blob: 010fbc81d1a054284c1f7c06ece01017cf910559 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <fnmatch.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mount.h>
#include <unistd.h>
#include <algorithm>
#include <array>
#include <utility>
#include <vector>
#include <android-base/file.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <libgsi/libgsi.h>
#include "fstab_priv.h"
#include "logging_macros.h"
using android::base::EndsWith;
using android::base::ParseByteCount;
using android::base::ParseInt;
using android::base::ReadFileToString;
using android::base::Readlink;
using android::base::Split;
using android::base::StartsWith;
namespace android {
namespace fs_mgr {
namespace {
constexpr char kProcMountsPath[] = "/proc/mounts";
struct FlagList {
const char* name;
uint64_t flag;
};
FlagList kMountFlagsList[] = {
{"noatime", MS_NOATIME},
{"noexec", MS_NOEXEC},
{"nosuid", MS_NOSUID},
{"nodev", MS_NODEV},
{"nodiratime", MS_NODIRATIME},
{"ro", MS_RDONLY},
{"rw", 0},
{"sync", MS_SYNCHRONOUS},
{"remount", MS_REMOUNT},
{"bind", MS_BIND},
{"rec", MS_REC},
{"unbindable", MS_UNBINDABLE},
{"private", MS_PRIVATE},
{"slave", MS_SLAVE},
{"shared", MS_SHARED},
{"lazytime", MS_LAZYTIME},
{"nosymfollow", MS_NOSYMFOLLOW},
{"defaults", 0},
};
off64_t CalculateZramSize(int percentage) {
off64_t total;
total = sysconf(_SC_PHYS_PAGES);
total *= percentage;
total /= 100;
total *= sysconf(_SC_PAGESIZE);
return total;
}
// Fills 'dt_value' with the underlying device tree value string without the trailing '\0'.
// Returns true if 'dt_value' has a valid string, 'false' otherwise.
bool ReadDtFile(const std::string& file_name, std::string* dt_value) {
if (android::base::ReadFileToString(file_name, dt_value)) {
if (!dt_value->empty()) {
// Trim the trailing '\0' out, otherwise the comparison will produce false-negatives.
dt_value->resize(dt_value->size() - 1);
return true;
}
}
return false;
}
void ParseFileEncryption(const std::string& arg, FstabEntry* entry) {
entry->fs_mgr_flags.file_encryption = true;
entry->encryption_options = arg;
}
bool SetMountFlag(const std::string& flag, FstabEntry* entry) {
for (const auto& [name, value] : kMountFlagsList) {
if (flag == name) {
entry->flags |= value;
return true;
}
}
return false;
}
void ParseMountFlags(const std::string& flags, FstabEntry* entry) {
std::string fs_options;
for (const auto& flag : Split(flags, ",")) {
if (!SetMountFlag(flag, entry)) {
// Unknown flag, so it must be a filesystem specific option.
if (!fs_options.empty()) {
fs_options.append(","); // appends a comma if not the first
}
fs_options.append(flag);
if (auto equal_sign = flag.find('='); equal_sign != std::string::npos) {
const auto arg = flag.substr(equal_sign + 1);
if (entry->fs_type == "f2fs" && StartsWith(flag, "reserve_root=")) {
off64_t size_in_4k_blocks;
if (!ParseInt(arg, &size_in_4k_blocks, static_cast<off64_t>(0),
std::numeric_limits<off64_t>::max() >> 12)) {
LWARNING << "Warning: reserve_root= flag malformed: " << arg;
} else {
entry->reserved_size = size_in_4k_blocks << 12;
}
} else if (StartsWith(flag, "lowerdir=")) {
entry->lowerdir = arg;
}
}
}
}
entry->fs_options = std::move(fs_options);
}
void ParseUserDevices(const std::string& arg, FstabEntry* entry) {
auto param = Split(arg, ":");
if (param.size() != 2) {
LWARNING << "Warning: device= malformed: " << arg;
return;
}
if (access(param[1].c_str(), F_OK) != 0) {
LWARNING << "Warning: device does not exist : " << param[1];
return;
}
if (param[0] == "zoned") {
// atgc in f2fs does not support a zoned device
auto options = Split(entry->fs_options, ",");
options.erase(std::remove(options.begin(), options.end(), "atgc"), options.end());
entry->fs_options = android::base::Join(options, ",");
LINFO << "Removed ATGC in fs_options as " << entry->fs_options << " for zoned device";
entry->fs_mgr_flags.is_zoned = true;
}
entry->user_devices.push_back(param[1]);
entry->device_aliased.push_back(param[0] == "exp_alias" ? 1 : 0);
}
bool ParseFsMgrFlags(const std::string& flags, FstabEntry* entry) {
for (const auto& flag : Split(flags, ",")) {
if (flag.empty() || flag == "defaults") continue;
std::string arg;
if (auto equal_sign = flag.find('='); equal_sign != std::string::npos) {
arg = flag.substr(equal_sign + 1);
}
// First handle flags that simply set a boolean.
