blob: 55a8b2e98d27b1d31198357633a1955be45edf19 [file] [log] [blame]
// Copyright (c) 2013-2016 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
#include <kj/common.h>
#include <kj/memory.h>
#include <kj/mutex.h>
#include <kj/debug.h>
#include <kj/vector.h>
#include "common.h"
#include "layout.h"
#include "any.h"
CAPNP_BEGIN_HEADER
namespace capnp {
namespace _ { // private
class ReaderArena;
class BuilderArena;
struct CloneImpl;
}
class StructSchema;
class Orphanage;
template <typename T>
class Orphan;
// =======================================================================================
struct ReaderOptions {
// Options controlling how data is read.
uint64_t traversalLimitInWords = 8 * 1024 * 1024;
// Limits how many total words of data are allowed to be traversed. Traversal is counted when
// a new struct or list builder is obtained, e.g. from a get() accessor. This means that calling
// the getter for the same sub-struct multiple times will cause it to be double-counted. Once
// the traversal limit is reached, an error will be reported.
//
// This limit exists for security reasons. It is possible for an attacker to construct a message
// in which multiple pointers point at the same location. This is technically invalid, but hard
// to detect. Using such a message, an attacker could cause a message which is small on the wire
// to appear much larger when actually traversed, possibly exhausting server resources leading to
// denial-of-service.
//
// It makes sense to set a traversal limit that is much larger than the underlying message.
// Together with sensible coding practices (e.g. trying to avoid calling sub-object getters
// multiple times, which is expensive anyway), this should provide adequate protection without
// inconvenience.
//
// The default limit is 64 MiB. This may or may not be a sensible number for any given use case,
// but probably at least prevents easy exploitation while also avoiding causing problems in most
// typical cases.
int nestingLimit = 64;
// Limits how deeply-nested a message structure can be, e.g. structs containing other structs or
// lists of structs.
//
// Like the traversal limit, this limit exists for security reasons. Since it is common to use
// recursive code to traverse recursive data structures, an attacker could easily cause a stack
// overflow by sending a very-deeply-nested (or even cyclic) message, without the message even
// being very large. The default limit of 64 is probably low enough to prevent any chance of
// stack overflow, yet high enough that it is never a problem in practice.
};
class MessageReader {
// Abstract interface for an object used to read a Cap'n Proto message. Subclasses of
// MessageReader are responsible for reading the raw, flat message content. Callers should
// usually call `messageReader.getRoot<MyStructType>()` to get a `MyStructType::Reader`
// representing the root of the message, then use that to traverse the message content.
//
// Some common subclasses of `MessageReader` include `SegmentArrayMessageReader`, whose
// constructor accepts pointers to the raw data, and `StreamFdMessageReader` (from
// `serialize.h`), which reads the message from a file descriptor. One might implement other
// subclasses to handle things like reading from shared memory segments, mmap()ed files, etc.
public:
MessageReader(ReaderOptions options);
// It is suggested that subclasses take ReaderOptions as a constructor parameter, but give it a
// default value of "ReaderOptions()". The base class constructor doesn't have a default value
// in order to remind subclasses that they really need to give the user a way to provide this.
virtual ~MessageReader() noexcept(false);
virtual kj::ArrayPtr<const word> getSegment(uint id) = 0;
// Gets the segment with the given ID, or returns null if no such segment exists. This method
// will be called at most once for each segment ID.
inline const ReaderOptions& getOptions();
// Get the options passed to the constructor.
template <typename RootType>
typename RootType::Reader getRoot();
// Get the root struct of the message, interpreting it as the given struct type.
template <typename RootType, typename SchemaType>
typename RootType::Reader getRoot(SchemaType schema);
// Dynamically interpret the root struct of the message using the given schema (a StructSchema).
// RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to
// use this.
bool isCanonical();
// Returns whether the message encoded in the reader is in canonical form.
size_t sizeInWords();
// Add up the size of all segments.
private:
ReaderOptions options;
#if defined(__EMSCRIPTEN__)
static constexpr size_t arenaSpacePadding = 19;
#else
static constexpr size_t arenaSpacePadding = 18;
#endif
// Space in which we can construct a ReaderArena. We don't use ReaderArena directly here
// because we don't want clients to have to #include arena.h, which itself includes a bunch of
// other headers. We don't use a pointer to a ReaderArena because that would require an
// extra malloc on every message which could be expensive when processing small messages.
alignas(8) void* arenaSpace[arenaSpacePadding + sizeof(kj::MutexGuarded<void*>) / sizeof(void*)];
bool allocatedArena;
_::ReaderArena* arena() { return reinterpret_cast<_::ReaderArena*>(arenaSpace); }
AnyPointer::Reader getRootInternal();
};
class MessageBuilder {
// Abstract interface for an object used to allocate and build a message. Subclasses of
// MessageBuilder are responsible for allocating the space in which the message will be written.
// The most common subclass is `MallocMessageBuilder`, but other subclasses may be used to do
// tricky things like allocate messages in shared memory or mmap()ed files.
