blob: d92bed9bf014ca9268eb8d970a08c193bd911031 [file] [log] [blame] [edit]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"bytes"
"debug/elf"
"debug/macho"
"debug/pe"
"fmt"
"go/ast"
"go/printer"
"go/token"
"os"
"sort"
"strings"
)
var conf = printer.Config{Mode: printer.SourcePos, Tabwidth: 8}
// writeDefs creates output files to be compiled by 6g, 6c, and gcc.
// (The comments here say 6g and 6c but the code applies to the 8 and 5 tools too.)
func (p *Package) writeDefs() {
fgo2 := creat(*objDir + "_cgo_gotypes.go")
fc := creat(*objDir + "_cgo_defun.c")
fm := creat(*objDir + "_cgo_main.c")
var gccgoInit bytes.Buffer
fflg := creat(*objDir + "_cgo_flags")
for k, v := range p.CgoFlags {
fmt.Fprintf(fflg, "_CGO_%s=%s\n", k, strings.Join(v, " "))
if k == "LDFLAGS" && !*gccgo {
for _, arg := range v {
fmt.Fprintf(fc, "#pragma cgo_ldflag %q\n", arg)
}
}
}
fflg.Close()
// Write C main file for using gcc to resolve imports.
fmt.Fprintf(fm, "int main() { return 0; }\n")
if *importRuntimeCgo {
fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*, int), void *a, int c) { }\n")
fmt.Fprintf(fm, "char* _cgo_topofstack(void) { return (char*)0; }\n")
} else {
// If we're not importing runtime/cgo, we *are* runtime/cgo,
// which provides crosscall2. We just need a prototype.
fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*, int), void *a, int c);\n")
}
fmt.Fprintf(fm, "void _cgo_allocate(void *a, int c) { }\n")
fmt.Fprintf(fm, "void _cgo_panic(void *a, int c) { }\n")
// Write second Go output: definitions of _C_xxx.
// In a separate file so that the import of "unsafe" does not
// pollute the original file.
fmt.Fprintf(fgo2, "// Created by cgo - DO NOT EDIT\n\n")
fmt.Fprintf(fgo2, "package %s\n\n", p.PackageName)
fmt.Fprintf(fgo2, "import \"unsafe\"\n\n")
if !*gccgo && *importRuntimeCgo {
fmt.Fprintf(fgo2, "import _ \"runtime/cgo\"\n\n")
}
if *importSyscall {
fmt.Fprintf(fgo2, "import \"syscall\"\n\n")
fmt.Fprintf(fgo2, "var _ syscall.Errno\n")
}
fmt.Fprintf(fgo2, "func _Cgo_ptr(ptr unsafe.Pointer) unsafe.Pointer { return ptr }\n\n")
typedefNames := make([]string, 0, len(typedef))
for name := range typedef {
typedefNames = append(typedefNames, name)
}
sort.Strings(typedefNames)
for _, name := range typedefNames {
def := typedef[name]
fmt.Fprintf(fgo2, "type %s ", name)
conf.Fprint(fgo2, fset, def.Go)
fmt.Fprintf(fgo2, "\n\n")
}
if *gccgo {
fmt.Fprintf(fgo2, "type _Ctype_void byte\n")
} else {
fmt.Fprintf(fgo2, "type _Ctype_void [0]byte\n")
}
if *gccgo {
fmt.Fprint(fc, p.cPrologGccgo())
} else {
fmt.Fprint(fc, cProlog)
fmt.Fprint(fgo2, goProlog)
}
gccgoSymbolPrefix := p.gccgoSymbolPrefix()
cVars := make(map[string]bool)
for _, key := range nameKeys(p.Name) {
n := p.Name[key]
if !n.IsVar() {
continue
}
if !cVars[n.C] {
fmt.Fprintf(fm, "extern char %s[];\n", n.C)
fmt.Fprintf(fm, "void *_cgohack_%s = %s;\n\n", n.C, n.C)
if !*gccgo {
fmt.Fprintf(fc, "#pragma cgo_import_static %s\n", n.C)
}
fmt.Fprintf(fc, "extern byte *%s;\n", n.C)
cVars[n.C] = true
}
var amp string
var node ast.Node
if n.Kind == "var" {
amp = "&"
node = &ast.StarExpr{X: n.Type.Go}
} else if n.Kind == "fpvar" {
node = n.Type.Go
if *gccgo {
amp = "&"
}
} else {
panic(fmt.Errorf("invalid var kind %q", n.Kind))
}
if *gccgo {
fmt.Fprintf(fc, `extern void *%s __asm__("%s.%s");`, n.Mangle, gccgoSymbolPrefix, n.Mangle)
fmt.Fprintf(&gccgoInit, "\t%s = %s%s;\n", n.Mangle, amp, n.C)
} else {
fmt.Fprintf(fc, "#pragma dataflag NOPTR /* C pointer, not heap pointer */ \n")
fmt.Fprintf(fc, "void *·%s = %s%s;\n", n.Mangle, amp, n.C)
}
fmt.Fprintf(fc, "\n")
fmt.Fprintf(fgo2, "var %s ", n.Mangle)
conf.Fprint(fgo2, fset, node)
fmt.Fprintf(fgo2, "\n")
}
fmt.Fprintf(fc, "\n")
for _, key := range nameKeys(p.Name) {
n := p.Name[key]
if n.Const != "" {
fmt.Fprintf(fgo2, "const _Cconst_%s = %s\n", n.Go, n.Const)
}
}
fmt.Fprintf(fgo2, "\n")
for _, key := range nameKeys(p.Name) {
n := p.Name[key]
if n.FuncType != nil {
p.writeDefsFunc(fc, fgo2, n)
}
}
if *gccgo {
p.writeGccgoExports(fgo2, fc, fm)
} else {
p.writeExports(fgo2, fc, fm)
}
init := gccgoInit.String()
if init != "" {
fmt.Fprintln(fc, "static void init(void) __attribute__ ((constructor));")
fmt.Fprintln(fc, "static void init(void) {")
fmt.Fprint(fc, init)
fmt.Fprintln(fc, "}")
}
fgo2.Close()
fc.Close()
}
func dynimport(obj string) {
stdout := os.Stdout
if *dynout != "" {
f, err := os.Create(*dynout)
if err != nil {
fatalf("%s", err)
}
stdout = f
}
if f, err := elf.Open(obj); err == nil {
if *dynlinker {
// Emit the cgo_dynamic_linker line.