#define CheckFlag(flag_name, value) \
if (flag == flag_name) { \
entry->fs_mgr_flags.value = true; \
continue; \
}
CheckFlag("wait", wait);
CheckFlag("check", check);
CheckFlag("nonremovable", nonremovable);
CheckFlag("recoveryonly", recovery_only);
CheckFlag("noemulatedsd", no_emulated_sd);
CheckFlag("notrim", no_trim);
CheckFlag("formattable", formattable);
CheckFlag("slotselect", slot_select);
CheckFlag("latemount", late_mount);
CheckFlag("nofail", no_fail);
CheckFlag("quota", quota);
CheckFlag("avb", avb);
CheckFlag("logical", logical);
CheckFlag("checkpoint=block", checkpoint_blk);
CheckFlag("checkpoint=fs", checkpoint_fs);
CheckFlag("first_stage_mount", first_stage_mount);
CheckFlag("slotselect_other", slot_select_other);
CheckFlag("fsverity", fs_verity);
CheckFlag("metadata_csum", ext_meta_csum);
CheckFlag("fscompress", fs_compress);
CheckFlag("overlayfs_remove_missing_lowerdir", overlayfs_remove_missing_lowerdir);
#undef CheckFlag
// Then handle flags that take an argument.
if (StartsWith(flag, "encryptable=")) {
// The "encryptable" flag identifies adoptable storage volumes. The
// argument to this flag is ignored, but it should be "userdata".
//
// Historical note: this flag was originally meant just for /data,
// to indicate that FDE (full disk encryption) can be enabled.
// Unfortunately, it was also overloaded to identify adoptable
// storage volumes. Today, FDE is no longer supported, leaving only
// the adoptable storage volume meaning for this flag.
entry->fs_mgr_flags.crypt = true;
} else if (StartsWith(flag, "forceencrypt=") || StartsWith(flag, "forcefdeorfbe=")) {
LERROR << "flag no longer supported: " << flag;
return false;
} else if (StartsWith(flag, "voldmanaged=")) {
// The voldmanaged flag is followed by an = and the label, a colon and the partition
// number or the word "auto", e.g. voldmanaged=sdcard:3
entry->fs_mgr_flags.vold_managed = true;
auto parts = Split(arg, ":");
if (parts.size() != 2) {
LWARNING << "Warning: voldmanaged= flag malformed: " << arg;
continue;
}
entry->label = std::move(parts[0]);
if (parts[1] == "auto") {
entry->partnum = -1;
} else {
if (!ParseInt(parts[1], &entry->partnum)) {
entry->partnum = -1;
LWARNING << "Warning: voldmanaged= flag malformed: " << arg;
continue;
}
}
} else if (StartsWith(flag, "length=")) {
// The length flag is followed by an = and the size of the partition.
if (!ParseInt(arg, &entry->length)) {
LWARNING << "Warning: length= flag malformed: " << arg;
}
} else if (StartsWith(flag, "swapprio=")) {
if (!ParseInt(arg, &entry->swap_prio)) {
LWARNING << "Warning: swapprio= flag malformed: " << arg;
}
} else if (StartsWith(flag, "zramsize=")) {
if (!arg.empty() && arg.back() == '%') {
arg.pop_back();
int val;
if (ParseInt(arg, &val, 0, 200)) {
entry->zram_size = CalculateZramSize(val);
} else {
LWARNING << "Warning: zramsize= flag malformed: " << arg;
}
} else {
if (!ParseInt(arg, &entry->zram_size)) {
LWARNING << "Warning: zramsize= flag malformed: " << arg;
}
}
} else if (StartsWith(flag, "fileencryption=") || flag == "fileencryption") {
// "fileencryption" enables file-based encryption. It's normally followed by an = and
// then the encryption options. But that can be omitted to use the default options.
