blob: 7ad0e8f23d407bc861eba1c60141723e22ff14f7 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include "chre/core/sensor_request.h"
#include "chre/platform/assert.h"
#include "chre/platform/fatal_error.h"
namespace chre {
namespace {
Nanoseconds getBatchInterval(const SensorRequest& request) {
// With capping in SensorRequest constructor, interval + latency < UINT64_MAX.
// When the return value is default, request latency (instead of batch
// interval) will be used to compute the merged latency.
if (request.getInterval() == Nanoseconds(CHRE_SENSOR_INTERVAL_DEFAULT)
|| request.getLatency() == Nanoseconds(CHRE_SENSOR_LATENCY_DEFAULT)) {
return Nanoseconds(CHRE_SENSOR_BATCH_INTERVAL_DEFAULT);
} else {
return request.getInterval() + request.getLatency();
}
}
} // namespace
const char *getSensorTypeName(SensorType sensorType) {
switch (sensorType) {
case SensorType::Unknown:
return "Unknown";
case SensorType::Accelerometer:
return "Accelerometer";
case SensorType::InstantMotion:
return "Instant Motion";
case SensorType::StationaryDetect:
return "Stationary Detect";
case SensorType::Gyroscope:
return "Gyroscope";
case SensorType::GeomagneticField:
return "Geomagnetic Field";
case SensorType::Pressure:
return "Pressure";
case SensorType::Light:
return "Light";
case SensorType::Proximity:
return "Proximity";
case SensorType::AccelerometerTemperature:
return "Accelerometer Temp";
case SensorType::GyroscopeTemperature:
return "Gyroscope Temp";
case SensorType::UncalibratedAccelerometer:
return "Uncal Accelerometer";
case SensorType::UncalibratedGyroscope:
return "Uncal Gyroscope";
case SensorType::UncalibratedGeomagneticField:
return "Uncal Geomagnetic Field";
default:
CHRE_ASSERT(false);
return "";
}
}
uint16_t getSampleEventTypeForSensorType(SensorType sensorType) {
if (sensorType == SensorType::Unknown) {
FATAL_ERROR("Tried to obtain the sensor sample event index for an unknown "
"sensor type");
}
// The enum values of SensorType may not map to the defined values in the
// CHRE API.
uint8_t sensorTypeValue = getUnsignedIntFromSensorType(sensorType);
return CHRE_EVENT_SENSOR_DATA_EVENT_BASE + sensorTypeValue;
}
SensorType getSensorTypeForSampleEventType(uint16_t eventType) {
return getSensorTypeFromUnsignedInt(
static_cast<uint8_t>(eventType - CHRE_EVENT_SENSOR_DATA_EVENT_BASE));
}
SensorType getSensorTypeFromUnsignedInt(uint8_t sensorType) {
switch (sensorType) {
case CHRE_SENSOR_TYPE_ACCELEROMETER:
return SensorType::Accelerometer;
case CHRE_SENSOR_TYPE_INSTANT_MOTION_DETECT:
return SensorType::InstantMotion;
case CHRE_SENSOR_TYPE_STATIONARY_DETECT:
return SensorType::StationaryDetect;
case CHRE_SENSOR_TYPE_GYROSCOPE:
return SensorType::Gyroscope;
case CHRE_SENSOR_TYPE_GEOMAGNETIC_FIELD:
return SensorType::GeomagneticField;
case CHRE_SENSOR_TYPE_PRESSURE:
return SensorType::Pressure;
case CHRE_SENSOR_TYPE_LIGHT:
return SensorType::Light;
case CHRE_SENSOR_TYPE_PROXIMITY:
return SensorType::Proximity;
case CHRE_SENSOR_TYPE_ACCELEROMETER_TEMPERATURE:
