| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| |
| // SOME COMMENTS ABOUT USAGE: |
| |
| // This provides primarily wp<> weak pointer types and RefBase, which work |
| // together with sp<> from <StrongPointer.h>. |
| |
| // sp<> (and wp<>) are a type of smart pointer that use a well defined protocol |
| // to operate. As long as the object they are templated with implements that |
| // protocol, these smart pointers work. In several places the platform |
| // instantiates sp<> with non-RefBase objects; the two are not tied to each |
| // other. |
| |
| // RefBase is such an implementation and it supports strong pointers, weak |
| // pointers and some magic features for the binder. |
| |
| // So, when using RefBase objects, you have the ability to use strong and weak |
| // pointers through sp<> and wp<>. |
| |
| // Normally, when the last strong pointer goes away, the object is destroyed, |
| // i.e. it's destructor is called. HOWEVER, parts of its associated memory is not |
| // freed until the last weak pointer is released. |
| |
| // Weak pointers are essentially "safe" pointers. They are always safe to |
| // access through promote(). They may return nullptr if the object was |
| // destroyed because it ran out of strong pointers. This makes them good candidates |
| // for keys in a cache for instance. |
| |
| // Weak pointers remain valid for comparison purposes even after the underlying |
| // object has been destroyed. Even if object A is destroyed and its memory reused |
| // for B, A remaining weak pointer to A will not compare equal to one to B. |
| // This again makes them attractive for use as keys. |
| |
| // How is this supposed / intended to be used? |
| |
| // Our recommendation is to use strong references (sp<>) when there is an |
| // ownership relation. e.g. when an object "owns" another one, use a strong |
| // ref. And of course use strong refs as arguments of functions (it's extremely |
| // rare that a function will take a wp<>). |
| |
| // Typically a newly allocated object will immediately be used to initialize |
| // a strong pointer, which may then be used to construct or assign to other |
| // strong and weak pointers. |
| |
| // Use weak references when there are no ownership relation. e.g. the keys in a |
| // cache (you cannot use plain pointers because there is no safe way to acquire |
| // a strong reference from a vanilla pointer). |
| |
| // This implies that two objects should never (or very rarely) have sp<> on |
| // each other, because they can't both own each other. |
| |
| |
| // Caveats with reference counting |
| |
| // Obviously, circular strong references are a big problem; this creates leaks |
| // and it's hard to debug -- except it's in fact really easy because RefBase has |
| // tons of debugging code for that. It can basically tell you exactly where the |
| // leak is. |
| |
| // Another problem has to do with destructors with side effects. You must |
| // assume that the destructor of reference counted objects can be called AT ANY |
| // TIME. For instance code as simple as this: |
| |
| // void setStuff(const sp<Stuff>& stuff) { |
| // std::lock_guard<std::mutex> lock(mMutex); |
| // mStuff = stuff; |
| // } |
| |
| // is very dangerous. This code WILL deadlock one day or another. |
| |
| // What isn't obvious is that ~Stuff() can be called as a result of the |
| // assignment. And it gets called with the lock held. First of all, the lock is |
| // protecting mStuff, not ~Stuff(). Secondly, if ~Stuff() uses its own internal |
| // mutex, now you have mutex ordering issues. Even worse, if ~Stuff() is |
| // virtual, now you're calling into "user" code (potentially), by that, I mean, |
| // code you didn't even write. |
| |
| // A correct way to write this code is something like: |
| |
| // void setStuff(const sp<Stuff>& stuff) { |
