| // |
| // Copyright (C) 2012 The Android Open Source Project |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| |
| #include "update_engine/delta_performer.h" |
| |
| #include <inttypes.h> |
| #include <sys/mount.h> |
| |
| #include <algorithm> |
| #include <string> |
| #include <vector> |
| |
| #include <base/files/file_path.h> |
| #include <base/files/file_util.h> |
| #include <base/strings/string_util.h> |
| #include <base/strings/stringprintf.h> |
| #include <google/protobuf/repeated_field.h> |
| #include <gtest/gtest.h> |
| |
| #include "update_engine/constants.h" |
| #include "update_engine/fake_hardware.h" |
| #include "update_engine/fake_system_state.h" |
| #include "update_engine/mock_prefs.h" |
| #include "update_engine/payload_constants.h" |
| #include "update_engine/payload_generator/delta_diff_generator.h" |
| #include "update_engine/payload_generator/payload_signer.h" |
| #include "update_engine/payload_verifier.h" |
| #include "update_engine/test_utils.h" |
| #include "update_engine/update_metadata.pb.h" |
| #include "update_engine/utils.h" |
| |
| namespace chromeos_update_engine { |
| |
| using std::string; |
| using std::vector; |
| using test_utils::ScopedLoopMounter; |
| using test_utils::System; |
| using test_utils::kRandomString; |
| using testing::Return; |
| using testing::_; |
| |
| extern const char* kUnittestPrivateKeyPath; |
| extern const char* kUnittestPublicKeyPath; |
| extern const char* kUnittestPrivateKey2Path; |
| extern const char* kUnittestPublicKey2Path; |
| |
| static const int kDefaultKernelSize = 4096; // Something small for a test |
| static const uint8_t kNewData[] = {'T', 'h', 'i', 's', ' ', 'i', 's', ' ', |
| 'n', 'e', 'w', ' ', 'd', 'a', 't', 'a', '.'}; |
| |
| namespace { |
| struct DeltaState { |
| string a_img; |
| string b_img; |
| string result_img; |
| size_t image_size; |
| |
| string delta_path; |
| uint64_t metadata_size; |
| |
| string old_kernel; |
| brillo::Blob old_kernel_data; |
| |
| string new_kernel; |
| brillo::Blob new_kernel_data; |
| |
| string result_kernel; |
| brillo::Blob result_kernel_data; |
| size_t kernel_size; |
| |
| // The InstallPlan referenced by the DeltaPerformer. This needs to outlive |
| // the DeltaPerformer. |
| InstallPlan install_plan; |
| |
| // The in-memory copy of delta file. |
| brillo::Blob delta; |
| |
| // The mock system state object with which we initialize the |
| // delta performer. |
| FakeSystemState fake_system_state; |
| }; |
| |
| enum SignatureTest { |
| kSignatureNone, // No payload signing. |
| kSignatureGenerator, // Sign the payload at generation time. |
| kSignatureGenerated, // Sign the payload after it's generated. |
| kSignatureGeneratedPlaceholder, // Insert placeholder signatures, then real. |
| kSignatureGeneratedPlaceholderMismatch, // Insert a wrong sized placeholder. |
| kSignatureGeneratedShell, // Sign the generated payload through shell cmds. |
| kSignatureGeneratedShellBadKey, // Sign with a bad key through shell cmds. |
| kSignatureGeneratedShellRotateCl1, // Rotate key, test client v1 |
| kSignatureGeneratedShellRotateCl2, // Rotate key, test client v2 |
| }; |
| |
| enum OperationHashTest { |
| kInvalidOperationData, |
| kValidOperationData, |
| }; |
| |
| } // namespace |
| |
| class DeltaPerformerIntegrationTest : public ::testing::Test { |
| public: |
| static void SetSupportedVersion(DeltaPerformer* performer, |
| uint64_t minor_version) { |
| performer->supported_minor_version_ = minor_version; |
| } |
| }; |
| |
| static void CompareFilesByBlock(const string& a_file, const string& b_file, |
| size_t image_size) { |
| EXPECT_EQ(0, image_size % kBlockSize); |
| |
| brillo::Blob a_data, b_data; |
| EXPECT_TRUE(utils::ReadFile(a_file, &a_data)) << "file failed: " << a_file; |
| EXPECT_TRUE(utils::ReadFile(b_file, &b_data)) << "file failed: " << b_file; |
| |
| EXPECT_GE(a_data.size(), image_size); |
| EXPECT_GE(b_data.size(), image_size); |
| for (size_t i = 0; i < image_size; i += kBlockSize) { |
| EXPECT_EQ(0, i % kBlockSize); |
| brillo::Blob a_sub(&a_data[i], &a_data[i + kBlockSize]); |
| brillo::Blob b_sub(&b_data[i], &b_data[i + kBlockSize]); |
| EXPECT_TRUE(a_sub == b_sub) << "Block " << (i/kBlockSize) << " differs"; |
| } |
| if (::testing::Test::HasNonfatalFailure()) { |
| LOG(INFO) << "Compared filesystems with size " << image_size |
| << ", partition A " << a_file << " size: " << a_data.size() |
| << ", partition B " << b_file << " size: " << b_data.size(); |
| } |
| } |
| |
| static bool WriteSparseFile(const string& path, off_t size) { |
| int fd = open(path.c_str(), O_CREAT | O_TRUNC | O_WRONLY, 0644); |
| TEST_AND_RETURN_FALSE_ERRNO(fd >= 0); |
| ScopedFdCloser fd_closer(&fd); |
