blob: a8fa50a9fd5e98a7592cc4682ca90599739f30bb [file] [log] [blame]
/*
* Copyright 2014 Google, Inc
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "libprocessgroup"
#include <assert.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <poll.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <chrono>
#include <cstring>
#include <map>
#include <memory>
#include <mutex>
#include <set>
#include <string>
#include <string_view>
#include <thread>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <cutils/android_filesystem_config.h>
#include <processgroup/processgroup.h>
#include <task_profiles.h>
using android::base::GetBoolProperty;
using android::base::StringPrintf;
using android::base::WriteStringToFile;
using namespace std::chrono_literals;
#define PROCESSGROUP_CGROUP_PROCS_FILE "cgroup.procs"
#define PROCESSGROUP_CGROUP_KILL_FILE "cgroup.kill"
#define PROCESSGROUP_CGROUP_EVENTS_FILE "cgroup.events"
bool CgroupsAvailable() {
static bool cgroups_available = access("/proc/cgroups", F_OK) == 0;
return cgroups_available;
}
bool CgroupGetControllerPath(const std::string& cgroup_name, std::string* path) {
auto controller = CgroupMap::GetInstance().FindController(cgroup_name);
if (!controller.HasValue()) {
return false;
}
if (path) {
*path = controller.path();
}
return true;
}
static bool CgroupKillAvailable() {
static std::once_flag f;
static bool cgroup_kill_available = false;
std::call_once(f, []() {
std::string cg_kill;
CgroupGetControllerPath(CGROUPV2_HIERARCHY_NAME, &cg_kill);
// cgroup.kill is not on the root cgroup, so check a non-root cgroup that should always
// exist
cg_kill = ConvertUidToPath(cg_kill.c_str(), AID_ROOT, true) + '/' +
PROCESSGROUP_CGROUP_KILL_FILE;
cgroup_kill_available = access(cg_kill.c_str(), F_OK) == 0;
});
return cgroup_kill_available;
}
static bool CgroupGetMemcgAppsPath(std::string* path) {
CgroupControllerWrapper controller = CgroupMap::GetInstance().FindController("memory");
if (!controller.HasValue()) {
return false;
}
if (path) {
*path = controller.path();
if (controller.version() == 1) {
*path += "/apps";
}
}
return true;
}
bool CgroupGetControllerFromPath(const std::string& path, std::string* cgroup_name) {
auto controller = CgroupMap::GetInstance().FindControllerByPath(path);
if (!controller.HasValue()) {
return false;
}
if (cgroup_name) {
*cgroup_name = controller.name();
}
return true;
}
bool CgroupGetAttributePath(const std::string& attr_name, std::string* path) {
const TaskProfiles& tp = TaskProfiles::GetInstance();
const IProfileAttribute* attr = tp.GetAttribute(attr_name);
if (attr == nullptr) {
return false;
}
if (path) {
*path = StringPrintf("%s/%s", attr->controller()->path(), attr->file_name().c_str());
}
return true;
}
bool CgroupGetAttributePathForTask(const std::string& attr_name, pid_t tid, std::string* path) {
const TaskProfiles& tp = TaskProfiles::GetInstance();
const IProfileAttribute* attr = tp.GetAttribute(attr_name);
if (attr == nullptr) {
return false;
}
if (!attr->GetPathForTask(tid, path)) {
LOG(ERROR) << "Failed to find cgroup for tid " << tid;
return false;
}
return true;
}
bool CgroupGetAttributePathForProcess(std::string_view attr_name, uid_t uid, pid_t pid,
std::string &path) {
const TaskProfiles& tp = TaskProfiles::GetInstance();
const IProfileAttribute* attr = tp.GetAttribute(attr_name);
if (attr == nullptr) {
return false;
}
if (!attr->GetPathForProcess(uid, pid, &path)) {
LOG(ERROR) << "Failed to find cgroup for uid " << uid << " pid " << pid;