| // std::unique_lock<std::mutex> lock(mMutex); |
| // sp<Stuff> hold = mStuff; |
| // mStuff = stuff; |
| // lock.unlock(); |
| // } |
| |
| // More importantly, reference counted objects should do as little work as |
| // possible in their destructor, or at least be mindful that their destructor |
| // could be called from very weird and unintended places. |
| |
| // Other more specific restrictions for wp<> and sp<>: |
| |
| // Do not construct a strong pointer to "this" in an object's constructor. |
| // The onFirstRef() callback would be made on an incompletely constructed |
| // object. |
| // Construction of a weak pointer to "this" in an object's constructor is also |
| // discouraged. But the implementation was recently changed so that, in the |
| // absence of extendObjectLifetime() calls, weak pointers no longer impact |
| // object lifetime, and hence this no longer risks premature deallocation, |
| // and hence usually works correctly. |
| |
| // Such strong or weak pointers can be safely created in the RefBase onFirstRef() |
| // callback. |
| |
| // Use of wp::unsafe_get() for any purpose other than debugging is almost |
| // always wrong. Unless you somehow know that there is a longer-lived sp<> to |
| // the same object, it may well return a pointer to a deallocated object that |
| // has since been reallocated for a different purpose. (And if you know there |
| // is a longer-lived sp<>, why not use an sp<> directly?) A wp<> should only be |
| // dereferenced by using promote(). |
| |
| // Any object inheriting from RefBase should always be destroyed as the result |
| // of a reference count decrement, not via any other means. Such objects |
| // should never be stack allocated, or appear directly as data members in other |
| // objects. Objects inheriting from RefBase should have their strong reference |
| // count incremented as soon as possible after construction. Usually this |
| // will be done via construction of an sp<> to the object, but may instead |
| // involve other means of calling RefBase::incStrong(). |
| // Explicitly deleting or otherwise destroying a RefBase object with outstanding |
| // wp<> or sp<> pointers to it will result in an abort or heap corruption. |
| |
| // It is particularly important not to mix sp<> and direct storage management |
| // since the sp from raw pointer constructor is implicit. Thus if a RefBase- |
| // -derived object of type T is managed without ever incrementing its strong |
| // count, and accidentally passed to f(sp<T>), a strong pointer to the object |
| // will be temporarily constructed and destroyed, prematurely deallocating the |
| // object, and resulting in heap corruption. None of this would be easily |
| // visible in the source. See below on |
| // ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION for a compile time |
| // option which helps avoid this case. |
| |
| // Extra Features: |
| |
| // RefBase::extendObjectLifetime() can be used to prevent destruction of the |
| // object while there are still weak references. This is really special purpose |
| // functionality to support Binder. |
| |
| // Wp::promote(), implemented via the attemptIncStrong() member function, is |
| // used to try to convert a weak pointer back to a strong pointer. It's the |
| // normal way to try to access the fields of an object referenced only through |
| // a wp<>. Binder code also sometimes uses attemptIncStrong() directly. |
| |
| // RefBase provides a number of additional callbacks for certain reference count |
| // events, as well as some debugging facilities. |
| |
| // Debugging support can be enabled by turning on DEBUG_REFS in RefBase.cpp. |
| // Otherwise little checking is provided. |
| |
| // Thread safety: |
| |
| // Like std::shared_ptr, sp<> and wp<> allow concurrent accesses to DIFFERENT |