| off_t rc = lseek(fd, size + 1, SEEK_SET); |
| TEST_AND_RETURN_FALSE_ERRNO(rc != static_cast<off_t>(-1)); |
| int return_code = ftruncate(fd, size); |
| TEST_AND_RETURN_FALSE_ERRNO(return_code == 0); |
| return true; |
| } |
| |
| static size_t GetSignatureSize(const string& private_key_path) { |
| const brillo::Blob data(1, 'x'); |
| brillo::Blob hash; |
| EXPECT_TRUE(OmahaHashCalculator::RawHashOfData(data, &hash)); |
| brillo::Blob signature; |
| EXPECT_TRUE(PayloadSigner::SignHash(hash, |
| private_key_path, |
| &signature)); |
| return signature.size(); |
| } |
| |
| static bool InsertSignaturePlaceholder(int signature_size, |
| const string& payload_path, |
| uint64_t* out_metadata_size) { |
| vector<brillo::Blob> signatures; |
| signatures.push_back(brillo::Blob(signature_size, 0)); |
| |
| return PayloadSigner::AddSignatureToPayload( |
| payload_path, |
| signatures, |
| {}, |
| payload_path, |
| out_metadata_size); |
| } |
| |
| static void SignGeneratedPayload(const string& payload_path, |
| uint64_t* out_metadata_size) { |
| int signature_size = GetSignatureSize(kUnittestPrivateKeyPath); |
| brillo::Blob hash; |
| ASSERT_TRUE(PayloadSigner::HashPayloadForSigning( |
| payload_path, |
| vector<int>(1, signature_size), |
| &hash, |
| nullptr)); |
| brillo::Blob signature; |
| ASSERT_TRUE(PayloadSigner::SignHash(hash, |
| kUnittestPrivateKeyPath, |
| &signature)); |
| ASSERT_TRUE(PayloadSigner::AddSignatureToPayload( |
| payload_path, |
| vector<brillo::Blob>(1, signature), |
| {}, |
| payload_path, |
| out_metadata_size)); |
| EXPECT_TRUE(PayloadSigner::VerifySignedPayload( |
| payload_path, |
| kUnittestPublicKeyPath)); |
| } |
| |
| static void SignGeneratedShellPayload(SignatureTest signature_test, |
| const string& payload_path) { |
| string private_key_path = kUnittestPrivateKeyPath; |
| if (signature_test == kSignatureGeneratedShellBadKey) { |
| ASSERT_TRUE(utils::MakeTempFile("key.XXXXXX", |
| &private_key_path, |
| nullptr)); |
| } else { |
| ASSERT_TRUE(signature_test == kSignatureGeneratedShell || |
| signature_test == kSignatureGeneratedShellRotateCl1 || |
| signature_test == kSignatureGeneratedShellRotateCl2); |
| } |
| ScopedPathUnlinker key_unlinker(private_key_path); |
| key_unlinker.set_should_remove(signature_test == |
| kSignatureGeneratedShellBadKey); |
| // Generates a new private key that will not match the public key. |
| if (signature_test == kSignatureGeneratedShellBadKey) { |
| LOG(INFO) << "Generating a mismatched private key."; |
| ASSERT_EQ(0, System(base::StringPrintf( |
| "openssl genrsa -out %s 2048", private_key_path.c_str()))); |
| } |
| int signature_size = GetSignatureSize(private_key_path); |
| string hash_file; |
| ASSERT_TRUE(utils::MakeTempFile("hash.XXXXXX", &hash_file, nullptr)); |
| ScopedPathUnlinker hash_unlinker(hash_file); |
| string signature_size_string; |
| if (signature_test == kSignatureGeneratedShellRotateCl1 || |
| signature_test == kSignatureGeneratedShellRotateCl2) |
| signature_size_string = base::StringPrintf("%d:%d", |
| signature_size, signature_size); |
| else |
| signature_size_string = base::StringPrintf("%d", signature_size); |
| ASSERT_EQ(0, |
| System(base::StringPrintf( |
| "./delta_generator -in_file=%s -signature_size=%s " |
| "-out_hash_file=%s", |
| payload_path.c_str(), |
| signature_size_string.c_str(), |
| hash_file.c_str()))); |
| |
| // Pad the hash |
| brillo::Blob hash; |
| ASSERT_TRUE(utils::ReadFile(hash_file, &hash)); |
| ASSERT_TRUE(PayloadVerifier::PadRSA2048SHA256Hash(&hash)); |
| ASSERT_TRUE(test_utils::WriteFileVector(hash_file, hash)); |
| |
| string sig_file; |
| ASSERT_TRUE(utils::MakeTempFile("signature.XXXXXX", &sig_file, nullptr)); |
| ScopedPathUnlinker sig_unlinker(sig_file); |
| ASSERT_EQ(0, |
| System(base::StringPrintf( |
| "openssl rsautl -raw -sign -inkey %s -in %s -out %s", |
| private_key_path.c_str(), |
| hash_file.c_str(), |
| sig_file.c_str()))); |
| string sig_file2; |
| ASSERT_TRUE(utils::MakeTempFile("signature.XXXXXX", &sig_file2, nullptr)); |
| ScopedPathUnlinker sig2_unlinker(sig_file2); |
| if (signature_test == kSignatureGeneratedShellRotateCl1 || |
| signature_test == kSignatureGeneratedShellRotateCl2) { |
| ASSERT_EQ(0, |
| System(base::StringPrintf( |
| "openssl rsautl -raw -sign -inkey %s -in %s -out %s", |
| kUnittestPrivateKey2Path, |
| hash_file.c_str(), |
| sig_file2.c_str()))); |
| // Append second sig file to first path |
| sig_file += ":" + sig_file2; |
| } |
| |
| ASSERT_EQ(0, |
| System(base::StringPrintf( |
| "./delta_generator -in_file=%s -signature_file=%s " |
| "-out_file=%s", |
| payload_path.c_str(), |
| sig_file.c_str(), |
| payload_path.c_str()))); |
| int verify_result = |
| System(base::StringPrintf( |