ParseFileEncryption(arg, entry);
} else if (StartsWith(flag, "max_comp_streams=")) {
if (!ParseInt(arg, &entry->max_comp_streams)) {
LWARNING << "Warning: max_comp_streams= flag malformed: " << arg;
}
} else if (StartsWith(flag, "reservedsize=")) {
// The reserved flag is followed by an = and the reserved size of the partition.
uint64_t size;
if (!ParseByteCount(arg, &size)) {
LWARNING << "Warning: reservedsize= flag malformed: " << arg;
} else {
entry->reserved_size = static_cast<off64_t>(size);
}
} else if (StartsWith(flag, "readahead_size_kb=")) {
int val;
if (ParseInt(arg, &val, 0, 16 * 1024)) {
entry->readahead_size_kb = val;
} else {
LWARNING << "Warning: readahead_size_kb= flag malformed (0 ~ 16MB): " << arg;
}
} else if (StartsWith(flag, "eraseblk=")) {
// The erase block size flag is followed by an = and the flash erase block size. Get it,
// check that it is a power of 2 and at least 4096, and return it.
off64_t val;
if (!ParseInt(arg, &val) || val < 4096 || (val & (val - 1)) != 0) {
LWARNING << "Warning: eraseblk= flag malformed: " << arg;
} else {
entry->erase_blk_size = val;
}
} else if (StartsWith(flag, "logicalblk=")) {
// The logical block size flag is followed by an = and the flash logical block size. Get
// it, check that it is a power of 2 and at least 4096, and return it.
off64_t val;
if (!ParseInt(arg, &val) || val < 4096 || (val & (val - 1)) != 0) {
LWARNING << "Warning: logicalblk= flag malformed: " << arg;
} else {
entry->logical_blk_size = val;
}
} else if (StartsWith(flag, "avb_keys=")) { // must before the following "avb"
entry->avb_keys = arg;
} else if (StartsWith(flag, "avb_hashtree_digest=")) {
// "avb_hashtree_digest" must before the following "avb"
// The path where hex-encoded hashtree descriptor root digest is located.
entry->avb_hashtree_digest = arg;
} else if (StartsWith(flag, "avb")) {
entry->fs_mgr_flags.avb = true;
entry->vbmeta_partition = arg;
} else if (StartsWith(flag, "keydirectory=")) {
// The keydirectory flag enables metadata encryption. It is
// followed by an = and the directory containing the metadata
// encryption key.
entry->metadata_key_dir = arg;
} else if (StartsWith(flag, "metadata_encryption=")) {
// The metadata_encryption flag specifies the cipher and flags to
// use for metadata encryption, if the defaults aren't sufficient.
// It doesn't actually enable metadata encryption; that is done by
// "keydirectory".
entry->metadata_encryption_options = arg;
} else if (StartsWith(flag, "sysfs_path=")) {
// The path to trigger device gc by idle-maint of vold.
entry->sysfs_path = arg;
} else if (StartsWith(flag, "zram_backingdev_size=")) {
if (!ParseByteCount(arg, &entry->zram_backingdev_size)) {
LWARNING << "Warning: zram_backingdev_size= flag malformed: " << arg;
}
} else if (StartsWith(flag, "device=")) {
ParseUserDevices(arg, entry);
} else {
LWARNING << "Warning: unknown flag: " << flag;
}
}
// FDE is no longer supported, so reject "encryptable" when used without
// "vold_managed". For now skip this check when in recovery mode, since
// some recovery fstabs still contain the FDE options since they didn't do
// anything in recovery mode anyway (except possibly to cause the
// reservation of a crypto footer) and thus never got removed.
if (entry->fs_mgr_flags.crypt && !entry->fs_mgr_flags.vold_managed && !InRecovery()) {
LERROR << "FDE is no longer supported; 'encryptable' can only be used for adoptable "
"storage";
return false;
}
return true;
}
bool IsDtFstabCompatible() {
std::string dt_value;
std::string file_name = GetAndroidDtDir() + "fstab/compatible";
if (ReadDtFile(file_name, &dt_value) && dt_value == "android,fstab") {
// If there's no status property or its set to "ok" or "okay", then we use the DT fstab.
std::string status_value;
std::string status_file_name = GetAndroidDtDir() + "fstab/status";
return !ReadDtFile(status_file_name, &status_value) || status_value == "ok" ||
status_value == "okay";
}
return false;
}
std::string ReadFstabFromDt() {
if (!is_dt_compatible() || !IsDtFstabCompatible()) {
return {};
}
std::string fstabdir_name = GetAndroidDtDir() + "fstab";
std::unique_ptr<DIR, int (*)(DIR*)> fstabdir(opendir(fstabdir_name.c_str()), closedir);
if (!fstabdir) return {};
dirent* dp;
// Each element in fstab_dt_entries is <mount point, the line format in fstab file>.
std::vector<std::pair<std::string, std::string>> fstab_dt_entries;
while ((dp = readdir(fstabdir.get())) != NULL) {
// skip over name, compatible and .