return false;
}
return true;
}
bool UsePerAppMemcg() {
bool low_ram_device = GetBoolProperty("ro.config.low_ram", false);
return GetBoolProperty("ro.config.per_app_memcg", low_ram_device);
}
static bool isMemoryCgroupSupported() {
static bool memcg_supported = CgroupMap::GetInstance().FindController("memory").IsUsable();
return memcg_supported;
}
void DropTaskProfilesResourceCaching() {
TaskProfiles::GetInstance().DropResourceCaching(ProfileAction::RCT_TASK);
TaskProfiles::GetInstance().DropResourceCaching(ProfileAction::RCT_PROCESS);
}
bool SetProcessProfiles(uid_t uid, pid_t pid, const std::vector<std::string>& profiles) {
return TaskProfiles::GetInstance().SetProcessProfiles(
uid, pid, std::span<const std::string>(profiles), false);
}
bool SetProcessProfiles(uid_t uid, pid_t pid, std::initializer_list<std::string_view> profiles) {
return TaskProfiles::GetInstance().SetProcessProfiles(
uid, pid, std::span<const std::string_view>(profiles), false);
}
bool SetProcessProfiles(uid_t uid, pid_t pid, std::span<const std::string_view> profiles) {
return TaskProfiles::GetInstance().SetProcessProfiles(uid, pid, profiles, false);
}
bool SetProcessProfilesCached(uid_t uid, pid_t pid, const std::vector<std::string>& profiles) {
return TaskProfiles::GetInstance().SetProcessProfiles(
uid, pid, std::span<const std::string>(profiles), true);
}
bool SetTaskProfiles(pid_t tid, const std::vector<std::string>& profiles, bool use_fd_cache) {
return TaskProfiles::GetInstance().SetTaskProfiles(tid, std::span<const std::string>(profiles),
use_fd_cache);
}
bool SetTaskProfiles(pid_t tid, std::initializer_list<std::string_view> profiles,
bool use_fd_cache) {
return TaskProfiles::GetInstance().SetTaskProfiles(
tid, std::span<const std::string_view>(profiles), use_fd_cache);
}
bool SetTaskProfiles(pid_t tid, std::span<const std::string_view> profiles, bool use_fd_cache) {
return TaskProfiles::GetInstance().SetTaskProfiles(tid, profiles, use_fd_cache);
}
// C wrapper for SetProcessProfiles.
// No need to have this in the header file because this function is specifically for crosvm. Crosvm
// which is written in Rust has its own declaration of this foreign function and doesn't rely on the
// header. See
// https://chromium-review.googlesource.com/c/chromiumos/platform/crosvm/+/3574427/5/src/linux/android.rs#12
extern "C" bool android_set_process_profiles(uid_t uid, pid_t pid, size_t num_profiles,
const char* profiles[]) {
std::vector<std::string_view> profiles_;
profiles_.reserve(num_profiles);
for (size_t i = 0; i < num_profiles; i++) {
profiles_.emplace_back(profiles[i]);
}
return SetProcessProfiles(uid, pid, std::span<const std::string_view>(profiles_));
}
bool SetUserProfiles(uid_t uid, const std::vector<std::string>& profiles) {
return TaskProfiles::GetInstance().SetUserProfiles(uid, std::span<const std::string>(profiles),
false);
}
static int RemoveCgroup(const char* cgroup, uid_t uid, pid_t pid, bool v2_path) {
auto path = ConvertUidPidToPath(cgroup, uid, pid, v2_path);
int ret = TEMP_FAILURE_RETRY(rmdir(path.c_str()));
if (!ret && uid >= AID_ISOLATED_START && uid <= AID_ISOLATED_END) {
// Isolated UIDs are unlikely to be reused soon after removal,
// so free up the kernel resources for the UID level cgroup.
path = ConvertUidToPath(cgroup, uid, v2_path);
ret = TEMP_FAILURE_RETRY(rmdir(path.c_str()));
}
if (ret < 0 && errno == ENOENT) {
// This function is idempoetent, but still warn here.