| "./delta_generator -in_file=%s -public_key=%s -public_key_version=%d", |
| payload_path.c_str(), |
| signature_test == kSignatureGeneratedShellRotateCl2 ? |
| kUnittestPublicKey2Path : kUnittestPublicKeyPath, |
| signature_test == kSignatureGeneratedShellRotateCl2 ? 2 : 1)); |
| if (signature_test == kSignatureGeneratedShellBadKey) { |
| ASSERT_NE(0, verify_result); |
| } else { |
| ASSERT_EQ(0, verify_result); |
| } |
| } |
| |
| static void GenerateDeltaFile(bool full_kernel, |
| bool full_rootfs, |
| bool noop, |
| ssize_t chunk_size, |
| SignatureTest signature_test, |
| DeltaState *state, |
| uint32_t minor_version) { |
| EXPECT_TRUE(utils::MakeTempFile("a_img.XXXXXX", &state->a_img, nullptr)); |
| EXPECT_TRUE(utils::MakeTempFile("b_img.XXXXXX", &state->b_img, nullptr)); |
| |
| // result_img is used in minor version 2. Instead of applying the update |
| // in-place on A, we apply it to a new image, result_img. |
| EXPECT_TRUE( |
| utils::MakeTempFile("result_img.XXXXXX", &state->result_img, nullptr)); |
| test_utils::CreateExtImageAtPath(state->a_img, nullptr); |
| |
| state->image_size = utils::FileSize(state->a_img); |
| |
| // Create ImageInfo A & B |
| ImageInfo old_image_info; |
| ImageInfo new_image_info; |
| |
| if (!full_rootfs) { |
| old_image_info.set_channel("src-channel"); |
| old_image_info.set_board("src-board"); |
| old_image_info.set_version("src-version"); |
| old_image_info.set_key("src-key"); |
| old_image_info.set_build_channel("src-build-channel"); |
| old_image_info.set_build_version("src-build-version"); |
| } |
| |
| new_image_info.set_channel("test-channel"); |
| new_image_info.set_board("test-board"); |
| new_image_info.set_version("test-version"); |
| new_image_info.set_key("test-key"); |
| new_image_info.set_build_channel("test-build-channel"); |
| new_image_info.set_build_version("test-build-version"); |
| |
| // Make some changes to the A image. |
| { |
| string a_mnt; |
| ScopedLoopMounter b_mounter(state->a_img, &a_mnt, 0); |
| |
| brillo::Blob hardtocompress; |
| while (hardtocompress.size() < 3 * kBlockSize) { |
| hardtocompress.insert(hardtocompress.end(), |
| std::begin(kRandomString), std::end(kRandomString)); |
| } |
| EXPECT_TRUE(utils::WriteFile(base::StringPrintf("%s/hardtocompress", |
| a_mnt.c_str()).c_str(), |
| hardtocompress.data(), |
| hardtocompress.size())); |
| |
| brillo::Blob zeros(16 * 1024, 0); |
| EXPECT_EQ(zeros.size(), |
| base::WriteFile(base::FilePath(base::StringPrintf( |
| "%s/move-to-sparse", a_mnt.c_str())), |
| reinterpret_cast<const char*>(zeros.data()), |
| zeros.size())); |
| |
| EXPECT_TRUE( |
| WriteSparseFile(base::StringPrintf("%s/move-from-sparse", |
| a_mnt.c_str()), 16 * 1024)); |
| |
| EXPECT_EQ(0, |
| System(base::StringPrintf("dd if=/dev/zero of=%s/move-semi-sparse" |
| " bs=1 seek=4096 count=1 status=none", |
| a_mnt.c_str()).c_str())); |
| |
| // Write 1 MiB of 0xff to try to catch the case where writing a bsdiff |
| // patch fails to zero out the final block. |
| brillo::Blob ones(1024 * 1024, 0xff); |
| EXPECT_TRUE(utils::WriteFile(base::StringPrintf("%s/ones", |
| a_mnt.c_str()).c_str(), |
| ones.data(), |
| ones.size())); |
| } |
| |
| if (noop) { |
| EXPECT_TRUE(base::CopyFile(base::FilePath(state->a_img), |
| base::FilePath(state->b_img))); |
| old_image_info = new_image_info; |
| } else { |
| if (minor_version == kSourceMinorPayloadVersion) { |
| // Create a result image with image_size bytes of garbage. |
| brillo::Blob ones(state->image_size, 0xff); |
| EXPECT_TRUE(utils::WriteFile(state->result_img.c_str(), |
| ones.data(), |
| ones.size())); |
| EXPECT_EQ(utils::FileSize(state->a_img), |
| utils::FileSize(state->result_img)); |
| } |
| |
| test_utils::CreateExtImageAtPath(state->b_img, nullptr); |
| |
| // Make some changes to the B image. |
| string b_mnt; |
| ScopedLoopMounter b_mounter(state->b_img, &b_mnt, 0); |
| |
| EXPECT_EQ(0, System(base::StringPrintf("cp %s/hello %s/hello2", |
| b_mnt.c_str(), |
| b_mnt.c_str()).c_str())); |
| EXPECT_EQ(0, System(base::StringPrintf("rm %s/hello", |
| b_mnt.c_str()).c_str())); |
| EXPECT_EQ(0, System(base::StringPrintf("mv %s/hello2 %s/hello", |
| b_mnt.c_str(), |
| b_mnt.c_str()).c_str())); |
| EXPECT_EQ(0, System(base::StringPrintf("echo foo > %s/foo", |
| b_mnt.c_str()).c_str())); |
| EXPECT_EQ(0, System(base::StringPrintf("touch %s/emptyfile", |
| b_mnt.c_str()).c_str())); |
| EXPECT_TRUE(WriteSparseFile(base::StringPrintf("%s/fullsparse", |
| b_mnt.c_str()), |
| 1024 * 1024)); |
| |
| EXPECT_TRUE( |
| WriteSparseFile(base::StringPrintf("%s/move-to-sparse", b_mnt.c_str()), |
| 16 * 1024)); |
| |
| brillo::Blob zeros(16 * 1024, 0); |
| EXPECT_EQ(zeros.size(), |