if sec := f.Section(".interp"); sec != nil {
if data, err := sec.Data(); err == nil && len(data) > 1 {
// skip trailing \0 in data
fmt.Fprintf(stdout, "#pragma cgo_dynamic_linker %q\n", string(data[:len(data)-1]))
}
}
}
sym, err := f.ImportedSymbols()
if err != nil {
fatalf("cannot load imported symbols from ELF file %s: %v", obj, err)
}
for _, s := range sym {
targ := s.Name
if s.Version != "" {
targ += "#" + s.Version
}
fmt.Fprintf(stdout, "#pragma cgo_import_dynamic %s %s %q\n", s.Name, targ, s.Library)
}
lib, err := f.ImportedLibraries()
if err != nil {
fatalf("cannot load imported libraries from ELF file %s: %v", obj, err)
}
for _, l := range lib {
fmt.Fprintf(stdout, "#pragma cgo_import_dynamic _ _ %q\n", l)
}
return
}
if f, err := macho.Open(obj); err == nil {
sym, err := f.ImportedSymbols()
if err != nil {
fatalf("cannot load imported symbols from Mach-O file %s: %v", obj, err)
}
for _, s := range sym {
if len(s) > 0 && s[0] == '_' {
s = s[1:]
}
fmt.Fprintf(stdout, "#pragma cgo_import_dynamic %s %s %q\n", s, s, "")
}
lib, err := f.ImportedLibraries()
if err != nil {
fatalf("cannot load imported libraries from Mach-O file %s: %v", obj, err)
}
for _, l := range lib {
fmt.Fprintf(stdout, "#pragma cgo_import_dynamic _ _ %q\n", l)
}
return
}
if f, err := pe.Open(obj); err == nil {
sym, err := f.ImportedSymbols()
if err != nil {
fatalf("cannot load imported symbols from PE file %s: %v", obj, err)
}
for _, s := range sym {
ss := strings.Split(s, ":")
name := strings.Split(ss[0], "@")[0]
fmt.Fprintf(stdout, "#pragma cgo_import_dynamic %s %s %q\n", name, ss[0], strings.ToLower(ss[1]))
}
return
}
fatalf("cannot parse %s as ELF, Mach-O or PE", obj)
}
// Construct a gcc struct matching the 6c argument frame.
// Assumes that in gcc, char is 1 byte, short 2 bytes, int 4 bytes, long long 8 bytes.
// These assumptions are checked by the gccProlog.
// Also assumes that 6c convention is to word-align the
// input and output parameters.
func (p *Package) structType(n *Name) (string, int64) {
var buf bytes.Buffer
fmt.Fprint(&buf, "struct {\n")
off := int64(0)
for i, t := range n.FuncType.Params {
if off%t.Align != 0 {
pad := t.Align - off%t.Align
fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad)
off += pad
}
c := t.Typedef
if c == "" {
c = t.C.String()
}
fmt.Fprintf(&buf, "\t\t%s p%d;\n", c, i)
off += t.Size
}
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad)
off += pad
}
if t := n.FuncType.Result; t != nil {
if off%t.Align != 0 {
pad := t.Align - off%t.Align
fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad)
off += pad
}
qual := ""
if c := t.C.String(); c[len(c)-1] == '*' {
qual = "const "
}
fmt.Fprintf(&buf, "\t\t%s%s r;\n", qual, t.C)
off += t.Size
}
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad)
off += pad
}
if off == 0 {
fmt.Fprintf(&buf, "\t\tchar unused;\n") // avoid empty struct
}
fmt.Fprintf(&buf, "\t}")
return buf.String(), off
}
func (p *Package) writeDefsFunc(fc, fgo2 *os.File, n *Name) {
name := n.Go
gtype := n.FuncType.Go
void := gtype.Results == nil || len(gtype.Results.List) == 0
if n.AddError {
// Add "error" to return type list.
// Type list is known to be 0 or 1 element - it's a C function.
err := &ast.Field{Type: ast.NewIdent("error")}
l := gtype.Results.List
if len(l) == 0 {
l = []*ast.Field{err}
} else {
l = []*ast.Field{l[0], err}
}
t := new(ast.FuncType)
*t = *gtype
t.Results = &ast.FieldList{List: l}
gtype = t
}
// Go func declaration.
d := &ast.FuncDecl{
Name: ast.NewIdent(n.Mangle),
Type: gtype,
}
// Builtins defined in the C prolog.
inProlog := builtinDefs[name] != ""
cname := fmt.Sprintf("_cgo%s%s", cPrefix, n.Mangle)
paramnames := []string(nil)
for i, param := range d.Type.Params.List {
paramName := fmt.Sprintf("p%d", i)
param.Names = []*ast.Ident{ast.NewIdent(paramName)}
paramnames = append(paramnames, paramName)
}
if *gccgo {
// Gccgo style hooks.
