| /* |
| * Copyright (C) 2016, The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <array> |
| #include <tuple> |
| #include <vector> |
| |
| #include "gtest/gtest.h" |
| |
| #include "wifilogd/message_buffer.h" |
| |
| namespace android { |
| namespace wifilogd { |
| namespace { |
| |
| constexpr size_t kBufferSizeBytes = 1024; |
| constexpr size_t kHeaderSizeBytes = MessageBuffer::GetHeaderSize(); |
| constexpr std::array<uint8_t, 1> kSmallestMessage{}; |
| constexpr std::array<uint8_t, kBufferSizeBytes - kHeaderSizeBytes> |
| kLargestMessage{}; |
| |
| class MessageBufferTest : public ::testing::Test { |
| public: |
| MessageBufferTest() : buffer_{kBufferSizeBytes} {} |
| |
| protected: |
| size_t FillBufferWithMultipleMessages() { |
| constexpr std::array<uint8_t, kHeaderSizeBytes> message{}; |
| static_assert(kBufferSizeBytes % (kHeaderSizeBytes + message.size()) == 0, |
| "messages will not fill buffer to capacity"); |
| size_t n_written; |
| for (n_written = 0; |
| n_written < kBufferSizeBytes / (kHeaderSizeBytes + message.size()); |
| ++n_written) { |
| EXPECT_TRUE(buffer_.Append(message.data(), message.size())); |
| } |
| EXPECT_EQ(0U, buffer_.GetFreeSize()); |
| return n_written; |
| } |
| |
| std::vector<uint8_t> GetNextMessageAsByteVector() { |
| const uint8_t* start; |
| size_t len; |
| std::tie(start, len) = buffer_.ConsumeNextMessage(); |
| return {start, start + len}; |
| } |
| |
| MessageBuffer buffer_; |
| }; |
| |
| } // namespace |
| |
| TEST_F(MessageBufferTest, AppendMinimalOnEmptyBufferSucceeds) { |
| EXPECT_TRUE(buffer_.Append(kSmallestMessage.data(), kSmallestMessage.size())); |
| } |
| |
| TEST_F(MessageBufferTest, AppendMaximalOnEmptyBufferSucceeds) { |
| EXPECT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| } |
| |
| TEST_F(MessageBufferTest, AppendMaximalAfterFillAndClearSucceeds) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| ASSERT_FALSE(buffer_.CanFitNow(1)); |
| |
| buffer_.Clear(); |
| EXPECT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| } |
| |
| TEST_F(MessageBufferTest, AppendUnalignedMessagesDoesNotCrash) { |
| // Odd-length messages should trigger alignment problems, if any such |
| // problems exist. We'll need more than one, though, since the first header |
| // might be aligned by default. |
| constexpr std::array<uint8_t, 1> message{}; |
| while (buffer_.CanFitNow(message.size())) { |
| ASSERT_TRUE(buffer_.Append(message.data(), message.size())); |
| } |
| } |
| |
| TEST_F(MessageBufferTest, AppendLargerThanBufferFails) { |
| constexpr std::array<uint8_t, kBufferSizeBytes + 1> oversized_message{}; |
| EXPECT_FALSE( |
| buffer_.Append(oversized_message.data(), oversized_message.size())); |
| } |
| |
| TEST_F(MessageBufferTest, AppendLargerThanFreeSpaceFails) { |
| constexpr size_t expected_free = kBufferSizeBytes - kHeaderSizeBytes; |
| ASSERT_FALSE(buffer_.CanFitNow(expected_free + 1)); |
| |
| constexpr std::array<uint8_t, expected_free + 1> oversized_message{}; |
| EXPECT_FALSE( |
| buffer_.Append(oversized_message.data(), oversized_message.size())); |
| } |
| |
| TEST_F(MessageBufferTest, AppendMultipleMessagesToFillBufferDoesNotCrash) { |
| FillBufferWithMultipleMessages(); |
| } |
| |
| TEST_F(MessageBufferTest, CanFitNowIsCorrectOnFreshBuffer) { |
| EXPECT_TRUE(buffer_.CanFitNow(kLargestMessage.size())); |
| EXPECT_FALSE(buffer_.CanFitNow(kLargestMessage.size() + 1)); |
| } |
| |
| TEST_F(MessageBufferTest, CanFitNowIsCorrectAfterSmallWrite) { |
| ASSERT_TRUE(buffer_.Append(kSmallestMessage.data(), kSmallestMessage.size())); |
| |
| constexpr size_t expected_free = |
| kBufferSizeBytes - (kSmallestMessage.size() + kHeaderSizeBytes) - |
| kHeaderSizeBytes; |
| EXPECT_TRUE(buffer_.CanFitNow(expected_free)); |
| EXPECT_FALSE(buffer_.CanFitNow(expected_free + 1)); |
| } |
| |