| // sp<> and wp<> instances that happen to refer to the same underlying object. |
| // They do NOT support concurrent access (where at least one access is a write) |
| // to THE SAME sp<> or wp<>. In effect, their thread-safety properties are |
| // exactly like those of T*, NOT atomic<T*>. |
| |
| // Safety option: ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION |
| // |
| // This flag makes the semantics for using a RefBase object with wp<> and sp<> |
| // much stricter by disabling implicit conversion from raw pointers to these |
| // objects. In order to use this, apply this flag in Android.bp like so: |
| // |
| // cflags: [ |
| // "-DANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION", |
| // ], |
| // |
| // REGARDLESS of whether this flag is on, best usage of sp<> is shown below. If |
| // this flag is on, no other usage is possible (directly calling RefBase methods |
| // is possible, but seeing code using 'incStrong' instead of 'sp<>', for |
| // instance, should already set off big alarm bells. With carefully constructed |
| // data structures, it should NEVER be necessary to directly use RefBase |
| // methods). Proper RefBase usage: |
| // |
| // class Foo : virtual public RefBase { ... }; |
| // |
| // // always construct an sp object with sp::make |
| // sp<Foo> myFoo = sp<Foo>::make(/*args*/); |
| // |
| // // if you need a weak pointer, it must be constructed from a strong |
| // // pointer |
| // wp<Foo> weakFoo = myFoo; // NOT myFoo.get() |
| // |
| // // If you are inside of a method of Foo and need access to a strong |
| // // explicitly call this function. This documents your intention to code |
| // // readers, and it will give a runtime error for what otherwise would |
| // // be potential double ownership |
| // .... Foo::someMethod(...) { |
| // // asserts if there is a memory issue |
| // sp<Foo> thiz = sp<Foo>::fromExisting(this); |
| // } |
| // |
| |
| #ifndef ANDROID_REF_BASE_H |
| #define ANDROID_REF_BASE_H |
| |
| #include <atomic> |
| #include <functional> |
| #include <type_traits> // for common_type. |
| |
| #include <stdint.h> |
| #include <sys/types.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| // LightRefBase used to be declared in this header, so we have to include it |
| #include <utils/LightRefBase.h> |
| |
| #include <utils/StrongPointer.h> |
| #include <utils/TypeHelpers.h> |
| |
| // --------------------------------------------------------------------------- |
| namespace android { |
| |
| // --------------------------------------------------------------------------- |
| |
| #define COMPARE_WEAK(_op_) \ |
| template<typename U> \ |
| inline bool operator _op_ (const U* o) const { \ |
| return m_ptr _op_ o; \ |
| } \ |
| /* Needed to handle type inference for nullptr: */ \ |
| inline bool operator _op_ (const T* o) const { \ |
| return m_ptr _op_ o; \ |
| } |
| |
| template<template<typename C> class comparator, typename T, typename U> |
| static inline bool _wp_compare_(T* a, U* b) { |
| return comparator<typename std::common_type<T*, U*>::type>()(a, b); |
| } |
| |
| // Use std::less and friends to avoid undefined behavior when ordering pointers |
| // to different objects. |
| #define COMPARE_WEAK_FUNCTIONAL(_op_, _compare_) \ |
| template<typename U> \ |
| inline bool operator _op_ (const U* o) const { \ |
| return _wp_compare_<_compare_>(m_ptr, o); \ |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| // RefererenceRenamer is pure abstract, there is no virtual method |
| // implementation to put in a translation unit in order to silence the |
| // weak vtables warning. |
| #if defined(__clang__) |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wweak-vtables" |
| #endif |
| |
| class ReferenceRenamer { |
| protected: |
| // destructor is purposely not virtual so we avoid code overhead from |
