 = t1.sqr(vk1)
Dan Willemsenbbdf6642017-01-13 22:57:23 -0800263 t1 = t1.add(t1, nm2)
264 t2, vk1 = t2.div(vk1, t1, n)
265 } else {
266 // k' = 2k
267 // V(k'+1) = V(2k+1) = V(k) V(k+1) - P.
268 t1 = t1.mul(vk, vk1)
269 t1 = t1.add(t1, n)
270 t1 = t1.sub(t1, natP)
271 t2, vk1 = t2.div(vk1, t1, n)
272 // V(k') = V(2k) = V(k)² - 2
Dan Willemsene1b3b182018-02-27 19:36:27 -0800273 t1 = t1.sqr(vk)
Dan Willemsenbbdf6642017-01-13 22:57:23 -0800274 t1 = t1.add(t1, nm2)
275 t2, vk = t2.div(vk, t1, n)
276 }
277 }
278
279 // Now k=s, so vk = V(s). Check V(s) ≡ ±2 (mod n).
280 if vk.cmp(natTwo) == 0 || vk.cmp(nm2) == 0 {
281 // Check U(s) ≡ 0.
282 // As suggested by Jacobsen, apply Crandall and Pomerance equation 3.13:
283 //
284 // U(k) = D⁻¹ (2 V(k+1) - P V(k))
285 //
286 // Since we are checking for U(k) == 0 it suffices to check 2 V(k+1) == P V(k) mod n,
287 // or P V(k) - 2 V(k+1) == 0 mod n.
288 t1 := t1.mul(vk, natP)
289 t2 := t2.shl(vk1, 1)
290 if t1.cmp(t2) < 0 {
291 t1, t2 = t2, t1
292 }
293 t1 = t1.sub(t1, t2)
294 t3 := vk1 // steal vk1, no longer needed below
295 vk1 = nil
296 _ = vk1
297 t2, t3 = t2.div(t3, t1, n)
298 if len(t3) == 0 {
299 return true
300 }
301 }
302
303 // Check V(2^t s) ≡ 0 mod n for some 0 ≤ t < r-1.
304 for t := 0; t < r-1; t++ {
305 if len(vk) == 0 { // vk == 0
306 return true
307 }
308 // Optimization: V(k) = 2 is a fixed point for V(k') = V(k)² - 2,
309 // so if V(k) = 2, we can stop: we will never find a future V(k) == 0.
310 if len(vk) == 1 && vk[0] == 2 { // vk == 2
311 return false
312 }
313 // k' = 2k
314 // V(k') = V(2k) = V(k)² - 2
Dan Willemsene1b3b182018-02-27 19:36:27 -0800315 t1 = t1.sqr(vk)
Dan Willemsenbbdf6642017-01-13 22:57:23 -0800316 t1 = t1.sub(t1, natTwo)
317 t2, vk = t2.div(vk, t1, n)
318 }
319 return false
320}