if (dp->d_type != DT_DIR || dp->d_name[0] == '.') continue;
// create <dev> <mnt_point> <type> <mnt_flags> <fsmgr_flags>\n
std::vector<std::string> fstab_entry;
std::string file_name;
std::string value;
// skip a partition entry if the status property is present and not set to ok
file_name = android::base::StringPrintf("%s/%s/status", fstabdir_name.c_str(), dp->d_name);
if (ReadDtFile(file_name, &value)) {
if (value != "okay" && value != "ok") {
LINFO << "dt_fstab: Skip disabled entry for partition " << dp->d_name;
continue;
}
}
file_name = android::base::StringPrintf("%s/%s/dev", fstabdir_name.c_str(), dp->d_name);
if (!ReadDtFile(file_name, &value)) {
LERROR << "dt_fstab: Failed to find device for partition " << dp->d_name;
return {};
}
fstab_entry.push_back(value);
std::string mount_point;
file_name =
android::base::StringPrintf("%s/%s/mnt_point", fstabdir_name.c_str(), dp->d_name);
if (ReadDtFile(file_name, &value)) {
LINFO << "dt_fstab: Using a specified mount point " << value << " for " << dp->d_name;
mount_point = value;
} else {
mount_point = android::base::StringPrintf("/%s", dp->d_name);
}
fstab_entry.push_back(mount_point);
file_name = android::base::StringPrintf("%s/%s/type", fstabdir_name.c_str(), dp->d_name);
if (!ReadDtFile(file_name, &value)) {
LERROR << "dt_fstab: Failed to find type for partition " << dp->d_name;
return {};
}
fstab_entry.push_back(value);
file_name =
android::base::StringPrintf("%s/%s/mnt_flags", fstabdir_name.c_str(), dp->d_name);
if (!ReadDtFile(file_name, &value)) {
LERROR << "dt_fstab: Failed to find type for partition " << dp->d_name;
return {};
}
fstab_entry.push_back(value);
file_name =
android::base::StringPrintf("%s/%s/fsmgr_flags", fstabdir_name.c_str(), dp->d_name);
if (!ReadDtFile(file_name, &value)) {
LERROR << "dt_fstab: Failed to find type for partition " << dp->d_name;
return {};
}
fstab_entry.push_back(value);
// Adds a fstab_entry to fstab_dt_entries, to be sorted by mount_point later.
fstab_dt_entries.emplace_back(mount_point, android::base::Join(fstab_entry, " "));
}
// Sort fstab_dt entries, to ensure /vendor is mounted before /vendor/abc is attempted.
std::sort(fstab_dt_entries.begin(), fstab_dt_entries.end(),
[](const auto& a, const auto& b) { return a.first < b.first; });
std::string fstab_result;
for (const auto& [_, dt_entry] : fstab_dt_entries) {
fstab_result += dt_entry + "\n";
}
return fstab_result;
}
/* Extracts <device>s from the by-name symlinks specified in a fstab:
* /dev/block/<type>/<device>/by-name/<partition>
*
* <type> can be: platform, pci or vbd.
*
* For example, given the following entries in the input fstab:
* /dev/block/platform/soc/1da4000.ufshc/by-name/system
* /dev/block/pci/soc.0/f9824900.sdhci/by-name/vendor
* it returns a set { "soc/1da4000.ufshc", "soc.0/f9824900.sdhci" }.
*/
std::set<std::string> ExtraBootDevices(const Fstab& fstab) {
std::set<std::string> boot_devices;
for (const auto& entry : fstab) {
std::string blk_device = entry.blk_device;
// Skips blk_device that doesn't conform to the format.
if (!android::base::StartsWith(blk_device, "/dev/block") ||
android::base::StartsWith(blk_device, "/dev/block/by-name") ||
android::base::StartsWith(blk_device, "/dev/block/bootdevice/by-name")) {
continue;
}
// Skips non-by_name blk_device.