| // subclasses; we have to make it protected to guarantee that it |
| // cannot be called from this base class (and to make strict compilers |
| // happy). |
| ~ReferenceRenamer() { } |
| public: |
| virtual void operator()(size_t i) const = 0; |
| }; |
| |
| #if defined(__clang__) |
| #pragma clang diagnostic pop |
| #endif |
| |
| // --------------------------------------------------------------------------- |
| |
| class RefBase |
| { |
| public: |
| void incStrong(const void* id) const; |
| void incStrongRequireStrong(const void* id) const; |
| void decStrong(const void* id) const; |
| |
| void forceIncStrong(const void* id) const; |
| |
| //! DEBUGGING ONLY: Get current strong ref count. |
| int32_t getStrongCount() const; |
| |
| class weakref_type |
| { |
| public: |
| RefBase* refBase() const; |
| |
| void incWeak(const void* id); |
| void incWeakRequireWeak(const void* id); |
| void decWeak(const void* id); |
| |
| // acquires a strong reference if there is already one. |
| bool attemptIncStrong(const void* id); |
| |
| // acquires a weak reference if there is already one. |
| // This is not always safe. see ProcessState.cpp and BpBinder.cpp |
| // for proper use. |
| bool attemptIncWeak(const void* id); |
| |
| //! DEBUGGING ONLY: Get current weak ref count. |
| int32_t getWeakCount() const; |
| |
| //! DEBUGGING ONLY: Print references held on object. |
| void printRefs() const; |
| |
| //! DEBUGGING ONLY: Enable tracking for this object. |
| // enable -- enable/disable tracking |
| // retain -- when tracking is enable, if true, then we save a stack trace |
| // for each reference and dereference; when retain == false, we |
| // match up references and dereferences and keep only the |
| // outstanding ones. |
| |
| void trackMe(bool enable, bool retain); |
| }; |
| |
| weakref_type* createWeak(const void* id) const; |
| |
| weakref_type* getWeakRefs() const; |
| |
| //! DEBUGGING ONLY: Print references held on object. |
| inline void printRefs() const { getWeakRefs()->printRefs(); } |
| |
| //! DEBUGGING ONLY: Enable tracking of object. |
| inline void trackMe(bool enable, bool retain) |
| { |
| getWeakRefs()->trackMe(enable, retain); |
| } |
| |
| protected: |
| // When constructing these objects, prefer using sp::make<>. Using a RefBase |
| // object on the stack or with other refcount mechanisms (e.g. |
| // std::shared_ptr) is inherently wrong. RefBase types have an implicit |
| // ownership model and cannot be safely used with other ownership models. |
| |
| RefBase(); |
| virtual ~RefBase(); |
| |
| //! Flags for extendObjectLifetime() |
| enum { |
| OBJECT_LIFETIME_STRONG = 0x0000, |
| OBJECT_LIFETIME_WEAK = 0x0001, |
| OBJECT_LIFETIME_MASK = 0x0001 |
| }; |
| |
| void extendObjectLifetime(int32_t mode); |
| |
| //! Flags for onIncStrongAttempted() |
| enum { |
| FIRST_INC_STRONG = 0x0001 |
| }; |
| |
| // Invoked after creation of initial strong pointer/reference. |
| virtual void onFirstRef(); |
| // Invoked when either the last strong reference goes away, or we need to undo |
| // the effect of an unnecessary onIncStrongAttempted. |
| virtual void onLastStrongRef(const void* id); |
| // Only called in OBJECT_LIFETIME_WEAK case. Returns true if OK to promote to |
| // strong reference. May have side effects if it returns true. |
| // The first flags argument is always FIRST_INC_STRONG. |
| // TODO: Remove initial flag argument. |
| virtual bool onIncStrongAttempted(uint32_t flags, const void* id); |
| // Invoked in the OBJECT_LIFETIME_WEAK case when the last reference of either |
| // kind goes away. Unused. |
| // TODO: Remove. |
| virtual void onLastWeakRef(const void* id); |
| |
| private: |
| friend class weakref_type; |
| class weakref_impl; |
| |
| RefBase(const RefBase& o); |
| RefBase& operator=(const RefBase& o); |
| |
| private: |
| friend class ReferenceMover; |