fmt.Fprint(fgo2, "\n")
conf.Fprint(fgo2, fset, d)
fmt.Fprint(fgo2, " {\n")
if !inProlog {
fmt.Fprint(fgo2, "\tdefer syscall.CgocallDone()\n")
fmt.Fprint(fgo2, "\tsyscall.Cgocall()\n")
}
if n.AddError {
fmt.Fprint(fgo2, "\tsyscall.SetErrno(0)\n")
}
fmt.Fprint(fgo2, "\t")
if !void {
fmt.Fprint(fgo2, "r := ")
}
fmt.Fprintf(fgo2, "%s(%s)\n", cname, strings.Join(paramnames, ", "))
if n.AddError {
fmt.Fprint(fgo2, "\te := syscall.GetErrno()\n")
fmt.Fprint(fgo2, "\tif e != 0 {\n")
fmt.Fprint(fgo2, "\t\treturn ")
if !void {
fmt.Fprint(fgo2, "r, ")
}
fmt.Fprint(fgo2, "e\n")
fmt.Fprint(fgo2, "\t}\n")
fmt.Fprint(fgo2, "\treturn ")
if !void {
fmt.Fprint(fgo2, "r, ")
}
fmt.Fprint(fgo2, "nil\n")
} else if !void {
fmt.Fprint(fgo2, "\treturn r\n")
}
fmt.Fprint(fgo2, "}\n")
// declare the C function.
fmt.Fprintf(fgo2, "//extern %s\n", cname)
d.Name = ast.NewIdent(cname)
if n.AddError {
l := d.Type.Results.List
d.Type.Results.List = l[:len(l)-1]
}
conf.Fprint(fgo2, fset, d)
fmt.Fprint(fgo2, "\n")
return
}
if inProlog {
fmt.Fprint(fgo2, builtinDefs[name])
return
}
// C wrapper calls into gcc, passing a pointer to the argument frame.
fmt.Fprintf(fc, "#pragma cgo_import_static %s\n", cname)
fmt.Fprintf(fc, "void %s(void*);\n", cname)
fmt.Fprintf(fc, "#pragma dataflag NOPTR\n")
fmt.Fprintf(fc, "void *·%s = %s;\n", cname, cname)
nret := 0
if !void {
d.Type.Results.List[0].Names = []*ast.Ident{ast.NewIdent("r1")}
nret = 1
}
if n.AddError {
d.Type.Results.List[nret].Names = []*ast.Ident{ast.NewIdent("r2")}
}
fmt.Fprint(fgo2, "\n")
fmt.Fprintf(fgo2, "var %s unsafe.Pointer\n", cname)
conf.Fprint(fgo2, fset, d)
fmt.Fprint(fgo2, " {\n")
// NOTE: Using uintptr to hide from escape analysis.
arg := "0"
if len(paramnames) > 0 {
arg = "uintptr(unsafe.Pointer(&p0))"
} else if !void {
arg = "uintptr(unsafe.Pointer(&r1))"
}
prefix := ""
if n.AddError {
prefix = "errno := "
}
fmt.Fprintf(fgo2, "\t%s_cgo_runtime_cgocall_errno(%s, %s)\n", prefix, cname, arg)
if n.AddError {
fmt.Fprintf(fgo2, "\tif errno != 0 { r2 = syscall.Errno(errno) }\n")
}
fmt.Fprintf(fgo2, "\treturn\n")
fmt.Fprintf(fgo2, "}\n")
}
// writeOutput creates stubs for a specific source file to be compiled by 6g
// (The comments here say 6g and 6c but the code applies to the 8 and 5 tools too.)
func (p *Package) writeOutput(f *File, srcfile string) {
base := srcfile
if strings.HasSuffix(base, ".go") {
base = base[0 : len(base)-3]
}
base = strings.Map(slashToUnderscore, base)
fgo1 := creat(*objDir + base + ".cgo1.go")
fgcc := creat(*objDir + base + ".cgo2.c")
p.GoFiles = append(p.GoFiles, base+".cgo1.go")
p.GccFiles = append(p.GccFiles, base+".cgo2.c")
// Write Go output: Go input with rewrites of C.xxx to _C_xxx.
fmt.Fprintf(fgo1, "// Created by cgo - DO NOT EDIT\n\n")
conf.Fprint(fgo1, fset, f.AST)
// While we process the vars and funcs, also write 6c and gcc output.
// Gcc output starts with the preamble.
fmt.Fprintf(fgcc, "%s\n", f.Preamble)
fmt.Fprintf(fgcc, "%s\n", gccProlog)
for _, key := range nameKeys(f.Name) {
n := f.Name[key]
if n.FuncType != nil {
p.writeOutputFunc(fgcc, n)
}
}
fgo1.Close()
fgcc.Close()
}
// fixGo converts the internal Name.Go field into the name we should show
// to users in error messages. There's only one for now: on input we rewrite
// C.malloc into C._CMalloc, so change it back here.
func fixGo(name string) string {
if name == "_CMalloc" {
return "malloc"
}
return name
}
var isBuiltin = map[string]bool{
"_Cfunc_CString": true,
"_Cfunc_GoString": true,
"_Cfunc_GoStringN": true,
"_Cfunc_GoBytes": true,
"_Cfunc__CMalloc": true,
}
func (p *Package) writeOutputFunc(fgcc *os.File, n *Name) {
name := n.Mangle
if isBuiltin[name] || p.Written[name] {
// The builtins are already defined in the C prolog, and we don't
// want to duplicate function definitions we've already done.
return
}
p.Written[name] = true
if *gccgo {
p.writeGccgoOutputFunc(fgcc, n)
return
}
ctype, _ := p.structType(n)
// Gcc wrapper unpacks the C argument struct
// and calls the actual C function.
if n.AddError {
fmt.Fprintf(fgcc, "int\n")
} else {
fmt.Fprintf(fgcc, "void\n")
}
fmt.Fprintf(fgcc, "_cgo%s%s(void *v)\n", cPrefix, n.Mangle)
fmt.Fprintf(fgcc, "{\n")
if n.AddError {
fmt.Fprintf(fgcc, "\terrno = 0;\n")
}
// We're trying to write a gcc struct that matches 6c/8c/5c's layout.