// /dev/block/<type>/<device>/by-name/<partition>
// ^ slash_by_name
auto slash_by_name = blk_device.find("/by-name");
if (slash_by_name == std::string::npos) continue;
blk_device.erase(slash_by_name); // erases /by-name/<partition>
// Erases /dev/block/, now we have <type>/<device>
blk_device.erase(0, std::string("/dev/block/").size());
// <type>/<device>
// ^ first_slash
auto first_slash = blk_device.find('/');
if (first_slash == std::string::npos) continue;
auto boot_device = blk_device.substr(first_slash + 1);
if (!boot_device.empty()) boot_devices.insert(std::move(boot_device));
}
return boot_devices;
}
// Helper class that maps Fstab* -> FstabEntry; const Fstab* -> const FstabEntry.
template <typename FstabPtr>
struct FstabPtrEntry {
using is_const_fstab = std::is_const<std::remove_pointer_t<FstabPtr>>;
using type = std::conditional_t<is_const_fstab::value, const FstabEntry, FstabEntry>;
};
template <typename FstabPtr, typename FstabPtrEntryType = typename FstabPtrEntry<FstabPtr>::type,
typename Pred>
std::vector<FstabPtrEntryType*> GetEntriesByPred(FstabPtr fstab, const Pred& pred) {
if (fstab == nullptr) {
return {};
}
std::vector<FstabPtrEntryType*> entries;
for (FstabPtrEntryType& entry : *fstab) {
if (pred(entry)) {
entries.push_back(&entry);
}
}
return entries;
}
} // namespace
// Return the path to the recovery fstab file. There may be multiple fstab files;
// the one that is returned will be the first that exists of recovery.fstab.<fstab_suffix>,
// recovery.fstab.<hardware>, and recovery.fstab.<hardware.platform>.
std::string GetRecoveryFstabPath() {
for (const char* prop : {"fstab_suffix", "hardware", "hardware.platform"}) {
std::string suffix;
if (!fs_mgr_get_boot_config(prop, &suffix)) continue;
std::string fstab_path = "/etc/recovery.fstab." + suffix;
if (access(fstab_path.c_str(), F_OK) == 0) {
return fstab_path;
}
}
return "/etc/recovery.fstab";
}
// Return the path to the fstab file. There may be multiple fstab files; the
// one that is returned will be the first that exists of fstab.<fstab_suffix>,
// fstab.<hardware>, and fstab.<hardware.platform>. The fstab is searched for
// in /odm/etc/ and /vendor/etc/, as well as in the locations where it may be in
// the first stage ramdisk during early boot. Previously, the first stage
// ramdisk's copy of the fstab had to be located in the root directory, but now
// the system/etc directory is supported too and is the preferred location.
std::string GetFstabPath() {
if (InRecovery()) {
return GetRecoveryFstabPath();
}
for (const char* prop : {"fstab_suffix", "hardware", "hardware.platform"}) {
std::string suffix;
if (!fs_mgr_get_boot_config(prop, &suffix)) continue;
for (const char* prefix : {// late-boot/post-boot locations
"/odm/etc/fstab.", "/vendor/etc/fstab.",
// early boot locations
"/system/etc/fstab.", "/first_stage_ramdisk/system/etc/fstab.",
"/fstab.", "/first_stage_ramdisk/fstab."}) {
std::string fstab_path = prefix + suffix;
if (access(fstab_path.c_str(), F_OK) == 0) {
return fstab_path;
}
}
}
return "";
}
bool ParseFstabFromString(const std::string& fstab_str, bool proc_mounts, Fstab* fstab_out) {
const int expected_fields = proc_mounts ? 4 : 5;
Fstab fstab;
for (const auto& line : android::base::Split(fstab_str, "\n")) {
auto fields = android::base::Tokenize(line, " \t");
// Ignore empty lines and comments.
if (fields.empty() || android::base::StartsWith(fields.front(), '#')) {
continue;
}
if (fields.size() < expected_fields) {
LERROR << "Error parsing fstab: expected " << expected_fields << " fields, got "
<< fields.size();
return false;
}
FstabEntry entry;
auto it = fields.begin();
entry.blk_device = std::move(*it++);
entry.mount_point = std::move(*it++);
entry.fs_type = std::move(*it++);
ParseMountFlags(std::move(*it++), &entry);
// For /proc/mounts, ignore everything after mnt_freq and mnt_passno
if (!proc_mounts && !ParseFsMgrFlags(std::move(*it++), &entry)) {
LERROR << "Error parsing fs_mgr_flags";
return false;
}
if (entry.fs_mgr_flags.logical) {
entry.logical_partition_name = entry.blk_device;
}
fstab.emplace_back(std::move(entry));
}
if (fstab.empty()) {
LERROR << "No entries found in fstab";
return false;
}
/* If an A/B partition, modify block device to be the real block device */
if (!fs_mgr_update_for_slotselect(&fstab)) {
LERROR << "Error updating for slotselect";
return false;
}
*fstab_out = std::move(fstab);
return true;
}
void TransformFstabForDsu(Fstab* fstab, const std::string& dsu_slot,
const std::vector<std::string>& dsu_partitions) {
static constexpr char kDsuKeysDir[] = "/avb";
for (auto&& partition : dsu_partitions) {
if (!EndsWith(partition, gsi::kDsuPostfix)) {
continue;
}
// scratch is handled by fs_mgr_overlayfs
if (partition == android::gsi::kDsuScratch) {
continue;
}
// Convert userdata partition.