| |
| static void renameRefs(size_t n, const ReferenceRenamer& renamer); |
| |
| static void renameRefId(weakref_type* ref, |
| const void* old_id, const void* new_id); |
| |
| static void renameRefId(RefBase* ref, |
| const void* old_id, const void* new_id); |
| |
| weakref_impl* const mRefs; |
| }; |
| |
| // --------------------------------------------------------------------------- |
| |
| template <typename T> |
| class wp |
| { |
| public: |
| typedef typename RefBase::weakref_type weakref_type; |
| |
| inline wp() : m_ptr(nullptr), m_refs(nullptr) { } |
| |
| // if nullptr, returns nullptr |
| // |
| // if a weak pointer is already available, this will retrieve it, |
| // otherwise, this will abort |
| static inline wp<T> fromExisting(T* other); |
| |
| // for more information about this flag, see above |
| #if defined(ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION) |
| wp(std::nullptr_t) : wp() {} |
| #else |
| wp(T* other); // NOLINT(implicit) |
| template <typename U> |
| wp(U* other); // NOLINT(implicit) |
| wp& operator=(T* other); |
| template <typename U> |
| wp& operator=(U* other); |
| #endif |
| |
| wp(const wp<T>& other); |
| explicit wp(const sp<T>& other); |
| |
| template<typename U> wp(const sp<U>& other); // NOLINT(implicit) |
| template<typename U> wp(const wp<U>& other); // NOLINT(implicit) |
| |
| ~wp(); |
| |
| // Assignment |
| |
| wp& operator = (const wp<T>& other); |
| wp& operator = (const sp<T>& other); |
| |
| template<typename U> wp& operator = (const wp<U>& other); |
| template<typename U> wp& operator = (const sp<U>& other); |
| |
| void set_object_and_refs(T* other, weakref_type* refs); |
| |
| // promotion to sp |
| |
| sp<T> promote() const; |
| |
| // Reset |
| |
| void clear(); |
| |
| // Accessors |
| |
| inline weakref_type* get_refs() const { return m_refs; } |
| |
| inline T* unsafe_get() const { return m_ptr; } |
| |
| // Operators |
| |
| COMPARE_WEAK(==) |
| COMPARE_WEAK(!=) |
| COMPARE_WEAK_FUNCTIONAL(>, std::greater) |
| COMPARE_WEAK_FUNCTIONAL(<, std::less) |
| COMPARE_WEAK_FUNCTIONAL(<=, std::less_equal) |
| COMPARE_WEAK_FUNCTIONAL(>=, std::greater_equal) |
| |
| template<typename U> |
| inline bool operator == (const wp<U>& o) const { |
| return m_refs == o.m_refs; // Implies m_ptr == o.mptr; see invariants below. |
| } |
| |
| template<typename U> |
| inline bool operator == (const sp<U>& o) const { |
| // Just comparing m_ptr fields is often dangerous, since wp<> may refer to an older |
| // object at the same address. |
| if (o == nullptr) { |
| return m_ptr == nullptr; |
| } else { |
| return m_refs == o->getWeakRefs(); // Implies m_ptr == o.mptr. |
| } |
| } |
| |
| template<typename U> |
| inline bool operator != (const sp<U>& o) const { |
| return !(*this == o); |
| } |
| |
| template<typename U> |
| inline bool operator > (const wp<U>& o) const { |
| if (m_ptr == o.m_ptr) { |
| return _wp_compare_<std::greater>(m_refs, o.m_refs); |
| } else { |
| return _wp_compare_<std::greater>(m_ptr, o.m_ptr); |
| } |
| } |
| |
| template<typename U> |
| inline bool operator < (const wp<U>& o) const { |
| if (m_ptr == o.m_ptr) { |
| return _wp_compare_<std::less>(m_refs, o.m_refs); |
| } else { |
| return _wp_compare_<std::less>(m_ptr, o.m_ptr); |
| } |
| } |
| template<typename U> inline bool operator != (const wp<U>& o) const { return !operator == (o); } |
| template<typename U> inline bool operator <= (const wp<U>& o) const { return !operator > (o); } |
| template<typename U> inline bool operator >= (const wp<U>& o) const { return !operator < (o); } |
| |
| private: |
| template<typename Y> friend class sp; |
| template<typename Y> friend class wp; |
| |
| T* m_ptr; |
| weakref_type* m_refs; |
| }; |
| |
| #undef COMPARE_WEAK |
| #undef COMPARE_WEAK_FUNCTIONAL |
| |
| // --------------------------------------------------------------------------- |