// Use packed attribute to force no padding in this struct in case
// gcc has different packing requirements.
fmt.Fprintf(fgcc, "\t%s %v *a = v;\n", ctype, p.packedAttribute())
if n.FuncType.Result != nil {
// Save the stack top for use below.
fmt.Fprintf(fgcc, "\tchar *stktop = _cgo_topofstack();\n")
}
fmt.Fprintf(fgcc, "\t")
if t := n.FuncType.Result; t != nil {
fmt.Fprintf(fgcc, "__typeof__(a->r) r = ")
if c := t.C.String(); c[len(c)-1] == '*' {
fmt.Fprint(fgcc, "(__typeof__(a->r)) ")
}
}
fmt.Fprintf(fgcc, "%s(", n.C)
for i, t := range n.FuncType.Params {
if i > 0 {
fmt.Fprintf(fgcc, ", ")
}
// We know the type params are correct, because
// the Go equivalents had good type params.
// However, our version of the type omits the magic
// words const and volatile, which can provoke
// C compiler warnings. Silence them by casting
// all pointers to void*. (Eventually that will produce
// other warnings.)
if c := t.C.String(); c[len(c)-1] == '*' {
fmt.Fprintf(fgcc, "(void*)")
}
fmt.Fprintf(fgcc, "a->p%d", i)
}
fmt.Fprintf(fgcc, ");\n")
if n.FuncType.Result != nil {
// The cgo call may have caused a stack copy (via a callback).
// Adjust the return value pointer appropriately.
fmt.Fprintf(fgcc, "\ta = (void*)((char*)a + (_cgo_topofstack() - stktop));\n")
// Save the return value.
fmt.Fprintf(fgcc, "\ta->r = r;\n")
}
if n.AddError {
fmt.Fprintf(fgcc, "\treturn errno;\n")
}
fmt.Fprintf(fgcc, "}\n")
fmt.Fprintf(fgcc, "\n")
}
// Write out a wrapper for a function when using gccgo. This is a
// simple wrapper that just calls the real function. We only need a
// wrapper to support static functions in the prologue--without a
// wrapper, we can't refer to the function, since the reference is in
// a different file.
func (p *Package) writeGccgoOutputFunc(fgcc *os.File, n *Name) {
if t := n.FuncType.Result; t != nil {
fmt.Fprintf(fgcc, "%s\n", t.C.String())
} else {
fmt.Fprintf(fgcc, "void\n")
}
fmt.Fprintf(fgcc, "_cgo%s%s(", cPrefix, n.Mangle)
for i, t := range n.FuncType.Params {
if i > 0 {
fmt.Fprintf(fgcc, ", ")
}
c := t.Typedef
if c == "" {
c = t.C.String()
}
fmt.Fprintf(fgcc, "%s p%d", c, i)
}
fmt.Fprintf(fgcc, ")\n")
fmt.Fprintf(fgcc, "{\n")
fmt.Fprintf(fgcc, "\t")
if t := n.FuncType.Result; t != nil {
fmt.Fprintf(fgcc, "return ")
// Cast to void* to avoid warnings due to omitted qualifiers.
if c := t.C.String(); c[len(c)-1] == '*' {
fmt.Fprintf(fgcc, "(void*)")
}
}
fmt.Fprintf(fgcc, "%s(", n.C)
for i, t := range n.FuncType.Params {
if i > 0 {
fmt.Fprintf(fgcc, ", ")
}
// Cast to void* to avoid warnings due to omitted qualifiers.
if c := t.C.String(); c[len(c)-1] == '*' {
fmt.Fprintf(fgcc, "(void*)")
}
fmt.Fprintf(fgcc, "p%d", i)
}
fmt.Fprintf(fgcc, ");\n")
fmt.Fprintf(fgcc, "}\n")
fmt.Fprintf(fgcc, "\n")
}
// packedAttribute returns host compiler struct attribute that will be
// used to match 6c/8c/5c's struct layout. For example, on 386 Windows,
// gcc wants to 8-align int64s, but 8c does not.
// Use __gcc_struct__ to work around http://gcc.gnu.org/PR52991 on x86,
// and http://golang.org/issue/5603.
func (p *Package) packedAttribute() string {
s := "__attribute__((__packed__"
if !strings.Contains(p.gccBaseCmd()[0], "clang") && (goarch == "amd64" || goarch == "386") {
s += ", __gcc_struct__"
}
return s + "))"
}
// Write out the various stubs we need to support functions exported
// from Go so that they are callable from C.
func (p *Package) writeExports(fgo2, fc, fm *os.File) {
fgcc := creat(*objDir + "_cgo_export.c")
fgcch := creat(*objDir + "_cgo_export.h")
fmt.Fprintf(fgcch, "/* Created by cgo - DO NOT EDIT. */\n")
fmt.Fprintf(fgcch, "%s\n", p.Preamble)
fmt.Fprintf(fgcch, "%s\n", p.gccExportHeaderProlog())
fmt.Fprintf(fgcc, "/* Created by cgo - DO NOT EDIT. */\n")
fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n")
fmt.Fprintf(fgcc, "\nextern void crosscall2(void (*fn)(void *, int), void *, int);\n\n")
for _, exp := range p.ExpFunc {
fn := exp.Func
// Construct a gcc struct matching the 6c argument and
// result frame. The gcc struct will be compiled with
// __attribute__((packed)) so all padding must be accounted
// for explicitly.