| TEST_F(MessageBufferTest, CanFitNowIsCorrectOnFullBuffer) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| EXPECT_FALSE(buffer_.CanFitNow(1)); |
| } |
| |
| TEST_F(MessageBufferTest, CanFitNowIsCorrectOnRewoundBuffer) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| buffer_.Rewind(); |
| EXPECT_FALSE(buffer_.CanFitNow(1)); |
| } |
| |
| TEST_F(MessageBufferTest, CanFitNowIsCorrectAfterClear) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| ASSERT_FALSE(buffer_.CanFitNow(1)); |
| |
| buffer_.Clear(); |
| EXPECT_TRUE(buffer_.CanFitNow(kLargestMessage.size())); |
| } |
| |
| TEST_F(MessageBufferTest, CanFitEverIsCorrectOnFreshBuffer) { |
| EXPECT_TRUE(buffer_.CanFitEver(kLargestMessage.size())); |
| EXPECT_FALSE(buffer_.CanFitEver(kLargestMessage.size() + 1)); |
| } |
| |
| TEST_F(MessageBufferTest, CanFitEverIsCorrectAfterSmallWrite) { |
| ASSERT_TRUE(buffer_.Append(kSmallestMessage.data(), kSmallestMessage.size())); |
| EXPECT_TRUE(buffer_.CanFitEver(kLargestMessage.size())); |
| EXPECT_FALSE(buffer_.CanFitEver(kLargestMessage.size() + 1)); |
| } |
| |
| TEST_F(MessageBufferTest, CanFitEverIsCorrectOnFullBuffer) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| EXPECT_TRUE(buffer_.CanFitEver(kLargestMessage.size())); |
| EXPECT_FALSE(buffer_.CanFitEver(kLargestMessage.size() + 1)); |
| } |
| |
| TEST_F(MessageBufferTest, CanFitEverIsCorrectAfterRewind) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| buffer_.Rewind(); |
| EXPECT_TRUE(buffer_.CanFitEver(kLargestMessage.size())); |
| EXPECT_FALSE(buffer_.CanFitEver(kLargestMessage.size() + 1)); |
| } |
| |
| TEST_F(MessageBufferTest, CanFitEverIsCorrectAfterClear) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| buffer_.Clear(); |
| EXPECT_TRUE(buffer_.CanFitEver(kLargestMessage.size())); |
| EXPECT_FALSE(buffer_.CanFitEver(kLargestMessage.size() + 1)); |
| } |
| |
| TEST_F(MessageBufferTest, ConsumeNextMessageReturnsNullOnFreshBuffer) { |
| const std::tuple<const uint8_t*, size_t> expected{nullptr, 0}; |
| EXPECT_EQ(expected, buffer_.ConsumeNextMessage()); |
| } |
| |
| TEST_F(MessageBufferTest, ConsumeNextMessageReturnsNullAfterFillAndClear) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| buffer_.Clear(); |
| |
| const std::tuple<const uint8_t*, size_t> expected{nullptr, 0}; |
| EXPECT_EQ(expected, buffer_.ConsumeNextMessage()); |
| } |
| |
| TEST_F(MessageBufferTest, ConsumeNextMessageCanReadMinimalMessage) { |
| ASSERT_TRUE(buffer_.Append(kSmallestMessage.data(), kSmallestMessage.size())); |
| |
| const auto& ptr_and_size = buffer_.ConsumeNextMessage(); |
| EXPECT_NE(nullptr, std::get<0>(ptr_and_size)); |
| EXPECT_EQ(kSmallestMessage.size(), std::get<1>(ptr_and_size)); |
| } |
| |
| TEST_F(MessageBufferTest, ConsumeNextMessageCanReadMaximalMessage) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| |
| const auto& ptr_and_size = buffer_.ConsumeNextMessage(); |
| EXPECT_NE(nullptr, std::get<0>(ptr_and_size)); |
| EXPECT_EQ(kLargestMessage.size(), std::get<1>(ptr_and_size)); |
| } |
| |
| TEST_F(MessageBufferTest, |
| ConsumeNextMessageReturnsNullAfterMinimalMessageIsConsumed) { |
| ASSERT_TRUE(buffer_.Append(kSmallestMessage.data(), kSmallestMessage.size())); |
| buffer_.ConsumeNextMessage(); |
| |
| constexpr std::tuple<const uint8_t*, size_t> expected{nullptr, 0}; |
| EXPECT_EQ(expected, buffer_.ConsumeNextMessage()); |
| } |
| |
| TEST_F(MessageBufferTest, |
| ConsumeNextMessageReturnsNullAfterMaximalMessageIsConsumed) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| buffer_.ConsumeNextMessage(); |
| |
| constexpr std::tuple<const uint8_t*, size_t> expected{nullptr, 0}; |
| EXPECT_EQ(expected, buffer_.ConsumeNextMessage()); |
| } |
| |
| TEST_F(MessageBufferTest, |
| ConsumeNextMessageCanRetreiveAllMessagesFromFullBuffer) { |
| const size_t n_written = FillBufferWithMultipleMessages(); |
| size_t n_read = 0; |
| while (std::get<0>(buffer_.ConsumeNextMessage())) { |