return SensorType::AccelerometerTemperature;
case CHRE_SENSOR_TYPE_GYROSCOPE_TEMPERATURE:
return SensorType::GyroscopeTemperature;
case CHRE_SENSOR_TYPE_UNCALIBRATED_ACCELEROMETER:
return SensorType::UncalibratedAccelerometer;
case CHRE_SENSOR_TYPE_UNCALIBRATED_GYROSCOPE:
return SensorType::UncalibratedGyroscope;
case CHRE_SENSOR_TYPE_UNCALIBRATED_GEOMAGNETIC_FIELD:
return SensorType::UncalibratedGeomagneticField;
default:
return SensorType::Unknown;
}
}
uint8_t getUnsignedIntFromSensorType(SensorType sensorType) {
switch (sensorType) {
case SensorType::Accelerometer:
return CHRE_SENSOR_TYPE_ACCELEROMETER;
case SensorType::InstantMotion:
return CHRE_SENSOR_TYPE_INSTANT_MOTION_DETECT;
case SensorType::StationaryDetect:
return CHRE_SENSOR_TYPE_STATIONARY_DETECT;
case SensorType::Gyroscope:
return CHRE_SENSOR_TYPE_GYROSCOPE;
case SensorType::GeomagneticField:
return CHRE_SENSOR_TYPE_GEOMAGNETIC_FIELD;
case SensorType::Pressure:
return CHRE_SENSOR_TYPE_PRESSURE;
case SensorType::Light:
return CHRE_SENSOR_TYPE_LIGHT;
case SensorType::Proximity:
return CHRE_SENSOR_TYPE_PROXIMITY;
case SensorType::AccelerometerTemperature:
return CHRE_SENSOR_TYPE_ACCELEROMETER_TEMPERATURE;
case SensorType::GyroscopeTemperature:
return CHRE_SENSOR_TYPE_GYROSCOPE_TEMPERATURE;
case SensorType::UncalibratedAccelerometer:
return CHRE_SENSOR_TYPE_UNCALIBRATED_ACCELEROMETER;
case SensorType::UncalibratedGyroscope:
return CHRE_SENSOR_TYPE_UNCALIBRATED_GYROSCOPE;
case SensorType::UncalibratedGeomagneticField:
return CHRE_SENSOR_TYPE_UNCALIBRATED_GEOMAGNETIC_FIELD;
default:
// Update implementation to prevent undefined or SensorType::Unknown from
// being used.
CHRE_ASSERT(false);
return 0;
}
}
SensorSampleType getSensorSampleTypeFromSensorType(SensorType sensorType) {
switch (sensorType) {
case SensorType::Accelerometer:
case SensorType::Gyroscope:
case SensorType::GeomagneticField:
case SensorType::UncalibratedAccelerometer:
case SensorType::UncalibratedGyroscope:
case SensorType::UncalibratedGeomagneticField:
return SensorSampleType::ThreeAxis;
case SensorType::Pressure:
case SensorType::Light:
case SensorType::AccelerometerTemperature:
case SensorType::GyroscopeTemperature:
return SensorSampleType::Float;
case SensorType::InstantMotion:
case SensorType::StationaryDetect:
return SensorSampleType::Occurrence;
case SensorType::Proximity:
return SensorSampleType::Byte;
default:
CHRE_ASSERT(false);
return SensorSampleType::Unknown;
}
}
SensorMode getSensorModeFromEnum(enum chreSensorConfigureMode enumSensorMode) {
switch (enumSensorMode) {
case CHRE_SENSOR_CONFIGURE_MODE_DONE:
return SensorMode::Off;
case CHRE_SENSOR_CONFIGURE_MODE_CONTINUOUS:
return SensorMode::ActiveContinuous;
case CHRE_SENSOR_CONFIGURE_MODE_ONE_SHOT:
return SensorMode::ActiveOneShot;
case CHRE_SENSOR_CONFIGURE_MODE_PASSIVE_CONTINUOUS:
return SensorMode::PassiveContinuous;
case CHRE_SENSOR_CONFIGURE_MODE_PASSIVE_ONE_SHOT:
return SensorMode::PassiveOneShot;
default:
// Default to off since it is the least harmful and has no power impact.