ctype := "struct {\n"
off := int64(0)
npad := 0
if fn.Recv != nil {
t := p.cgoType(fn.Recv.List[0].Type)
ctype += fmt.Sprintf("\t\t%s recv;\n", t.C)
off += t.Size
}
fntype := fn.Type
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
t := p.cgoType(atype)
if off%t.Align != 0 {
pad := t.Align - off%t.Align
ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
ctype += fmt.Sprintf("\t\t%s p%d;\n", t.C, i)
off += t.Size
})
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
t := p.cgoType(atype)
if off%t.Align != 0 {
pad := t.Align - off%t.Align
ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
ctype += fmt.Sprintf("\t\t%s r%d;\n", t.C, i)
off += t.Size
})
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
if ctype == "struct {\n" {
ctype += "\t\tchar unused;\n" // avoid empty struct
}
ctype += "\t}"
// Get the return type of the wrapper function
// compiled by gcc.
gccResult := ""
if fntype.Results == nil || len(fntype.Results.List) == 0 {
gccResult = "void"
} else if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 {
gccResult = p.cgoType(fntype.Results.List[0].Type).C.String()
} else {
fmt.Fprintf(fgcch, "\n/* Return type for %s */\n", exp.ExpName)
fmt.Fprintf(fgcch, "struct %s_return {\n", exp.ExpName)
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
fmt.Fprintf(fgcch, "\t%s r%d;\n", p.cgoType(atype).C, i)
})
fmt.Fprintf(fgcch, "};\n")
gccResult = "struct " + exp.ExpName + "_return"
}
// Build the wrapper function compiled by gcc.
s := fmt.Sprintf("%s %s(", gccResult, exp.ExpName)
if fn.Recv != nil {
s += p.cgoType(fn.Recv.List[0].Type).C.String()
s += " recv"
}
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
if i > 0 || fn.Recv != nil {
s += ", "
}
s += fmt.Sprintf("%s p%d", p.cgoType(atype).C, i)
})
s += ")"
fmt.Fprintf(fgcch, "\nextern %s;\n", s)
fmt.Fprintf(fgcc, "extern void _cgoexp%s_%s(void *, int);\n", cPrefix, exp.ExpName)
fmt.Fprintf(fgcc, "\n%s\n", s)
fmt.Fprintf(fgcc, "{\n")
fmt.Fprintf(fgcc, "\t%s %v a;\n", ctype, p.packedAttribute())
if gccResult != "void" && (len(fntype.Results.List) > 1 || len(fntype.Results.List[0].Names) > 1) {
fmt.Fprintf(fgcc, "\t%s r;\n", gccResult)
}
if fn.Recv != nil {
fmt.Fprintf(fgcc, "\ta.recv = recv;\n")
}
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
fmt.Fprintf(fgcc, "\ta.p%d = p%d;\n", i, i)
})
fmt.Fprintf(fgcc, "\tcrosscall2(_cgoexp%s_%s, &a, %d);\n", cPrefix, exp.ExpName, off)
if gccResult != "void" {
if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 {
fmt.Fprintf(fgcc, "\treturn a.r0;\n")
} else {
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
fmt.Fprintf(fgcc, "\tr.r%d = a.r%d;\n", i, i)
})
fmt.Fprintf(fgcc, "\treturn r;\n")
}
}
fmt.Fprintf(fgcc, "}\n")
// Build the wrapper function compiled by 6c/8c
goname := exp.Func.Name.Name
if fn.Recv != nil {
goname = "_cgoexpwrap" + cPrefix + "_" + fn.Recv.List[0].Names[0].Name + "_" + goname
}
fmt.Fprintf(fc, "#pragma cgo_export_dynamic %s\n", goname)
fmt.Fprintf(fc, "extern void ·%s();\n\n", goname)
fmt.Fprintf(fc, "#pragma cgo_export_static _cgoexp%s_%s\n", cPrefix, exp.ExpName)
fmt.Fprintf(fc, "#pragma textflag 7\n") // no split stack, so no use of m or g
fmt.Fprintf(fc, "void\n")
fmt.Fprintf(fc, "_cgoexp%s_%s(void *a, int32 n)\n", cPrefix, exp.ExpName)
fmt.Fprintf(fc, "{\n")
fmt.Fprintf(fc, "\truntime·cgocallback(·%s, a, n);\n", goname)
fmt.Fprintf(fc, "}\n")
fmt.Fprintf(fm, "int _cgoexp%s_%s;\n", cPrefix, exp.ExpName)
// Calling a function with a receiver from C requires
// a Go wrapper function.
if fn.Recv != nil {
fmt.Fprintf(fgo2, "func %s(recv ", goname)
conf.Fprint(fgo2, fset, fn.Recv.List[0].Type)
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
fmt.Fprintf(fgo2, ", p%d ", i)
conf.Fprint(fgo2, fset, atype)
})
fmt.Fprintf(fgo2, ")")
if gccResult != "void" {
fmt.Fprint(fgo2, " (")
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
if i > 0 {
fmt.Fprint(fgo2, ", ")
}
conf.Fprint(fgo2, fset, atype)
})
fmt.Fprint(fgo2, ")")
}
fmt.Fprint(fgo2, " {\n")
fmt.Fprint(fgo2, "\t")
if gccResult != "void" {
fmt.Fprint(fgo2, "return ")
}
fmt.Fprintf(fgo2, "recv.%s(", exp.Func.Name)
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
if i > 0 {
fmt.Fprint(fgo2, ", ")
}
fmt.Fprintf(fgo2, "p%d", i)
})
fmt.Fprint(fgo2, ")\n")
fmt.Fprint(fgo2, "}\n")
}
}
}
// Write out the C header allowing C code to call exported gccgo functions.