if (partition == android::gsi::kDsuUserdata) {
for (auto&& entry : GetEntriesForMountPoint(fstab, "/data")) {
entry->blk_device = android::gsi::kDsuUserdata;
entry->fs_mgr_flags.logical = true;
entry->fs_mgr_flags.formattable = true;
if (!entry->metadata_key_dir.empty()) {
entry->metadata_key_dir = android::gsi::GetDsuMetadataKeyDir(dsu_slot);
}
}
continue;
}
// Convert RO partitions.
//
// dsu_partition_name = corresponding_partition_name + kDsuPostfix
// e.g.
// system_gsi for system
// product_gsi for product
// vendor_gsi for vendor
std::string lp_name = partition.substr(0, partition.length() - strlen(gsi::kDsuPostfix));
std::string mount_point = "/" + lp_name;
// List of fs_type entries we're lacking, need to synthesis these later.
std::vector<std::string> lack_fs_list = {"ext4", "erofs"};
// Only support early mount (first_stage_mount) partitions.
auto pred = [&mount_point](const FstabEntry& entry) {
return entry.fs_mgr_flags.first_stage_mount && entry.mount_point == mount_point;
};
// Transform all matching entries and assume they are all adjacent for simplicity.
for (auto&& entry : GetEntriesByPred(fstab, pred)) {
// .blk_device is replaced with the DSU partition.
entry->blk_device = partition;
// .avb_keys hints first_stage_mount to load the chained-vbmeta image from partition
// footer. See aosp/932779 for more details.
entry->avb_keys = kDsuKeysDir;
// .logical_partition_name is required to look up AVB Hashtree descriptors.
entry->logical_partition_name = lp_name;
entry->fs_mgr_flags.logical = true;
entry->fs_mgr_flags.slot_select = false;
entry->fs_mgr_flags.slot_select_other = false;
if (auto it = std::find(lack_fs_list.begin(), lack_fs_list.end(), entry->fs_type);
it != lack_fs_list.end()) {
lack_fs_list.erase(it);
}
}
if (!lack_fs_list.empty()) {
// Insert at the end of the existing mountpoint group, or at the end of fstab.
// We assume there is at most one matching mountpoint group, which is the common case.
auto it = std::find_if_not(std::find_if(fstab->begin(), fstab->end(), pred),
fstab->end(), pred);
for (const auto& fs_type : lack_fs_list) {
it = std::next(fstab->insert(it, {.blk_device = partition,
.logical_partition_name = lp_name,
.mount_point = mount_point,
.fs_type = fs_type,
.flags = MS_RDONLY,
.avb_keys = kDsuKeysDir,
.fs_mgr_flags{
.wait = true,
.logical = true,
.first_stage_mount = true,
}}));
}
}
}
}
void EnableMandatoryFlags(Fstab* fstab) {
// Devices launched in R and after must support fs_verity. Set flag to cause tune2fs
// to enable the feature on userdata and metadata partitions.
if (android::base::GetIntProperty("ro.product.first_api_level", 0) >= 30) {
// Devices launched in R and after should enable fs_verity on userdata.
// A better alternative would be to enable on mkfs at the beginning.
std::vector<FstabEntry*> data_entries = GetEntriesForMountPoint(fstab, "/data");
for (auto&& entry : data_entries) {
// Besides ext4, f2fs is also supported. But the image is already created with verity
// turned on when it was first introduced.
if (entry->fs_type == "ext4") {
entry->fs_mgr_flags.fs_verity = true;
}
}
// Devices shipping with S and earlier likely do not already have fs_verity enabled via
// mkfs, so enable it here.