| base::WriteFile(base::FilePath(base::StringPrintf( |
| "%s/move-from-sparse", b_mnt.c_str())), |
| reinterpret_cast<const char*>(zeros.data()), |
| zeros.size())); |
| |
| EXPECT_EQ(0, System(base::StringPrintf("dd if=/dev/zero " |
| "of=%s/move-semi-sparse " |
| "bs=1 seek=4096 count=1 status=none", |
| b_mnt.c_str()).c_str())); |
| |
| EXPECT_EQ(0, System(base::StringPrintf("dd if=/dev/zero " |
| "of=%s/partsparse bs=1 " |
| "seek=4096 count=1 status=none", |
| b_mnt.c_str()).c_str())); |
| EXPECT_EQ(0, System(base::StringPrintf("cp %s/srchardlink0 %s/tmp && " |
| "mv %s/tmp %s/srchardlink1", |
| b_mnt.c_str(), |
| b_mnt.c_str(), |
| b_mnt.c_str(), |
| b_mnt.c_str()).c_str())); |
| EXPECT_EQ(0, System( |
| base::StringPrintf("rm %s/boguslink && echo foobar > %s/boguslink", |
| b_mnt.c_str(), b_mnt.c_str()).c_str())); |
| |
| brillo::Blob hardtocompress; |
| while (hardtocompress.size() < 3 * kBlockSize) { |
| hardtocompress.insert(hardtocompress.end(), |
| std::begin(kRandomString), std::end(kRandomString)); |
| } |
| EXPECT_TRUE(utils::WriteFile(base::StringPrintf("%s/hardtocompress", |
| b_mnt.c_str()).c_str(), |
| hardtocompress.data(), |
| hardtocompress.size())); |
| } |
| |
| string old_kernel; |
| EXPECT_TRUE(utils::MakeTempFile("old_kernel.XXXXXX", |
| &state->old_kernel, |
| nullptr)); |
| |
| string new_kernel; |
| EXPECT_TRUE(utils::MakeTempFile("new_kernel.XXXXXX", |
| &state->new_kernel, |
| nullptr)); |
| |
| string result_kernel; |
| EXPECT_TRUE(utils::MakeTempFile("result_kernel.XXXXXX", |
| &state->result_kernel, |
| nullptr)); |
| |
| state->kernel_size = kDefaultKernelSize; |
| state->old_kernel_data.resize(kDefaultKernelSize); |
| state->new_kernel_data.resize(state->old_kernel_data.size()); |
| state->result_kernel_data.resize(state->old_kernel_data.size()); |
| test_utils::FillWithData(&state->old_kernel_data); |
| test_utils::FillWithData(&state->new_kernel_data); |
| test_utils::FillWithData(&state->result_kernel_data); |
| |
| // change the new kernel data |
| std::copy(std::begin(kNewData), std::end(kNewData), |
| state->new_kernel_data.begin()); |
| |
| if (noop) { |
| state->old_kernel_data = state->new_kernel_data; |
| } |
| |
| // Write kernels to disk |
| EXPECT_TRUE(utils::WriteFile(state->old_kernel.c_str(), |
| state->old_kernel_data.data(), |
| state->old_kernel_data.size())); |
| EXPECT_TRUE(utils::WriteFile(state->new_kernel.c_str(), |
| state->new_kernel_data.data(), |
| state->new_kernel_data.size())); |
| EXPECT_TRUE(utils::WriteFile(state->result_kernel.c_str(), |
| state->result_kernel_data.data(), |
| state->result_kernel_data.size())); |
| |
| EXPECT_TRUE(utils::MakeTempFile("delta.XXXXXX", |
| &state->delta_path, |
| nullptr)); |
| LOG(INFO) << "delta path: " << state->delta_path; |
| { |
| const string private_key = |
| signature_test == kSignatureGenerator ? kUnittestPrivateKeyPath : ""; |
| |
| PayloadGenerationConfig payload_config; |
| payload_config.is_delta = !full_rootfs; |
| payload_config.hard_chunk_size = chunk_size; |
| payload_config.rootfs_partition_size = kRootFSPartitionSize; |
| payload_config.major_version = kChromeOSMajorPayloadVersion; |
| payload_config.minor_version = minor_version; |
| if (!full_rootfs) { |
| payload_config.source.partitions.emplace_back(kLegacyPartitionNameRoot); |
| payload_config.source.partitions.emplace_back(kLegacyPartitionNameKernel); |
| payload_config.source.partitions.front().path = state->a_img; |
| if (!full_kernel) |
| payload_config.source.partitions.back().path = state->old_kernel; |
| payload_config.source.image_info = old_image_info; |
| EXPECT_TRUE(payload_config.source.LoadImageSize()); |
| for (PartitionConfig& part : payload_config.source.partitions) |
| EXPECT_TRUE(part.OpenFilesystem()); |
| } else { |
| if (payload_config.hard_chunk_size == -1) |
| // Use 1 MiB chunk size for the full unittests. |
| payload_config.hard_chunk_size = 1024 * 1024; |
| } |
| payload_config.target.partitions.emplace_back(kLegacyPartitionNameRoot); |
| payload_config.target.partitions.back().path = state->b_img; |
| payload_config.target.partitions.emplace_back(kLegacyPartitionNameKernel); |
| payload_config.target.partitions.back().path = state->new_kernel; |
| payload_config.target.image_info = new_image_info; |
| EXPECT_TRUE(payload_config.target.LoadImageSize()); |
| for (PartitionConfig& part : payload_config.target.partitions) |
| EXPECT_TRUE(part.OpenFilesystem()); |
| |
| EXPECT_TRUE(payload_config.Validate()); |
| EXPECT_TRUE( |
| GenerateUpdatePayloadFile( |
| payload_config, |
| state->delta_path, |
| private_key, |
| &state->metadata_size)); |
| } |
| // Extend the "partitions" holding the file system a bit. |
| EXPECT_EQ(0, HANDLE_EINTR(truncate(state->a_img.c_str(), |