func (p *Package) writeGccgoExports(fgo2, fc, fm *os.File) {
fgcc := creat(*objDir + "_cgo_export.c")
fgcch := creat(*objDir + "_cgo_export.h")
gccgoSymbolPrefix := p.gccgoSymbolPrefix()
fmt.Fprintf(fgcch, "/* Created by cgo - DO NOT EDIT. */\n")
fmt.Fprintf(fgcch, "%s\n", p.Preamble)
fmt.Fprintf(fgcch, "%s\n", p.gccExportHeaderProlog())
fmt.Fprintf(fgcc, "/* Created by cgo - DO NOT EDIT. */\n")
fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n")
fmt.Fprintf(fm, "#include \"_cgo_export.h\"\n")
for _, exp := range p.ExpFunc {
fn := exp.Func
fntype := fn.Type
cdeclBuf := new(bytes.Buffer)
resultCount := 0
forFieldList(fntype.Results,
func(i int, atype ast.Expr) { resultCount++ })
switch resultCount {
case 0:
fmt.Fprintf(cdeclBuf, "void")
case 1:
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
t := p.cgoType(atype)
fmt.Fprintf(cdeclBuf, "%s", t.C)
})
default:
// Declare a result struct.
fmt.Fprintf(fgcch, "struct %s_result {\n", exp.ExpName)
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
t := p.cgoType(atype)
fmt.Fprintf(fgcch, "\t%s r%d;\n", t.C, i)
})
fmt.Fprintf(fgcch, "};\n")
fmt.Fprintf(cdeclBuf, "struct %s_result", exp.ExpName)
}
cRet := cdeclBuf.String()
cdeclBuf = new(bytes.Buffer)
fmt.Fprintf(cdeclBuf, "(")
if fn.Recv != nil {
fmt.Fprintf(cdeclBuf, "%s recv", p.cgoType(fn.Recv.List[0].Type).C.String())
}
// Function parameters.
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
if i > 0 || fn.Recv != nil {
fmt.Fprintf(cdeclBuf, ", ")
}
t := p.cgoType(atype)
fmt.Fprintf(cdeclBuf, "%s p%d", t.C, i)
})
fmt.Fprintf(cdeclBuf, ")")
cParams := cdeclBuf.String()
// We need to use a name that will be exported by the
// Go code; otherwise gccgo will make it static and we
// will not be able to link against it from the C
// code.
goName := "Cgoexp_" + exp.ExpName
fmt.Fprintf(fgcch, `extern %s %s %s __asm__("%s.%s");`, cRet, goName, cParams, gccgoSymbolPrefix, goName)
fmt.Fprint(fgcch, "\n")
// Use a #define so that the C code that includes
// cgo_export.h will be able to refer to the Go
// function using the expected name.
fmt.Fprintf(fgcch, "#define %s %s\n", exp.ExpName, goName)
// Use a #undef in _cgo_export.c so that we ignore the
// #define from cgo_export.h, since here we are
// defining the real function.
fmt.Fprintf(fgcc, "#undef %s\n", exp.ExpName)
fmt.Fprint(fgcc, "\n")
fmt.Fprintf(fgcc, "%s %s %s {\n", cRet, exp.ExpName, cParams)
fmt.Fprint(fgcc, "\t")
if resultCount > 0 {
fmt.Fprint(fgcc, "return ")
}
fmt.Fprintf(fgcc, "%s(", goName)
if fn.Recv != nil {
fmt.Fprint(fgcc, "recv")
}
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
if i > 0 || fn.Recv != nil {
fmt.Fprintf(fgcc, ", ")
}
fmt.Fprintf(fgcc, "p%d", i)
})
fmt.Fprint(fgcc, ");\n")
fmt.Fprint(fgcc, "}\n")
// Dummy declaration for _cgo_main.c
fmt.Fprintf(fm, "%s %s %s {}\n", cRet, goName, cParams)
// For gccgo we use a wrapper function in Go, in order
// to call CgocallBack and CgocallBackDone.
// This code uses printer.Fprint, not conf.Fprint,
// because we don't want //line comments in the middle
// of the function types.
fmt.Fprint(fgo2, "\n")
fmt.Fprintf(fgo2, "func %s(", goName)
if fn.Recv != nil {
fmt.Fprint(fgo2, "recv ")
printer.Fprint(fgo2, fset, fn.Recv.List[0].Type)
}
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
if i > 0 || fn.Recv != nil {
fmt.Fprintf(fgo2, ", ")
}
fmt.Fprintf(fgo2, "p%d ", i)
printer.Fprint(fgo2, fset, atype)
})
fmt.Fprintf(fgo2, ")")
if resultCount > 0 {
fmt.Fprintf(fgo2, " (")
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
if i > 0 {
fmt.Fprint(fgo2, ", ")
}
printer.Fprint(fgo2, fset, atype)
})
fmt.Fprint(fgo2, ")")
}
fmt.Fprint(fgo2, " {\n")
fmt.Fprint(fgo2, "\tsyscall.CgocallBack()\n")
fmt.Fprint(fgo2, "\tdefer syscall.CgocallBackDone()\n")
fmt.Fprint(fgo2, "\t")
if resultCount > 0 {
fmt.Fprint(fgo2, "return ")
}
if fn.Recv != nil {
fmt.Fprint(fgo2, "recv.")