LOG(WARNING) << "RemoveCgroup: " << path << " does not exist.";
ret = 0;
}
return ret;
}
static bool RemoveEmptyUidCgroups(const std::string& uid_path) {
std::unique_ptr<DIR, decltype(&closedir)> uid(opendir(uid_path.c_str()), closedir);
bool empty = true;
if (uid != NULL) {
dirent* dir;
while ((dir = readdir(uid.get())) != nullptr) {
if (dir->d_type != DT_DIR) {
continue;
}
if (!std::string_view(dir->d_name).starts_with("pid_")) {
continue;
}
auto path = StringPrintf("%s/%s", uid_path.c_str(), dir->d_name);
LOG(VERBOSE) << "Removing " << path;
if (rmdir(path.c_str()) == -1) {
if (errno != EBUSY) {
PLOG(WARNING) << "Failed to remove " << path;
}
empty = false;
}
}
}
return empty;
}
void removeAllEmptyProcessGroups() {
LOG(VERBOSE) << "removeAllEmptyProcessGroups()";
std::vector<std::string> cgroups;
std::string path, memcg_apps_path;
if (CgroupGetControllerPath(CGROUPV2_HIERARCHY_NAME, &path)) {
cgroups.push_back(path);
}
if (CgroupGetMemcgAppsPath(&memcg_apps_path) && memcg_apps_path != path) {
cgroups.push_back(memcg_apps_path);
}
for (std::string cgroup_root_path : cgroups) {
std::unique_ptr<DIR, decltype(&closedir)> root(opendir(cgroup_root_path.c_str()), closedir);
if (root == NULL) {
PLOG(ERROR) << __func__ << " failed to open " << cgroup_root_path;
} else {
dirent* dir;
while ((dir = readdir(root.get())) != nullptr) {
if (dir->d_type != DT_DIR) {
continue;
}
if (!std::string_view(dir->d_name).starts_with("uid_")) {
continue;
}
auto path = StringPrintf("%s/%s", cgroup_root_path.c_str(), dir->d_name);
if (!RemoveEmptyUidCgroups(path)) {
LOG(VERBOSE) << "Skip removing " << path;
continue;
}
LOG(VERBOSE) << "Removing " << path;
if (rmdir(path.c_str()) == -1 && errno != EBUSY) {
PLOG(WARNING) << "Failed to remove " << path;
}
}
}
}
}
/**
* Process groups are primarily created by the Zygote, meaning that uid/pid groups are created by
* the user root. Ownership for the newly created cgroup and all of its files must thus be
* transferred for the user/group passed as uid/gid before system_server can properly access them.
*/
static bool MkdirAndChown(const std::string& path, mode_t mode, uid_t uid, gid_t gid) {
if (mkdir(path.c_str(), mode) == -1) {
if (errno == EEXIST) {
// Directory already exists and permissions have been set at the time it was created
return true;
}
return false;
}
auto dir = std::unique_ptr<DIR, decltype(&closedir)>(opendir(path.c_str()), closedir);
if (dir == NULL) {
PLOG(ERROR) << "opendir failed for " << path;
goto err;
}
struct dirent* dir_entry;
while ((dir_entry = readdir(dir.get()))) {
if (!strcmp("..", dir_entry->d_name)) {
continue;
}
std::string file_path = path + "/" + dir_entry->d_name;
if (lchown(file_path.c_str(), uid, gid) < 0) {
PLOG(ERROR) << "lchown failed for " << file_path;
goto err;
}
if (fchmodat(AT_FDCWD, file_path.c_str(), mode, AT_SYMLINK_NOFOLLOW) != 0) {
PLOG(ERROR) << "fchmodat failed for " << file_path;
goto err;
}
}
return true;
err:
int saved_errno = errno;
rmdir(path.c_str());
errno = saved_errno;
return false;
}
bool sendSignalToProcessGroup(uid_t uid, pid_t initialPid, int signal) {
std::set<pid_t> pgids, pids;
if (CgroupsAvailable()) {
std::string hierarchy_root_path, cgroup_v2_path;
CgroupGetControllerPath(CGROUPV2_HIERARCHY_NAME, &hierarchy_root_path);
cgroup_v2_path = ConvertUidPidToPath(hierarchy_root_path.c_str(), uid, initialPid, true);
if (signal == SIGKILL && CgroupKillAvailable()) {
LOG(VERBOSE) << "Using " << PROCESSGROUP_CGROUP_KILL_FILE << " to SIGKILL "
<< cgroup_v2_path;
// We need to kill the process group in addition to the cgroup. For normal apps they
// should completely overlap, but system_server kills depend on process group kills to
// take down apps which are in their own cgroups and not individually targeted.
if (kill(-initialPid, signal) == -1 && errno != ESRCH) {
PLOG(WARNING) << "kill(" << -initialPid << ", " << signal << ") failed";
}
const std::string killfilepath = cgroup_v2_path + '/' + PROCESSGROUP_CGROUP_KILL_FILE;
if (WriteStringToFile("1", killfilepath)) {
return true;
} else {
PLOG(ERROR) << "Failed to write 1 to " << killfilepath;
// Fallback to cgroup.procs below
}
}
// Since cgroup.kill only sends SIGKILLs, we read cgroup.procs to find each process to
// signal individually. This is more costly than using cgroup.kill for SIGKILLs.