| state->image_size + 1024 * 1024))); |
| EXPECT_EQ(state->image_size + 1024 * 1024, utils::FileSize(state->a_img)); |
| EXPECT_EQ(0, HANDLE_EINTR(truncate(state->b_img.c_str(), |
| state->image_size + 1024 * 1024))); |
| EXPECT_EQ(state->image_size + 1024 * 1024, utils::FileSize(state->b_img)); |
| |
| if (signature_test == kSignatureGeneratedPlaceholder || |
| signature_test == kSignatureGeneratedPlaceholderMismatch) { |
| int signature_size = GetSignatureSize(kUnittestPrivateKeyPath); |
| LOG(INFO) << "Inserting placeholder signature."; |
| ASSERT_TRUE(InsertSignaturePlaceholder(signature_size, state->delta_path, |
| &state->metadata_size)); |
| |
| if (signature_test == kSignatureGeneratedPlaceholderMismatch) { |
| signature_size -= 1; |
| LOG(INFO) << "Inserting mismatched placeholder signature."; |
| ASSERT_FALSE(InsertSignaturePlaceholder(signature_size, state->delta_path, |
| &state->metadata_size)); |
| return; |
| } |
| } |
| |
| if (signature_test == kSignatureGenerated || |
| signature_test == kSignatureGeneratedPlaceholder || |
| signature_test == kSignatureGeneratedPlaceholderMismatch) { |
| // Generate the signed payload and update the metadata size in state to |
| // reflect the new size after adding the signature operation to the |
| // manifest. |
| LOG(INFO) << "Signing payload."; |
| SignGeneratedPayload(state->delta_path, &state->metadata_size); |
| } else if (signature_test == kSignatureGeneratedShell || |
| signature_test == kSignatureGeneratedShellBadKey || |
| signature_test == kSignatureGeneratedShellRotateCl1 || |
| signature_test == kSignatureGeneratedShellRotateCl2) { |
| SignGeneratedShellPayload(signature_test, state->delta_path); |
| } |
| } |
| |
| static void ApplyDeltaFile(bool full_kernel, bool full_rootfs, bool noop, |
| SignatureTest signature_test, DeltaState* state, |
| bool hash_checks_mandatory, |
| OperationHashTest op_hash_test, |
| DeltaPerformer** performer, |
| uint32_t minor_version) { |
| // Check the metadata. |
| { |
| DeltaArchiveManifest manifest; |
| EXPECT_TRUE(PayloadSigner::LoadPayload(state->delta_path, |
| &state->delta, |
| &manifest, |
| nullptr, |
| &state->metadata_size, |
| nullptr)); |
| LOG(INFO) << "Metadata size: " << state->metadata_size; |
| |
| |
| |
| if (signature_test == kSignatureNone) { |
| EXPECT_FALSE(manifest.has_signatures_offset()); |
| EXPECT_FALSE(manifest.has_signatures_size()); |
| } else { |
| EXPECT_TRUE(manifest.has_signatures_offset()); |
| EXPECT_TRUE(manifest.has_signatures_size()); |
| Signatures sigs_message; |
| EXPECT_TRUE(sigs_message.ParseFromArray( |
| &state->delta[state->metadata_size + manifest.signatures_offset()], |
| manifest.signatures_size())); |
| if (signature_test == kSignatureGeneratedShellRotateCl1 || |
| signature_test == kSignatureGeneratedShellRotateCl2) |
| EXPECT_EQ(2, sigs_message.signatures_size()); |
| else |
| EXPECT_EQ(1, sigs_message.signatures_size()); |
| const Signatures_Signature& signature = sigs_message.signatures(0); |
| EXPECT_EQ(1, signature.version()); |
| |
| uint64_t expected_sig_data_length = 0; |
| vector<string> key_paths{kUnittestPrivateKeyPath}; |
| if (signature_test == kSignatureGeneratedShellRotateCl1 || |
| signature_test == kSignatureGeneratedShellRotateCl2) { |
| key_paths.push_back(kUnittestPrivateKey2Path); |
| } |
| EXPECT_TRUE(PayloadSigner::SignatureBlobLength( |
| key_paths, |
| &expected_sig_data_length)); |
| EXPECT_EQ(expected_sig_data_length, manifest.signatures_size()); |
| EXPECT_FALSE(signature.data().empty()); |
| } |
| |
| if (noop) { |
| EXPECT_EQ(0, manifest.install_operations_size()); |
| EXPECT_EQ(1, manifest.kernel_install_operations_size()); |
| } |
| |
| if (full_kernel) { |
| EXPECT_FALSE(manifest.has_old_kernel_info()); |
| } else { |
| EXPECT_EQ(state->old_kernel_data.size(), |
| manifest.old_kernel_info().size()); |
| EXPECT_FALSE(manifest.old_kernel_info().hash().empty()); |
| } |
| |
| EXPECT_EQ(manifest.new_image_info().channel(), "test-channel"); |
| EXPECT_EQ(manifest.new_image_info().board(), "test-board"); |
| EXPECT_EQ(manifest.new_image_info().version(), "test-version"); |
| EXPECT_EQ(manifest.new_image_info().key(), "test-key"); |
| EXPECT_EQ(manifest.new_image_info().build_channel(), "test-build-channel"); |
| EXPECT_EQ(manifest.new_image_info().build_version(), "test-build-version"); |
| |
| if (!full_rootfs) { |
| if (noop) { |
| EXPECT_EQ(manifest.old_image_info().channel(), "test-channel"); |
| EXPECT_EQ(manifest.old_image_info().board(), "test-board"); |
| EXPECT_EQ(manifest.old_image_info().version(), "test-version"); |
| EXPECT_EQ(manifest.old_image_info().key(), "test-key"); |
| EXPECT_EQ(manifest.old_image_info().build_channel(), |