}
fmt.Fprintf(fgo2, "%s(", exp.Func.Name)
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
if i > 0 {
fmt.Fprint(fgo2, ", ")
}
fmt.Fprintf(fgo2, "p%d", i)
})
fmt.Fprint(fgo2, ")\n")
fmt.Fprint(fgo2, "}\n")
}
}
// Return the package prefix when using gccgo.
func (p *Package) gccgoSymbolPrefix() string {
if !*gccgo {
return ""
}
clean := func(r rune) rune {
switch {
case 'A' <= r && r <= 'Z', 'a' <= r && r <= 'z',
'0' <= r && r <= '9':
return r
}
return '_'
}
if *gccgopkgpath != "" {
return strings.Map(clean, *gccgopkgpath)
}
if *gccgoprefix == "" && p.PackageName == "main" {
return "main"
}
prefix := strings.Map(clean, *gccgoprefix)
if prefix == "" {
prefix = "go"
}
return prefix + "." + p.PackageName
}
// Call a function for each entry in an ast.FieldList, passing the
// index into the list and the type.
func forFieldList(fl *ast.FieldList, fn func(int, ast.Expr)) {
if fl == nil {
return
}
i := 0
for _, r := range fl.List {
if r.Names == nil {
fn(i, r.Type)
i++
} else {
for range r.Names {
fn(i, r.Type)
i++
}
}
}
}
func c(repr string, args ...interface{}) *TypeRepr {
return &TypeRepr{repr, args}
}
// Map predeclared Go types to Type.
var goTypes = map[string]*Type{
"bool": {Size: 1, Align: 1, C: c("GoUint8")},
"byte": {Size: 1, Align: 1, C: c("GoUint8")},
"int": {Size: 0, Align: 0, C: c("GoInt")},
"uint": {Size: 0, Align: 0, C: c("GoUint")},
"rune": {Size: 4, Align: 4, C: c("GoInt32")},
"int8": {Size: 1, Align: 1, C: c("GoInt8")},
"uint8": {Size: 1, Align: 1, C: c("GoUint8")},
"int16": {Size: 2, Align: 2, C: c("GoInt16")},
"uint16": {Size: 2, Align: 2, C: c("GoUint16")},
"int32": {Size: 4, Align: 4, C: c("GoInt32")},
"uint32": {Size: 4, Align: 4, C: c("GoUint32")},
"int64": {Size: 8, Align: 8, C: c("GoInt64")},
"uint64": {Size: 8, Align: 8, C: c("GoUint64")},
"float32": {Size: 4, Align: 4, C: c("GoFloat32")},
"float64": {Size: 8, Align: 8, C: c("GoFloat64")},
"complex64": {Size: 8, Align: 8, C: c("GoComplex64")},
"complex128": {Size: 16, Align: 16, C: c("GoComplex128")},
}
// Map an ast type to a Type.
func (p *Package) cgoType(e ast.Expr) *Type {
switch t := e.(type) {
case *ast.StarExpr:
x := p.cgoType(t.X)
return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("%s*", x.C)}
case *ast.ArrayType:
if t.Len == nil {
// Slice: pointer, len, cap.
return &Type{Size: p.PtrSize * 3, Align: p.PtrSize, C: c("GoSlice")}
}
case *ast.StructType:
// TODO
case *ast.FuncType:
return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*")}
case *ast.InterfaceType:
return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoInterface")}
case *ast.MapType:
return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoMap")}
case *ast.ChanType:
return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoChan")}
case *ast.Ident:
// Look up the type in the top level declarations.
// TODO: Handle types defined within a function.
for _, d := range p.Decl {
gd, ok := d.(*ast.GenDecl)
if !ok || gd.Tok != token.TYPE {
continue
}
for _, spec := range gd.Specs {
ts, ok := spec.(*ast.TypeSpec)
if !ok {
continue
}
if ts.Name.Name == t.Name {
return p.cgoType(ts.Type)
}
}
}
if def := typedef[t.Name]; def != nil {
return def
}
if t.Name == "uintptr" {
return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoUintptr")}
}
if t.Name == "string" {
// The string data is 1 pointer + 1 (pointer-sized) int.
return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoString")}
}
if t.Name == "error" {
return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoInterface")}
}
if r, ok := goTypes[t.Name]; ok {
if r.Size == 0 { // int or uint
rr := new(Type)
*rr = *r
rr.Size = p.IntSize
rr.Align = p.IntSize
r = rr
}
if r.Align > p.PtrSize {
r.Align = p.PtrSize
}
return r
}
error_(e.Pos(), "unrecognized Go type %s", t.Name)
return &Type{Size: 4, Align: 4, C: c("int")}
case *ast.SelectorExpr:
id, ok := t.X.(*ast.Ident)
if ok && id.Name == "unsafe" && t.Sel.Name == "Pointer" {
return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*")}
}
}
error_(e.Pos(), "Go type not supported in export: %s", gofmt(e))
return &Type{Size: 4, Align: 4, C: c("int")}
}
const gccProlog = `
// Usual nonsense: if x and y are not equal, the type will be invalid
// (have a negative array count) and an inscrutable error will come
// out of the compiler and hopefully mention "name".
#define __cgo_compile_assert_eq(x, y, name) typedef char name[(x-y)*(x-y)*-2+1];
// Check at compile time that the sizes we use match our expectations.