| ++n_read; |
| } |
| EXPECT_EQ(n_written, n_read); |
| |
| constexpr std::tuple<const uint8_t*, size_t> expected{nullptr, 0}; |
| EXPECT_EQ(expected, buffer_.ConsumeNextMessage()); |
| } |
| |
| TEST_F(MessageBufferTest, |
| ConsumeNextMessageCanRetreiveAllMessagesFromRewoundBuffer) { |
| const size_t n_written = FillBufferWithMultipleMessages(); |
| while (std::get<0>(buffer_.ConsumeNextMessage())) { |
| // Silently consume message |
| } |
| buffer_.Rewind(); |
| |
| size_t n_read = 0; |
| while (std::get<0>(buffer_.ConsumeNextMessage())) { |
| ++n_read; |
| } |
| EXPECT_EQ(n_written, n_read); |
| } |
| |
| TEST_F(MessageBufferTest, |
| ConsumeNextMessageCanRetreiveMultipleUnaliagnedMessages) { |
| // As in AppendUnalignedMessagesDoesNotCrash, odd-length messages should |
| // trigger alignment problems, if any such problems exist. |
| const std::array<uint8_t, 1> message{}; |
| size_t n_written = 0; |
| while (buffer_.CanFitNow(message.size())) { |
| ASSERT_TRUE(buffer_.Append(message.data(), message.size())); |
| ++n_written; |
| } |
| |
| size_t n_read = 0; |
| while (std::get<0>(buffer_.ConsumeNextMessage())) { |
| ++n_read; |
| } |
| EXPECT_EQ(n_written, n_read); |
| } |
| |
| TEST_F(MessageBufferTest, ConsumeNextMessageReturnsOurMessages) { |
| const std::vector<uint8_t> message1{{'h', 'e', 'l', 'l', 'o'}}; |
| const std::vector<uint8_t> message2{{'w', 'o', 'r', 'l', 'd'}}; |
| ASSERT_TRUE( |
| buffer_.Append(message1.data(), static_cast<uint16_t>(message1.size()))); |
| ASSERT_TRUE( |
| buffer_.Append(message2.data(), static_cast<uint16_t>(message2.size()))); |
| EXPECT_EQ(message1, GetNextMessageAsByteVector()); |
| EXPECT_EQ(message2, GetNextMessageAsByteVector()); |
| } |
| |
| TEST_F(MessageBufferTest, GetFreeSizeIsCorrectOnFreshBuffer) { |
| EXPECT_EQ(kBufferSizeBytes, buffer_.GetFreeSize()); |
| } |
| |
| TEST_F(MessageBufferTest, GetFreeSizeIsCorrectAfterSmallWrite) { |
| ASSERT_TRUE(buffer_.Append(kSmallestMessage.data(), kSmallestMessage.size())); |
| EXPECT_EQ(kBufferSizeBytes - kHeaderSizeBytes - kSmallestMessage.size(), |
| buffer_.GetFreeSize()); |
| } |
| |
| TEST_F(MessageBufferTest, GetFreeSizeIsCorrectOnFullBuffer) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| EXPECT_EQ(0U, buffer_.GetFreeSize()); |
| } |
| |
| TEST_F(MessageBufferTest, GetFreeSizeIsCorrectAfterRewindOfFullBuffer) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| buffer_.Rewind(); |
| EXPECT_EQ(0U, buffer_.GetFreeSize()); |
| } |
| |
| TEST_F(MessageBufferTest, GetFreeSizeIsCorrectAfterClear) { |
| ASSERT_TRUE(buffer_.Append(kLargestMessage.data(), kLargestMessage.size())); |
| buffer_.Clear(); |
| EXPECT_EQ(kBufferSizeBytes, buffer_.GetFreeSize()); |
| } |
| |
| TEST_F(MessageBufferTest, RewindDoesNotAffectWritePointer) { |
| const std::vector<uint8_t> message1{{'h', 'e', 'l', 'l', 'o'}}; |
| ASSERT_TRUE( |
| buffer_.Append(message1.data(), static_cast<uint16_t>(message1.size()))); |
| buffer_.Rewind(); |
| |
| const std::vector<uint8_t> message2{{'w', 'o', 'r', 'l', 'd'}}; |
| ASSERT_TRUE( |
| buffer_.Append(message2.data(), static_cast<uint16_t>(message2.size()))); |
| |
| EXPECT_EQ(message1, GetNextMessageAsByteVector()); |
| EXPECT_EQ(message2, GetNextMessageAsByteVector()); |
| } |
| |
| // Per |
| // github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md#death-tests, |
| // death tests should be specially named. |
| using MessageBufferDeathTest = MessageBufferTest; |
| |
| TEST_F(MessageBufferDeathTest, AppendZeroBytesCausesDeath) { |
| constexpr std::array<uint8_t, 1> message{}; |
| EXPECT_DEATH(buffer_.Append(message.data(), 0), "Check failed"); |
| } |
| |
| TEST_F(MessageBufferDeathTest, ConstructionOfUselesslySmallBufferCausesDeath) { |
| EXPECT_DEATH(MessageBuffer{kHeaderSizeBytes}, "Check failed"); |
| } |
| |
| } // namespace wifilogd |
| } // namespace android |