LOG(VERBOSE) << "Using " << PROCESSGROUP_CGROUP_PROCS_FILE << " to signal (" << signal
<< ") " << cgroup_v2_path;
// We separate all of the pids in the cgroup into those pids that are also the leaders of
// process groups (stored in the pgids set) and those that are not (stored in the pids set).
const auto procsfilepath = cgroup_v2_path + '/' + PROCESSGROUP_CGROUP_PROCS_FILE;
std::unique_ptr<FILE, decltype(&fclose)> fp(fopen(procsfilepath.c_str(), "re"), fclose);
if (!fp) {
// This should only happen if the cgroup has already been removed with a successful call
// to killProcessGroup. Callers should only retry sendSignalToProcessGroup or
// killProcessGroup calls if they fail without ENOENT.
PLOG(ERROR) << "Failed to open " << procsfilepath;
kill(-initialPid, signal);
return false;
}
pid_t pid;
bool file_is_empty = true;
while (fscanf(fp.get(), "%d\n", &pid) == 1 && pid >= 0) {
file_is_empty = false;
if (pid == 0) {
// Should never happen... but if it does, trying to kill this
// will boomerang right back and kill us! Let's not let that happen.
LOG(WARNING)
<< "Yikes, we've been told to kill pid 0! How about we don't do that?";
continue;
}
pid_t pgid = getpgid(pid);
if (pgid == -1) PLOG(ERROR) << "getpgid(" << pid << ") failed";
if (pgid == pid) {
pgids.emplace(pid);
} else {
pids.emplace(pid);
}
}
if (!file_is_empty) {
// Erase all pids that will be killed when we kill the process groups.
for (auto it = pids.begin(); it != pids.end();) {
pid_t pgid = getpgid(*it);
if (pgids.count(pgid) == 1) {
it = pids.erase(it);
} else {
++it;
}
}
}
}
pgids.emplace(initialPid);
// Kill all process groups.
for (const auto pgid : pgids) {
LOG(VERBOSE) << "Killing process group " << -pgid << " in uid " << uid
<< " as part of process cgroup " << initialPid;
if (kill(-pgid, signal) == -1 && errno != ESRCH) {
PLOG(WARNING) << "kill(" << -pgid << ", " << signal << ") failed";
}
}
// Kill remaining pids.
for (const auto pid : pids) {
LOG(VERBOSE) << "Killing pid " << pid << " in uid " << uid << " as part of process cgroup "
<< initialPid;
if (kill(pid, signal) == -1 && errno != ESRCH) {
PLOG(WARNING) << "kill(" << pid << ", " << signal << ") failed";
}
}
return true;
}
template <typename T>
static std::chrono::milliseconds toMillisec(T&& duration) {
return std::chrono::duration_cast<std::chrono::milliseconds>(duration);
}
enum class populated_status
{
populated,
not_populated,
error
};
static populated_status cgroupIsPopulated(int events_fd) {
const std::string POPULATED_KEY("populated ");
const std::string::size_type MAX_EVENTS_FILE_SIZE = 32;
std::string buf;
buf.resize(MAX_EVENTS_FILE_SIZE);
ssize_t len = TEMP_FAILURE_RETRY(pread(events_fd, buf.data(), buf.size(), 0));
if (len == -1) {
PLOG(ERROR) << "Could not read cgroup.events: ";
// Potentially ENODEV if the cgroup has been removed since we opened this file, but that
// shouldn't have happened yet.
return populated_status::error;
}
if (len == 0) {
LOG(ERROR) << "cgroup.events EOF";
return populated_status::error;
}
buf.resize(len);
const std::string::size_type pos = buf.find(POPULATED_KEY);
if (pos == std::string::npos) {
LOG(ERROR) << "Could not find populated key in cgroup.events";
return populated_status::error;
}
if (pos + POPULATED_KEY.size() + 1 > len) {
LOG(ERROR) << "Partial read of cgroup.events";
return populated_status::error;
}
return buf[pos + POPULATED_KEY.size()] == '1' ?
populated_status::populated : populated_status::not_populated;
}
// The default timeout of 2200ms comes from the default number of retries in a previous
// implementation of this function. The default retry value was 40 for killing and 400 for cgroup
// removal with 5ms sleeps between each retry.
static int KillProcessGroup(
uid_t uid, pid_t initialPid, int signal, bool once = false,
std::chrono::steady_clock::time_point until = std::chrono::steady_clock::now() + 2200ms) {
if (uid < 0) {
LOG(ERROR) << __func__ << ": invalid UID " << uid;
return -1;
}
if (initialPid <= 0) {
LOG(ERROR) << __func__ << ": invalid PID " << initialPid;
return -1;
}
// Always attempt to send a kill signal to at least the initialPid, at least once, regardless of
// whether its cgroup exists or not. This should only be necessary if a bug results in the
// migration of the targeted process out of its cgroup, which we will also attempt to kill.