#define __cgo_size_assert(t, n) __cgo_compile_assert_eq(sizeof(t), n, _cgo_sizeof_##t##_is_not_##n)
__cgo_size_assert(char, 1)
__cgo_size_assert(short, 2)
__cgo_size_assert(int, 4)
typedef long long __cgo_long_long;
__cgo_size_assert(__cgo_long_long, 8)
__cgo_size_assert(float, 4)
__cgo_size_assert(double, 8)
extern char* _cgo_topofstack(void);
#include <errno.h>
#include <string.h>
`
const builtinProlog = `
#include <stddef.h> /* for ptrdiff_t and size_t below */
/* Define intgo when compiling with GCC. */
typedef ptrdiff_t intgo;
typedef struct { char *p; intgo n; } _GoString_;
typedef struct { char *p; intgo n; intgo c; } _GoBytes_;
_GoString_ GoString(char *p);
_GoString_ GoStringN(char *p, int l);
_GoBytes_ GoBytes(void *p, int n);
char *CString(_GoString_);
void *_CMalloc(size_t);
`
const cProlog = `
#include "runtime.h"
#include "cgocall.h"
#include "textflag.h"
#pragma dataflag NOPTR
static void *cgocall_errno = runtime·cgocall_errno;
#pragma dataflag NOPTR
void *·_cgo_runtime_cgocall_errno = &cgocall_errno;
#pragma dataflag NOPTR
static void *runtime_gostring = runtime·gostring;
#pragma dataflag NOPTR
void *·_cgo_runtime_gostring = &runtime_gostring;
#pragma dataflag NOPTR
static void *runtime_gostringn = runtime·gostringn;
#pragma dataflag NOPTR
void *·_cgo_runtime_gostringn = &runtime_gostringn;
#pragma dataflag NOPTR
static void *runtime_gobytes = runtime·gobytes;
#pragma dataflag NOPTR
void *·_cgo_runtime_gobytes = &runtime_gobytes;
#pragma dataflag NOPTR
static void *runtime_cmalloc = runtime·cmalloc;
#pragma dataflag NOPTR
void *·_cgo_runtime_cmalloc = &runtime_cmalloc;
void ·_Cerrno(void*, int32);
`
const goProlog = `
var _cgo_runtime_cgocall_errno func(unsafe.Pointer, uintptr) int32
var _cgo_runtime_cmalloc func(uintptr) unsafe.Pointer
`
const goStringDef = `
var _cgo_runtime_gostring func(*_Ctype_char) string
func _Cfunc_GoString(p *_Ctype_char) string {
return _cgo_runtime_gostring(p)
}
`
const goStringNDef = `
var _cgo_runtime_gostringn func(*_Ctype_char, int) string
func _Cfunc_GoStringN(p *_Ctype_char, l _Ctype_int) string {
return _cgo_runtime_gostringn(p, int(l))
}
`
const goBytesDef = `
var _cgo_runtime_gobytes func(unsafe.Pointer, int) []byte
func _Cfunc_GoBytes(p unsafe.Pointer, l _Ctype_int) []byte {
return _cgo_runtime_gobytes(p, int(l))
}
`
const cStringDef = `
func _Cfunc_CString(s string) *_Ctype_char {
p := _cgo_runtime_cmalloc(uintptr(len(s)+1))
pp := (*[1<<30]byte)(p)
copy(pp[:], s)
pp[len(s)] = 0
return (*_Ctype_char)(p)
}
`
const cMallocDef = `
func _Cfunc__CMalloc(n _Ctype_size_t) unsafe.Pointer {
return _cgo_runtime_cmalloc(uintptr(n))
}
`
var builtinDefs = map[string]string{
"GoString": goStringDef,
"GoStringN": goStringNDef,
"GoBytes": goBytesDef,
"CString": cStringDef,
"_CMalloc": cMallocDef,
}
func (p *Package) cPrologGccgo() string {
return strings.Replace(cPrologGccgo, "PREFIX", cPrefix, -1)
}
const cPrologGccgo = `
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
typedef unsigned char byte;
typedef intptr_t intgo;
struct __go_string {
const unsigned char *__data;
intgo __length;
};
typedef struct __go_open_array {
void* __values;
intgo __count;
intgo __capacity;
} Slice;
struct __go_string __go_byte_array_to_string(const void* p, intgo len);
struct __go_open_array __go_string_to_byte_array (struct __go_string str);
const char *_cgoPREFIX_Cfunc_CString(struct __go_string s) {
char *p = malloc(s.__length+1);
memmove(p, s.__data, s.__length);
p[s.__length] = 0;
return p;
}
struct __go_string _cgoPREFIX_Cfunc_GoString(char *p) {
intgo len = (p != NULL) ? strlen(p) : 0;
return __go_byte_array_to_string(p, len);
}
struct __go_string _cgoPREFIX_Cfunc_GoStringN(char *p, int32_t n) {
return __go_byte_array_to_string(p, n);
}
Slice _cgoPREFIX_Cfunc_GoBytes(char *p, int32_t n) {
struct __go_string s = { (const unsigned char *)p, n };
return __go_string_to_byte_array(s);
}
extern void runtime_throw(const char *);
void *_cgoPREFIX_Cfunc__CMalloc(size_t n) {
void *p = malloc(n);
if(p == NULL && n == 0)
p = malloc(1);
if(p == NULL)
runtime_throw("runtime: C malloc failed");
return p;
}
`
func (p *Package) gccExportHeaderProlog() string {
return strings.Replace(gccExportHeaderProlog, "GOINTBITS", fmt.Sprint(8*p.IntSize), -1)
}
const gccExportHeaderProlog = `
typedef signed char GoInt8;
typedef unsigned char GoUint8;
typedef short GoInt16;
typedef unsigned short GoUint16;
typedef int GoInt32;
typedef unsigned int GoUint32;
typedef long long GoInt64;
typedef unsigned long long GoUint64;
typedef GoIntGOINTBITS GoInt;
typedef GoUintGOINTBITS GoUint;
typedef __SIZE_TYPE__ GoUintptr;
typedef float GoFloat32;
typedef double GoFloat64;
typedef __complex float GoComplex64;
typedef __complex double GoComplex128;
typedef struct { char *p; GoInt n; } GoString;
typedef void *GoMap;
typedef void *GoChan;
typedef struct { void *t; void *v; } GoInterface;
typedef struct { void *data; GoInt len; GoInt cap; } GoSlice;
`