std::vector<FstabEntry*> metadata_entries = GetEntriesForMountPoint(fstab, "/metadata");
for (auto&& entry : metadata_entries) {
entry->fs_mgr_flags.fs_verity = true;
}
}
}
static bool ReadFstabFromFileCommon(const std::string& path, Fstab* fstab_out) {
std::string fstab_str;
if (!android::base::ReadFileToString(path, &fstab_str, /* follow_symlinks = */ true)) {
PERROR << __FUNCTION__ << "(): failed to read file: '" << path << "'";
return false;
}
Fstab fstab;
if (!ParseFstabFromString(fstab_str, path == kProcMountsPath, &fstab)) {
LERROR << __FUNCTION__ << "(): failed to load fstab from : '" << path << "'";
return false;
}
EnableMandatoryFlags(&fstab);
*fstab_out = std::move(fstab);
return true;
}
bool ReadFstabFromFile(const std::string& path, Fstab* fstab) {
if (!ReadFstabFromFileCommon(path, fstab)) {
return false;
}
if (path != kProcMountsPath && !InRecovery()) {
if (!access(android::gsi::kGsiBootedIndicatorFile, F_OK)) {
std::string dsu_slot;
if (!android::gsi::GetActiveDsu(&dsu_slot)) {
PERROR << __FUNCTION__ << "(): failed to get active DSU slot";
return false;
}
std::string lp_names;
if (!ReadFileToString(gsi::kGsiLpNamesFile, &lp_names)) {
PERROR << __FUNCTION__ << "(): failed to read DSU LP names";
return false;
}
TransformFstabForDsu(fstab, dsu_slot, Split(lp_names, ","));
} else if (errno != ENOENT) {
PERROR << __FUNCTION__ << "(): failed to access() DSU booted indicator";
return false;
}
SkipMountingPartitions(fstab, false /* verbose */);
}
return true;
}
bool ReadFstabFromProcMounts(Fstab* fstab) {
// Don't call `ReadFstabFromFile` because the code for `path != kProcMountsPath` has an extra
// code size cost, even if it's never executed.
return ReadFstabFromFileCommon(kProcMountsPath, fstab);
}
// Returns fstab entries parsed from the device tree if they exist
bool ReadFstabFromDt(Fstab* fstab, bool verbose) {
std::string fstab_buf = ReadFstabFromDt();
if (fstab_buf.empty()) {
if (verbose) LINFO << __FUNCTION__ << "(): failed to read fstab from dt";
return false;
}
if (!ParseFstabFromString(fstab_buf, /* proc_mounts = */ false, fstab)) {
if (verbose) {
LERROR << __FUNCTION__ << "(): failed to load fstab from kernel:" << std::endl
<< fstab_buf;
}
return false;
}
SkipMountingPartitions(fstab, verbose);
return true;
}
#ifdef NO_SKIP_MOUNT
static constexpr bool kNoSkipMount = true;
#else
static constexpr bool kNoSkipMount = false;
#endif
// For GSI to skip mounting /product and /system_ext, until there are well-defined interfaces
// between them and /system. Otherwise, the GSI flashed on /system might not be able to work with
// device-specific /product and /system_ext. skip_mount.cfg belongs to system_ext partition because
// only common files for all targets can be put into system partition. It is under
// /system/system_ext because GSI is a single system.img that includes the contents of system_ext
// partition and product partition under /system/system_ext and /system/product, respectively.
bool SkipMountingPartitions(Fstab* fstab, bool verbose) {
if (kNoSkipMount) {
return true;
}
static constexpr char kSkipMountConfig[] = "/system/system_ext/etc/init/config/skip_mount.cfg";
std::string skip_mount_config;
auto save_errno = errno;
if (!ReadFileToString(kSkipMountConfig, &skip_mount_config)) {
errno = save_errno; // missing file is expected
return true;
}
return SkipMountWithConfig(skip_mount_config, fstab, verbose);
}
bool SkipMountWithConfig(const std::string& skip_mount_config, Fstab* fstab, bool verbose) {
std::vector<std::string> skip_mount_patterns;
for (const auto& line : Split(skip_mount_config, "\n")) {
if (line.empty() || StartsWith(line, "#")) {
continue;
}
skip_mount_patterns.push_back(line);
}
// Returns false if mount_point matches any of the skip mount patterns, so that the FstabEntry
// would be partitioned to the second group.
auto glob_pattern_mismatch = [&skip_mount_patterns](const FstabEntry& entry) -> bool {
for (const auto& pattern : skip_mount_patterns) {
if (!fnmatch(pattern.c_str(), entry.mount_point.c_str(), 0 /* flags */)) {
return false;
}
}
return true;
};
auto remove_from = std::stable_partition(fstab->begin(), fstab->end(), glob_pattern_mismatch);
if (verbose) {
for (auto it = remove_from; it != fstab->end(); ++it) {
LINFO << "Skip mounting mountpoint: " << it->mount_point;
}
}
fstab->erase(remove_from, fstab->end());
return true;
}
// Loads the fstab file and combines with fstab entries passed in from device tree.