const bool signal_ret = sendSignalToProcessGroup(uid, initialPid, signal);
if (!CgroupsAvailable() || !signal_ret) return signal_ret ? 0 : -1;
std::string hierarchy_root_path;
CgroupGetControllerPath(CGROUPV2_HIERARCHY_NAME, &hierarchy_root_path);
const std::string cgroup_v2_path =
ConvertUidPidToPath(hierarchy_root_path.c_str(), uid, initialPid, true);
const std::string eventsfile = cgroup_v2_path + '/' + PROCESSGROUP_CGROUP_EVENTS_FILE;
android::base::unique_fd events_fd(open(eventsfile.c_str(), O_RDONLY));
if (events_fd.get() == -1) {
PLOG(WARNING) << "Error opening " << eventsfile << " for KillProcessGroup";
return -1;
}
struct pollfd fds = {
.fd = events_fd,
.events = POLLPRI,
};
const std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();
// The primary reason to loop here is to capture any new forks or migrations that could occur
// after we send signals to the original set of processes, but before all of those processes
// exit and the cgroup becomes unpopulated, or before we remove the cgroup. We try hard to
// ensure this completes successfully to avoid permanent memory leaks, but we still place a
// large default upper bound on the amount of time we spend in this loop. The amount of CPU
// contention, and the amount of work that needs to be done in do_exit for each process
// determines how long this will take.
int ret;
do {
populated_status populated;
while ((populated = cgroupIsPopulated(events_fd.get())) == populated_status::populated &&
std::chrono::steady_clock::now() < until) {
sendSignalToProcessGroup(uid, initialPid, signal);
if (once) {
populated = cgroupIsPopulated(events_fd.get());
break;
}
const std::chrono::steady_clock::time_point poll_start =
std::chrono::steady_clock::now();
if (poll_start < until)
ret = TEMP_FAILURE_RETRY(poll(&fds, 1, toMillisec(until - poll_start).count()));
if (ret == -1) {
// Fallback to 5ms sleeps if poll fails
PLOG(ERROR) << "Poll on " << eventsfile << "failed";
const std::chrono::steady_clock::time_point now = std::chrono::steady_clock::now();
if (now < until)
std::this_thread::sleep_for(std::min(5ms, toMillisec(until - now)));
}
LOG(VERBOSE) << "Waited "
<< toMillisec(std::chrono::steady_clock::now() - poll_start).count()
<< " ms for " << eventsfile << " poll";
}
const std::chrono::milliseconds kill_duration =
toMillisec(std::chrono::steady_clock::now() - start);
if (populated == populated_status::populated) {
LOG(WARNING) << "Still waiting on process(es) to exit for cgroup " << cgroup_v2_path
<< " after " << kill_duration.count() << " ms";
// We'll still try the cgroup removal below which we expect to log an error.
} else if (populated == populated_status::not_populated) {
LOG(VERBOSE) << "Killed all processes under cgroup " << cgroup_v2_path
<< " after " << kill_duration.count() << " ms";
}
ret = RemoveCgroup(hierarchy_root_path.c_str(), uid, initialPid, true);
if (ret)
PLOG(ERROR) << "Unable to remove cgroup " << cgroup_v2_path;
else
LOG(INFO) << "Removed cgroup " << cgroup_v2_path;
if (isMemoryCgroupSupported() && UsePerAppMemcg()) {
// This per-application memcg v1 case should eventually be removed after migration to
// memcg v2.