| "test-build-channel"); |
| EXPECT_EQ(manifest.old_image_info().build_version(), |
| "test-build-version"); |
| } else { |
| EXPECT_EQ(manifest.old_image_info().channel(), "src-channel"); |
| EXPECT_EQ(manifest.old_image_info().board(), "src-board"); |
| EXPECT_EQ(manifest.old_image_info().version(), "src-version"); |
| EXPECT_EQ(manifest.old_image_info().key(), "src-key"); |
| EXPECT_EQ(manifest.old_image_info().build_channel(), |
| "src-build-channel"); |
| EXPECT_EQ(manifest.old_image_info().build_version(), |
| "src-build-version"); |
| } |
| } |
| |
| |
| if (full_rootfs) { |
| EXPECT_FALSE(manifest.has_old_rootfs_info()); |
| EXPECT_FALSE(manifest.has_old_image_info()); |
| EXPECT_TRUE(manifest.has_new_image_info()); |
| } else { |
| EXPECT_EQ(state->image_size, manifest.old_rootfs_info().size()); |
| EXPECT_FALSE(manifest.old_rootfs_info().hash().empty()); |
| } |
| |
| EXPECT_EQ(state->new_kernel_data.size(), manifest.new_kernel_info().size()); |
| EXPECT_EQ(state->image_size, manifest.new_rootfs_info().size()); |
| |
| EXPECT_FALSE(manifest.new_kernel_info().hash().empty()); |
| EXPECT_FALSE(manifest.new_rootfs_info().hash().empty()); |
| } |
| |
| MockPrefs prefs; |
| EXPECT_CALL(prefs, SetInt64(kPrefsManifestMetadataSize, |
| state->metadata_size)).WillOnce(Return(true)); |
| EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextOperation, _)) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(prefs, GetInt64(kPrefsUpdateStateNextOperation, _)) |
| .WillOnce(Return(false)); |
| EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextDataOffset, _)) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextDataLength, _)) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSHA256Context, _)) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSignedSHA256Context, _)) |
| .WillRepeatedly(Return(true)); |
| if (op_hash_test == kValidOperationData && signature_test != kSignatureNone) { |
| EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSignatureBlob, _)) |
| .WillOnce(Return(true)); |
| } |
| |
| // Update the A image in place. |
| InstallPlan* install_plan = &state->install_plan; |
| install_plan->hash_checks_mandatory = hash_checks_mandatory; |
| install_plan->metadata_size = state->metadata_size; |
| install_plan->is_full_update = full_kernel && full_rootfs; |
| install_plan->source_slot = 0; |
| install_plan->target_slot = 1; |
| |
| InstallPlan::Partition root_part; |
| root_part.name = kLegacyPartitionNameRoot; |
| |
| InstallPlan::Partition kernel_part; |
| kernel_part.name = kLegacyPartitionNameKernel; |
| |
| LOG(INFO) << "Setting payload metadata size in Omaha = " |
| << state->metadata_size; |
| ASSERT_TRUE(PayloadSigner::GetMetadataSignature( |
| state->delta.data(), |
| state->metadata_size, |
| kUnittestPrivateKeyPath, |
| &install_plan->metadata_signature)); |
| EXPECT_FALSE(install_plan->metadata_signature.empty()); |
| |
| *performer = new DeltaPerformer(&prefs, |
| &state->fake_system_state, |
| install_plan); |
| EXPECT_TRUE(utils::FileExists(kUnittestPublicKeyPath)); |
| (*performer)->set_public_key_path(kUnittestPublicKeyPath); |
| DeltaPerformerIntegrationTest::SetSupportedVersion(*performer, minor_version); |
| |
| EXPECT_EQ(state->image_size, |
| OmahaHashCalculator::RawHashOfFile( |
| state->a_img, |
| state->image_size, |
| &root_part.source_hash)); |
| EXPECT_TRUE(OmahaHashCalculator::RawHashOfData( |
| state->old_kernel_data, |
| &kernel_part.source_hash)); |
| |
| // This partitions are normally filed by the FilesystemVerifierAction with |
| // the source hashes used for deltas. |
| install_plan->partitions = {root_part, kernel_part}; |
| |
| // With minor version 2, we want the target to be the new image, result_img, |
| // but with version 1, we want to update A in place. |
| string target_root, target_kernel; |
| if (minor_version == kSourceMinorPayloadVersion) { |
| target_root = state->result_img; |
| target_kernel = state->result_kernel; |
| } else { |
| target_root = state->a_img; |
| target_kernel = state->old_kernel; |
| } |
| |
| state->fake_system_state.fake_boot_control()->SetPartitionDevice( |
| kLegacyPartitionNameRoot, install_plan->source_slot, state->a_img); |
| state->fake_system_state.fake_boot_control()->SetPartitionDevice( |
| kLegacyPartitionNameKernel, install_plan->source_slot, state->old_kernel); |
| state->fake_system_state.fake_boot_control()->SetPartitionDevice( |
| kLegacyPartitionNameRoot, install_plan->target_slot, target_root); |
| state->fake_system_state.fake_boot_control()->SetPartitionDevice( |
| kLegacyPartitionNameKernel, install_plan->target_slot, target_kernel); |
| |
| ErrorCode expected_error, actual_error; |
| bool continue_writing; |