return SensorMode::Off;
}
}
bool sensorTypeIsOneShot(SensorType sensorType) {
return (sensorType == SensorType::InstantMotion ||
sensorType == SensorType::StationaryDetect);
}
bool sensorTypeIsOnChange(SensorType sensorType) {
return (sensorType == SensorType::Light ||
sensorType == SensorType::Proximity);
}
SensorRequest::SensorRequest()
: SensorRequest(SensorMode::Off,
Nanoseconds(CHRE_SENSOR_INTERVAL_DEFAULT),
Nanoseconds(CHRE_SENSOR_LATENCY_DEFAULT)) {}
SensorRequest::SensorRequest(SensorMode mode, Nanoseconds interval,
Nanoseconds latency)
: SensorRequest(nullptr /* nanoapp */, mode, interval, latency) {}
SensorRequest::SensorRequest(Nanoapp *nanoapp, SensorMode mode,
Nanoseconds interval, Nanoseconds latency)
: mNanoapp(nanoapp), mInterval(interval), mLatency(latency), mMode(mode) {
// cap non-default interval/latency to ensure no overflow in CHRE internal
// operations.
if (interval != Nanoseconds(CHRE_SENSOR_INTERVAL_DEFAULT)) {
mInterval = std::min(interval, Nanoseconds(kMaxIntervalLatencyNs));
}
if (latency != Nanoseconds(CHRE_SENSOR_LATENCY_DEFAULT)) {
mLatency = std::min(latency, Nanoseconds(kMaxIntervalLatencyNs));
}
}
bool SensorRequest::isEquivalentTo(const SensorRequest& request) const {
return (mMode == request.mMode
&& mInterval == request.mInterval
&& mLatency == request.mLatency);
}
bool SensorRequest::mergeWith(const SensorRequest& request) {
bool attributesChanged = false;
if (request.mMode != SensorMode::Off) {
// Calculate minimum batch interval before mInterval is modified.
Nanoseconds batchInterval = std::min(getBatchInterval(*this),
getBatchInterval(request));
if (request.mInterval < mInterval) {
mInterval = request.mInterval;
attributesChanged = true;
}
if (batchInterval == Nanoseconds(CHRE_SENSOR_BATCH_INTERVAL_DEFAULT)) {
// If batchInterval is default, it can't be effectively calculated.
// Use request.mLatency for more aggressive latency merging in this case.
Nanoseconds latency = request.mLatency;
if (latency < mLatency) {
mLatency = latency;
attributesChanged = true;
}
} else {
Nanoseconds latency = (batchInterval - mInterval);
// Note that while batchInterval can only shrink after merging, latency
// can grow if the merged interval is lower.
// Also, it's guaranteed that latency <= kMaxIntervalLatencyNs.
if (latency != mLatency) {
mLatency = latency;
attributesChanged = true;
}
}
// Compute the highest priority mode. Active continuous is the highest
// priority and passive one-shot is the lowest.
SensorMode maximalSensorMode = SensorMode::Off;
if (mMode == SensorMode::ActiveContinuous
|| request.mMode == SensorMode::ActiveContinuous) {
maximalSensorMode = SensorMode::ActiveContinuous;
} else if (mMode == SensorMode::ActiveOneShot
|| request.mMode == SensorMode::ActiveOneShot) {
maximalSensorMode = SensorMode::ActiveOneShot;
} else if (mMode == SensorMode::PassiveContinuous
|| request.mMode == SensorMode::PassiveContinuous) {
maximalSensorMode = SensorMode::PassiveContinuous;
} else if (mMode == SensorMode::PassiveOneShot
|| request.mMode == SensorMode::PassiveOneShot) {
maximalSensorMode = SensorMode::PassiveOneShot;
} else {
CHRE_ASSERT(false);
}
if (mMode != maximalSensorMode) {
mMode = maximalSensorMode;
attributesChanged = true;
}
}
return attributesChanged;
}
} // namespace chre