| // No user serviceable parts below here. |
| |
| // Implementation invariants: |
| // Either |
| // 1) m_ptr and m_refs are both null, or |
| // 2) m_refs == m_ptr->mRefs, or |
| // 3) *m_ptr is no longer live, and m_refs points to the weakref_type object that corresponded |
| // to m_ptr while it was live. *m_refs remains live while a wp<> refers to it. |
| // |
| // The m_refs field in a RefBase object is allocated on construction, unique to that RefBase |
| // object, and never changes. Thus if two wp's have identical m_refs fields, they are either both |
| // null or point to the same object. If two wp's have identical m_ptr fields, they either both |
| // point to the same live object and thus have the same m_ref fields, or at least one of the |
| // objects is no longer live. |
| // |
| // Note that the above comparison operations go out of their way to provide an ordering consistent |
| // with ordinary pointer comparison; otherwise they could ignore m_ptr, and just compare m_refs. |
| |
| template <typename T> |
| wp<T> wp<T>::fromExisting(T* other) { |
| if (!other) return nullptr; |
| |
| auto refs = other->getWeakRefs(); |
| refs->incWeakRequireWeak(other); |
| |
| wp<T> ret; |
| ret.m_ptr = other; |
| ret.m_refs = refs; |
| return ret; |
| } |
| |
| #if !defined(ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION) |
| template<typename T> |
| wp<T>::wp(T* other) |
| : m_ptr(other) |
| { |
| m_refs = other ? m_refs = other->createWeak(this) : nullptr; |
| } |
| |
| template <typename T> |
| template <typename U> |
| wp<T>::wp(U* other) : m_ptr(other) { |
| m_refs = other ? other->createWeak(this) : nullptr; |
| } |
| |
| template <typename T> |
| wp<T>& wp<T>::operator=(T* other) { |
| weakref_type* newRefs = other ? other->createWeak(this) : nullptr; |
| if (m_ptr) m_refs->decWeak(this); |
| m_ptr = other; |
| m_refs = newRefs; |
| return *this; |
| } |
| |
| template <typename T> |
| template <typename U> |
| wp<T>& wp<T>::operator=(U* other) { |
| weakref_type* newRefs = other ? other->createWeak(this) : 0; |
| if (m_ptr) m_refs->decWeak(this); |
| m_ptr = other; |
| m_refs = newRefs; |
| return *this; |
| } |
| #endif |
| |
| template<typename T> |
| wp<T>::wp(const wp<T>& other) |
| : m_ptr(other.m_ptr), m_refs(other.m_refs) |
| { |
| if (m_ptr) m_refs->incWeak(this); |
| } |
| |
| template<typename T> |
| wp<T>::wp(const sp<T>& other) |
| : m_ptr(other.m_ptr) |
| { |
| m_refs = m_ptr ? m_ptr->createWeak(this) : nullptr; |
| } |
| |
| template<typename T> template<typename U> |
| wp<T>::wp(const wp<U>& other) |
| : m_ptr(other.m_ptr) |
| { |
| if (m_ptr) { |
| m_refs = other.m_refs; |
| m_refs->incWeak(this); |
| } else { |
| m_refs = nullptr; |
| } |
| } |
| |
| template<typename T> template<typename U> |
| wp<T>::wp(const sp<U>& other) |
| : m_ptr(other.m_ptr) |
| { |
| m_refs = m_ptr ? m_ptr->createWeak(this) : nullptr; |
| } |
| |
| template<typename T> |
| wp<T>::~wp() |
| { |
| if (m_ptr) m_refs->decWeak(this); |
| } |
| |
| template<typename T> |
| wp<T>& wp<T>::operator = (const wp<T>& other) |
| { |
| weakref_type* otherRefs(other.m_refs); |
| T* otherPtr(other.m_ptr); |
| if (otherPtr) otherRefs->incWeak(this); |
| if (m_ptr) m_refs->decWeak(this); |
| m_ptr = otherPtr; |
| m_refs = otherRefs; |
| return *this; |
| } |
| |
| template<typename T> |
| wp<T>& wp<T>::operator = (const sp<T>& other) |
| { |
| weakref_type* newRefs = |
| other != nullptr ? other->createWeak(this) : nullptr; |
| T* otherPtr(other.m_ptr); |
| if (m_ptr) m_refs->decWeak(this); |
| m_ptr = otherPtr; |
| m_refs = newRefs; |
| return *this; |
| } |
| |
| template<typename T> template<typename U> |
| wp<T>& wp<T>::operator = (const wp<U>& other) |
| { |
| weakref_type* otherRefs(other.m_refs); |
| U* otherPtr(other.m_ptr); |