| switch (op_hash_test) { |
| case kInvalidOperationData: { |
| // Muck with some random offset post the metadata size so that |
| // some operation hash will result in a mismatch. |
| int some_offset = state->metadata_size + 300; |
| LOG(INFO) << "Tampered value at offset: " << some_offset; |
| state->delta[some_offset]++; |
| expected_error = ErrorCode::kDownloadOperationHashMismatch; |
| continue_writing = false; |
| break; |
| } |
| |
| case kValidOperationData: |
| default: |
| // no change. |
| expected_error = ErrorCode::kSuccess; |
| continue_writing = true; |
| break; |
| } |
| |
| // Write at some number of bytes per operation. Arbitrarily chose 5. |
| const size_t kBytesPerWrite = 5; |
| for (size_t i = 0; i < state->delta.size(); i += kBytesPerWrite) { |
| size_t count = std::min(state->delta.size() - i, kBytesPerWrite); |
| bool write_succeeded = ((*performer)->Write(&state->delta[i], |
| count, |
| &actual_error)); |
| // Normally write_succeeded should be true every time and |
| // actual_error should be ErrorCode::kSuccess. If so, continue the loop. |
| // But if we seeded an operation hash error above, then write_succeeded |
| // will be false. The failure may happen at any operation n. So, all |
| // Writes until n-1 should succeed and the nth operation will fail with |
| // actual_error. In this case, we should bail out of the loop because |
| // we cannot proceed applying the delta. |
| if (!write_succeeded) { |
| LOG(INFO) << "Write failed. Checking if it failed with expected error"; |
| EXPECT_EQ(expected_error, actual_error); |
| if (!continue_writing) { |
| LOG(INFO) << "Cannot continue writing. Bailing out."; |
| break; |
| } |
| } |
| |
| EXPECT_EQ(ErrorCode::kSuccess, actual_error); |
| } |
| |
| // If we had continued all the way through, Close should succeed. |
| // Otherwise, it should fail. Check appropriately. |
| bool close_result = (*performer)->Close(); |
| if (continue_writing) |
| EXPECT_EQ(0, close_result); |
| else |
| EXPECT_LE(0, close_result); |
| } |
| |
| void VerifyPayloadResult(DeltaPerformer* performer, |
| DeltaState* state, |
| ErrorCode expected_result, |
| uint32_t minor_version) { |
| if (!performer) { |
| EXPECT_TRUE(!"Skipping payload verification since performer is null."); |
| return; |
| } |
| |
| int expected_times = (expected_result == ErrorCode::kSuccess) ? 1 : 0; |
| EXPECT_CALL(*(state->fake_system_state.mock_payload_state()), |
| DownloadComplete()).Times(expected_times); |
| |
| LOG(INFO) << "Verifying payload for expected result " |
| << expected_result; |
| EXPECT_EQ(expected_result, performer->VerifyPayload( |
| OmahaHashCalculator::OmahaHashOfData(state->delta), |
| state->delta.size())); |
| LOG(INFO) << "Verified payload."; |
| |
| if (expected_result != ErrorCode::kSuccess) { |
| // no need to verify new partition if VerifyPayload failed. |
| return; |
| } |
| |
| brillo::Blob updated_kernel_partition; |
| if (minor_version == kSourceMinorPayloadVersion) { |
| CompareFilesByBlock(state->result_kernel, state->new_kernel, |
| state->kernel_size); |
| CompareFilesByBlock(state->result_img, state->b_img, |
| state->image_size); |
| EXPECT_TRUE(utils::ReadFile(state->result_kernel, |
| &updated_kernel_partition)); |
| } else { |
| CompareFilesByBlock(state->old_kernel, state->new_kernel, |
| state->kernel_size); |
| CompareFilesByBlock(state->a_img, state->b_img, |
| state->image_size); |
| EXPECT_TRUE(utils::ReadFile(state->old_kernel, &updated_kernel_partition)); |
| } |
| |
| ASSERT_GE(updated_kernel_partition.size(), arraysize(kNewData)); |
| EXPECT_TRUE(std::equal(std::begin(kNewData), std::end(kNewData), |
| updated_kernel_partition.begin())); |
| |
| const auto& partitions = state->install_plan.partitions; |
| EXPECT_EQ(2, partitions.size()); |
| EXPECT_EQ(kLegacyPartitionNameRoot, partitions[0].name); |
| EXPECT_EQ(kLegacyPartitionNameKernel, partitions[1].name); |
| |
| EXPECT_EQ(kDefaultKernelSize, partitions[1].target_size); |
| brillo::Blob expected_new_kernel_hash; |
| EXPECT_TRUE(OmahaHashCalculator::RawHashOfData(state->new_kernel_data, |
| &expected_new_kernel_hash)); |
| EXPECT_EQ(expected_new_kernel_hash, partitions[1].target_hash); |
| |
| EXPECT_EQ(state->image_size, partitions[0].target_size); |
| brillo::Blob expected_new_rootfs_hash; |
| EXPECT_EQ(state->image_size, |
| OmahaHashCalculator::RawHashOfFile(state->b_img, |
| state->image_size, |
| &expected_new_rootfs_hash)); |
| EXPECT_EQ(expected_new_rootfs_hash, partitions[0].target_hash); |
| } |
| |
| void VerifyPayload(DeltaPerformer* performer, |
| DeltaState* state, |
| SignatureTest signature_test, |
| uint32_t minor_version) { |
| ErrorCode expected_result = ErrorCode::kSuccess; |
| switch (signature_test) { |