std::string memcg_apps_path;
if (CgroupGetMemcgAppsPath(&memcg_apps_path) &&
(ret = RemoveCgroup(memcg_apps_path.c_str(), uid, initialPid, false)) < 0) {
const auto memcg_v1_cgroup_path =
ConvertUidPidToPath(memcg_apps_path.c_str(), uid, initialPid, false);
PLOG(ERROR) << "Unable to remove memcg v1 cgroup " << memcg_v1_cgroup_path;
}
}
if (once) break;
if (std::chrono::steady_clock::now() >= until) break;
} while (ret && errno == EBUSY);
return ret;
}
int killProcessGroup(uid_t uid, pid_t initialPid, int signal) {
return KillProcessGroup(uid, initialPid, signal);
}
int killProcessGroupOnce(uid_t uid, pid_t initialPid, int signal) {
return KillProcessGroup(uid, initialPid, signal, true);
}
static int createProcessGroupInternal(uid_t uid, pid_t initialPid, std::string cgroup,
bool activate_controllers) {
auto uid_path = ConvertUidToPath(cgroup.c_str(), uid, activate_controllers);
struct stat cgroup_stat;
mode_t cgroup_mode = 0750;
uid_t cgroup_uid = AID_SYSTEM;
gid_t cgroup_gid = AID_SYSTEM;
int ret = 0;
if (stat(cgroup.c_str(), &cgroup_stat) < 0) {
PLOG(ERROR) << "Failed to get stats for " << cgroup;
} else {
cgroup_mode = cgroup_stat.st_mode;
cgroup_uid = cgroup_stat.st_uid;
cgroup_gid = cgroup_stat.st_gid;
}
if (!MkdirAndChown(uid_path, cgroup_mode, cgroup_uid, cgroup_gid)) {
PLOG(ERROR) << "Failed to make and chown " << uid_path;
return -errno;
}
if (activate_controllers) {
if (!CgroupMap::GetInstance().ActivateControllers(uid_path)) {
PLOG(ERROR) << "Failed to activate controllers in " << uid_path;
return -errno;
}
}
auto uid_pid_path = ConvertUidPidToPath(cgroup.c_str(), uid, initialPid, activate_controllers);
if (!MkdirAndChown(uid_pid_path, cgroup_mode, cgroup_uid, cgroup_gid)) {
PLOG(ERROR) << "Failed to make and chown " << uid_pid_path;
return -errno;
}
auto uid_pid_procs_file = uid_pid_path + '/' + PROCESSGROUP_CGROUP_PROCS_FILE;
if (!WriteStringToFile(std::to_string(initialPid), uid_pid_procs_file)) {
ret = -errno;
PLOG(ERROR) << "Failed to write '" << initialPid << "' to " << uid_pid_procs_file;
}
return ret;
}
int createProcessGroup(uid_t uid, pid_t initialPid, bool memControl) {
if (uid < 0) {
LOG(ERROR) << __func__ << ": invalid UID " << uid;
return -1;
}
if (initialPid <= 0) {
LOG(ERROR) << __func__ << ": invalid PID " << initialPid;
return -1;
}
if (memControl && !UsePerAppMemcg()) {
LOG(ERROR) << "service memory controls are used without per-process memory cgroup support";
return -EINVAL;
}
if (std::string memcg_apps_path;
isMemoryCgroupSupported() && UsePerAppMemcg() && CgroupGetMemcgAppsPath(&memcg_apps_path)) {
// Note by bvanassche: passing 'false' as fourth argument below implies that the v1
// hierarchy is used. It is not clear to me whether the above conditions guarantee that the
// v1 hierarchy is used.
int ret = createProcessGroupInternal(uid, initialPid, memcg_apps_path, false);
if (ret != 0) {
return ret;
}
}
std::string cgroup;
CgroupGetControllerPath(CGROUPV2_HIERARCHY_NAME, &cgroup);
return createProcessGroupInternal(uid, initialPid, cgroup, true);
}
static bool SetProcessGroupValue(pid_t tid, const std::string& attr_name, int64_t value) {
if (!isMemoryCgroupSupported()) {
LOG(ERROR) << "Memcg is not mounted.";
return false;
}
std::string path;
if (!CgroupGetAttributePathForTask(attr_name, tid, &path)) {
LOG(ERROR) << "Failed to find attribute '" << attr_name << "'";
return false;
}
if (!WriteStringToFile(std::to_string(value), path)) {
PLOG(ERROR) << "Failed to write '" << value << "' to " << path;
return false;
}
return true;
}
bool setProcessGroupSwappiness(uid_t, pid_t pid, int swappiness) {
return SetProcessGroupValue(pid, "MemSwappiness", swappiness);
}
bool setProcessGroupSoftLimit(uid_t, pid_t pid, int64_t soft_limit_in_bytes) {
return SetProcessGroupValue(pid, "MemSoftLimit", soft_limit_in_bytes);
}
bool setProcessGroupLimit(uid_t, pid_t pid, int64_t limit_in_bytes) {
return SetProcessGroupValue(pid, "MemLimit", limit_in_bytes);
}
bool isProfileValidForProcess(const std::string& profile_name, uid_t uid, pid_t pid) {
const TaskProfile* tp = TaskProfiles::GetInstance().GetProfile(profile_name);
if (tp == nullptr) {
return false;
}
return tp->IsValidForProcess(uid, pid);
}