| if (otherPtr) otherRefs->incWeak(this); |
| if (m_ptr) m_refs->decWeak(this); |
| m_ptr = otherPtr; |
| m_refs = otherRefs; |
| return *this; |
| } |
| |
| template<typename T> template<typename U> |
| wp<T>& wp<T>::operator = (const sp<U>& other) |
| { |
| weakref_type* newRefs = |
| other != nullptr ? other->createWeak(this) : 0; |
| U* otherPtr(other.m_ptr); |
| if (m_ptr) m_refs->decWeak(this); |
| m_ptr = otherPtr; |
| m_refs = newRefs; |
| return *this; |
| } |
| |
| template<typename T> |
| void wp<T>::set_object_and_refs(T* other, weakref_type* refs) |
| { |
| if (other) refs->incWeak(this); |
| if (m_ptr) m_refs->decWeak(this); |
| m_ptr = other; |
| m_refs = refs; |
| } |
| |
| template<typename T> |
| sp<T> wp<T>::promote() const |
| { |
| sp<T> result; |
| if (m_ptr && m_refs->attemptIncStrong(&result)) { |
| result.set_pointer(m_ptr); |
| } |
| return result; |
| } |
| |
| template<typename T> |
| void wp<T>::clear() |
| { |
| if (m_ptr) { |
| m_refs->decWeak(this); |
| m_refs = 0; |
| m_ptr = 0; |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| // this class just serves as a namespace so TYPE::moveReferences can stay |
| // private. |
| class ReferenceMover { |
| public: |
| // it would be nice if we could make sure no extra code is generated |
| // for sp<TYPE> or wp<TYPE> when TYPE is a descendant of RefBase: |
| // Using a sp<RefBase> override doesn't work; it's a bit like we wanted |
| // a template<typename TYPE inherits RefBase> template... |
| |
| template<typename TYPE> static inline |
| void move_references(sp<TYPE>* dest, sp<TYPE> const* src, size_t n) { |
| |
| class Renamer : public ReferenceRenamer { |
| sp<TYPE>* d_; |
| sp<TYPE> const* s_; |
| virtual void operator()(size_t i) const { |
| // The id are known to be the sp<>'s this pointer |
| TYPE::renameRefId(d_[i].get(), &s_[i], &d_[i]); |
| } |
| public: |
| Renamer(sp<TYPE>* d, sp<TYPE> const* s) : d_(d), s_(s) { } |
| virtual ~Renamer() { } |
| }; |
| |
| memmove(dest, src, n*sizeof(sp<TYPE>)); |
| TYPE::renameRefs(n, Renamer(dest, src)); |
| } |
| |
| |
| template<typename TYPE> static inline |
| void move_references(wp<TYPE>* dest, wp<TYPE> const* src, size_t n) { |
| |
| class Renamer : public ReferenceRenamer { |
| wp<TYPE>* d_; |
| wp<TYPE> const* s_; |
| virtual void operator()(size_t i) const { |
| // The id are known to be the wp<>'s this pointer |
| TYPE::renameRefId(d_[i].get_refs(), &s_[i], &d_[i]); |
| } |
| public: |
| Renamer(wp<TYPE>* rd, wp<TYPE> const* rs) : d_(rd), s_(rs) { } |
| virtual ~Renamer() { } |
| }; |
| |
| memmove(dest, src, n*sizeof(wp<TYPE>)); |
| TYPE::renameRefs(n, Renamer(dest, src)); |
| } |
| }; |
| |
| // specialization for moving sp<> and wp<> types. |
| // these are used by the [Sorted|Keyed]Vector<> implementations |
| // sp<> and wp<> need to be handled specially, because they do not |
| // have trivial copy operation in the general case (see RefBase.cpp |
| // when DEBUG ops are enabled), but can be implemented very |
| // efficiently in most cases. |
| |
| template<typename TYPE> inline |
| void move_forward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) { |
| ReferenceMover::move_references(d, s, n); |
| } |
| |
| template<typename TYPE> inline |
| void move_backward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) { |
| ReferenceMover::move_references(d, s, n); |
| } |
| |
| template<typename TYPE> inline |
| void move_forward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) { |
| ReferenceMover::move_references(d, s, n); |
| } |
| |
| template<typename TYPE> inline |
| void move_backward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) { |
| ReferenceMover::move_references(d, s, n); |
| } |
| |
| } // namespace android |
| |
| // --------------------------------------------------------------------------- |
| |
| #endif // ANDROID_REF_BASE_H |