| case kSignatureNone: |
| expected_result = ErrorCode::kSignedDeltaPayloadExpectedError; |
| break; |
| case kSignatureGeneratedShellBadKey: |
| expected_result = ErrorCode::kDownloadPayloadPubKeyVerificationError; |
| break; |
| default: break; // appease gcc |
| } |
| |
| VerifyPayloadResult(performer, state, expected_result, minor_version); |
| } |
| |
| void DoSmallImageTest(bool full_kernel, bool full_rootfs, bool noop, |
| ssize_t chunk_size, |
| SignatureTest signature_test, |
| bool hash_checks_mandatory, uint32_t minor_version) { |
| DeltaState state; |
| DeltaPerformer *performer = nullptr; |
| GenerateDeltaFile(full_kernel, full_rootfs, noop, chunk_size, |
| signature_test, &state, minor_version); |
| |
| ScopedPathUnlinker a_img_unlinker(state.a_img); |
| ScopedPathUnlinker b_img_unlinker(state.b_img); |
| ScopedPathUnlinker new_img_unlinker(state.result_img); |
| ScopedPathUnlinker delta_unlinker(state.delta_path); |
| ScopedPathUnlinker old_kernel_unlinker(state.old_kernel); |
| ScopedPathUnlinker new_kernel_unlinker(state.new_kernel); |
| ScopedPathUnlinker result_kernel_unlinker(state.result_kernel); |
| ApplyDeltaFile(full_kernel, full_rootfs, noop, signature_test, |
| &state, hash_checks_mandatory, kValidOperationData, |
| &performer, minor_version); |
| VerifyPayload(performer, &state, signature_test, minor_version); |
| delete performer; |
| } |
| |
| void DoOperationHashMismatchTest(OperationHashTest op_hash_test, |
| bool hash_checks_mandatory) { |
| DeltaState state; |
| uint64_t minor_version = kFullPayloadMinorVersion; |
| GenerateDeltaFile(true, true, false, -1, kSignatureGenerated, &state, |
| minor_version); |
| ScopedPathUnlinker a_img_unlinker(state.a_img); |
| ScopedPathUnlinker b_img_unlinker(state.b_img); |
| ScopedPathUnlinker delta_unlinker(state.delta_path); |
| ScopedPathUnlinker old_kernel_unlinker(state.old_kernel); |
| ScopedPathUnlinker new_kernel_unlinker(state.new_kernel); |
| DeltaPerformer *performer = nullptr; |
| ApplyDeltaFile(true, true, false, kSignatureGenerated, &state, |
| hash_checks_mandatory, op_hash_test, &performer, |
| minor_version); |
| delete performer; |
| } |
| |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageTest) { |
| DoSmallImageTest(false, false, false, -1, kSignatureGenerator, |
| false, kInPlaceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignaturePlaceholderTest) { |
| DoSmallImageTest(false, false, false, -1, kSignatureGeneratedPlaceholder, |
| false, kInPlaceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignaturePlaceholderMismatchTest) { |
| DeltaState state; |
| GenerateDeltaFile(false, false, false, -1, |
| kSignatureGeneratedPlaceholderMismatch, &state, |
| kInPlaceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageChunksTest) { |
| DoSmallImageTest(false, false, false, kBlockSize, kSignatureGenerator, |
| false, kInPlaceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootFullKernelSmallImageTest) { |
| DoSmallImageTest(true, false, false, -1, kSignatureGenerator, |
| false, kInPlaceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootFullSmallImageTest) { |
| DoSmallImageTest(true, true, false, -1, kSignatureGenerator, |
| true, kFullPayloadMinorVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootNoopSmallImageTest) { |
| DoSmallImageTest(false, false, true, -1, kSignatureGenerator, |
| false, kInPlaceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignNoneTest) { |
| DoSmallImageTest(false, false, false, -1, kSignatureNone, |
| false, kInPlaceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedTest) { |
| DoSmallImageTest(false, false, false, -1, kSignatureGenerated, |
| true, kInPlaceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellTest) { |
| DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShell, |
| false, kInPlaceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellBadKeyTest) { |
| DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShellBadKey, |
| false, kInPlaceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellRotateCl1Test) { |
| DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShellRotateCl1, |
| false, kInPlaceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellRotateCl2Test) { |
| DoSmallImageTest(false, false, false, -1, kSignatureGeneratedShellRotateCl2, |
| false, kInPlaceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSourceOpsTest) { |
| DoSmallImageTest(false, false, false, -1, kSignatureGenerator, |
| false, kSourceMinorPayloadVersion); |
| } |
| |
| TEST(DeltaPerformerIntegrationTest, RunAsRootMandatoryOperationHashMismatchTest) { |
| DoOperationHashMismatchTest(kInvalidOperationData, true); |
| } |
| |
| } // namespace chromeos_update_engine |