bool ReadDefaultFstab(Fstab* fstab) {
fstab->clear();
ReadFstabFromDt(fstab, false /* verbose */);
Fstab default_fstab;
const std::string default_fstab_path = GetFstabPath();
if (!default_fstab_path.empty() && ReadFstabFromFile(default_fstab_path, &default_fstab)) {
fstab->insert(fstab->end(), std::make_move_iterator(default_fstab.begin()),
std::make_move_iterator(default_fstab.end()));
} else {
LINFO << __FUNCTION__ << "(): failed to find device default fstab";
}
return !fstab->empty();
}
std::vector<FstabEntry*> GetEntriesForMountPoint(Fstab* fstab, const std::string& path) {
return GetEntriesByPred(fstab,
[&path](const FstabEntry& entry) { return entry.mount_point == path; });
}
FstabEntry* GetEntryForMountPoint(Fstab* fstab, const std::string_view path,
const std::string_view fstype) {
auto&& vec = GetEntriesByPred(fstab, [&path, fstype](const FstabEntry& entry) {
return entry.mount_point == path && entry.fs_type == fstype;
});
return vec.empty() ? nullptr : vec.front();
}
std::vector<const FstabEntry*> GetEntriesForMountPoint(const Fstab* fstab,
const std::string& path) {
return GetEntriesByPred(fstab,
[&path](const FstabEntry& entry) { return entry.mount_point == path; });
}
FstabEntry* GetEntryForMountPoint(Fstab* fstab, const std::string& path) {
std::vector<FstabEntry*> entries = GetEntriesForMountPoint(fstab, path);
return entries.empty() ? nullptr : entries.front();
}
const FstabEntry* GetEntryForMountPoint(const Fstab* fstab, const std::string& path) {
std::vector<const FstabEntry*> entries = GetEntriesForMountPoint(fstab, path);
return entries.empty() ? nullptr : entries.front();
}
std::set<std::string> GetBootDevices() {
std::set<std::string> boot_devices;
// First check bootconfig, then kernel commandline, then the device tree
std::string value;
if (GetBootconfig("androidboot.boot_devices", &value) ||
GetBootconfig("androidboot.boot_device", &value)) {
// split by spaces and trim the trailing comma.
for (std::string_view device : android::base::Split(value, " ")) {
base::ConsumeSuffix(&device, ",");
boot_devices.emplace(device);
}
return boot_devices;
}
const std::string dt_file_name = GetAndroidDtDir() + "boot_devices";
if (GetKernelCmdline("androidboot.boot_devices", &value) || ReadDtFile(dt_file_name, &value)) {
auto boot_devices_list = Split(value, ",");
return {std::make_move_iterator(boot_devices_list.begin()),
std::make_move_iterator(boot_devices_list.end())};
}
ImportKernelCmdline([&](std::string key, std::string value) {
if (key == "androidboot.boot_device") {
boot_devices.emplace(std::move(value));
}
});
if (!boot_devices.empty()) {
return boot_devices;
}
// Fallback to extract boot devices from fstab.
Fstab fstab;
if (!ReadDefaultFstab(&fstab)) {
return {};
}
return ExtraBootDevices(fstab);
}
std::string GetBootPartUuid() {
std::string boot_part_uuid;
if (GetBootconfig("androidboot.boot_part_uuid", &boot_part_uuid)) {
return boot_part_uuid;
}
ImportKernelCmdline([&](std::string key, std::string value) {
if (key == "androidboot.boot_part_uuid") {
boot_part_uuid = value;
}
});
return boot_part_uuid;
}
std::string GetVerityDeviceName(const FstabEntry& entry) {
std::string base_device;
if (entry.mount_point == "/") {
// When using system-as-root, the device name is fixed as "vroot".
if (entry.fs_mgr_flags.avb) {
return "vroot";
}
base_device = "system";
} else {
base_device = android::base::Basename(entry.mount_point);
}
return base_device + "-verity";
}
bool InRecovery() {
// Check the existence of recovery binary instead of using the compile time
// __ANDROID_RECOVERY__ macro.
// If BOARD_USES_RECOVERY_AS_BOOT is true, both normal and recovery boot
// mode would use the same init binary, which would mean during normal boot
// the '/init' binary is actually a symlink pointing to
// init_second_stage.recovery, which would be compiled with
// __ANDROID_RECOVERY__ defined.
return access("/system/bin/recovery", F_OK) == 0 || access("/sbin/recovery", F_OK) == 0;
}
} // namespace fs_mgr
} // namespace android
bool is_dt_compatible() {
std::string file_name = android::fs_mgr::GetAndroidDtDir() + "compatible";
std::string dt_value;
if (android::fs_mgr::ReadDtFile(file_name, &dt_value)) {
if (dt_value == "android,firmware") {
return true;
}
}
return false;
}