//
// Creating a new message ususually means allocating a new MessageBuilder (ideally on the stack)
// and then calling `messageBuilder.initRoot<MyStructType>()` to get a `MyStructType::Builder`.
// That, in turn, can be used to fill in the message content. When done, you can call
// `messageBuilder.getSegmentsForOutput()` to get a list of flat data arrays containing the
// message.
public:
MessageBuilder();
virtual ~MessageBuilder() noexcept(false);
KJ_DISALLOW_COPY(MessageBuilder);
struct SegmentInit {
kj::ArrayPtr<word> space;
size_t wordsUsed;
// Number of words in `space` which are used; the rest are free space in which additional
// objects may be allocated.
};
explicit MessageBuilder(kj::ArrayPtr<SegmentInit> segments);
// Create a MessageBuilder backed by existing memory. This is an advanced interface that most
// people should not use. THIS METHOD IS INSECURE; see below.
//
// This allows a MessageBuilder to be constructed to modify an in-memory message without first
// making a copy of the content. This is especially useful in conjunction with mmap().
//
// The contents of each segment must outlive the MessageBuilder, but the SegmentInit array itself
// only need outlive the constructor.
//
// SECURITY: Do not use this in conjunction with untrusted data. This constructor assumes that
// the input message is valid. This constructor is designed to be used with data you control,
// e.g. an mmap'd file which is owned and accessed by only one program. When reading data you
// do not trust, you *must* load it into a Reader and then copy into a Builder as a means of
// validating the content.
//
// WARNING: It is NOT safe to initialize a MessageBuilder in this way from memory that is
// currently in use by another MessageBuilder or MessageReader. Other readers/builders will
// not observe changes to the segment sizes nor newly-allocated segments caused by allocating
// new objects in this message.
virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) = 0;
// Allocates an array of at least the given number of zero'd words, throwing an exception or
// crashing if this is not possible. It is expected that this method will usually return more
// space than requested, and the caller should use that extra space as much as possible before
// allocating more. The returned space remains valid at least until the MessageBuilder is
// destroyed.
//
// allocateSegment() is responsible for zeroing the memory before returning. This is required
// because otherwise the Cap'n Proto implementation would have to zero the memory anyway, and
// many allocators are able to provide already-zero'd memory more efficiently.
template <typename RootType>
typename RootType::Builder initRoot();
// Initialize the root struct of the message as the given struct type.
template <typename Reader>
void setRoot(Reader&& value);
// Set the root struct to a deep copy of the given struct.
template <typename RootType>
typename RootType::Builder getRoot();
// Get the root struct of the message, interpreting it as the given struct type.
template <typename RootType, typename SchemaType>
typename RootType::Builder getRoot(SchemaType schema);
// Dynamically interpret the root struct of the message using the given schema (a StructSchema).
// RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to
// use this.
template <typename RootType, typename SchemaType>
typename RootType::Builder initRoot(SchemaType schema);
// Dynamically init the root struct of the message using the given schema (a StructSchema).
// RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to
// use this.
template <typename T>
void adoptRoot(Orphan<T>&& orphan);
// Like setRoot() but adopts the orphan without copying.
kj::ArrayPtr<const kj::ArrayPtr<const word>> getSegmentsForOutput();
// Get the raw data that makes up the message.
Orphanage getOrphanage();
bool isCanonical();
// Check whether the message builder is in canonical form
size_t sizeInWords();
// Add up the allocated space from all segments.
private:
alignas(8) void* arenaSpace[22];
// Space in which we can construct a BuilderArena. We don't use BuilderArena directly here
// because we don't want clients to have to #include arena.h, which itself includes a bunch of
// big STL headers. We don't use a pointer to a BuilderArena because that would require an
// extra malloc on every message which could be expensive when processing small messages.
bool allocatedArena = false;
// We have to initialize the arena lazily because when we do so we want to allocate the root
// pointer immediately, and this will allocate a segment, which requires a virtual function
// call on the MessageBuilder. We can't do such a call in the constructor since the subclass
// isn't constructed yet. This is kind of annoying because it means that getOrphanage() is
// not thread-safe, but that shouldn't be a huge deal...
_::BuilderArena* arena() { return reinterpret_cast<_::BuilderArena*>(arenaSpace); }
_::SegmentBuilder* getRootSegment();
AnyPointer::Builder getRootInternal();
kj::Own<_::CapTableBuilder> releaseBuiltinCapTable();
// Hack for clone() to extract the cap table.
friend struct _::CloneImpl;
// We can't declare clone() as a friend directly because old versions of GCC incorrectly demand
// that the first declaration (even if it is a friend declaration) specify the default type args,
// whereas correct compilers do not permit default type args to be specified on a friend decl.
};
template <typename RootType>
typename RootType::Reader readMessageUnchecked(const word* data);
// IF THE INPUT IS INVALID, THIS MAY CRASH, CORRUPT MEMORY, CREATE A SECURITY HOLE IN YOUR APP,
// MURDER YOUR FIRST-BORN CHILD, AND/OR BRING ABOUT ETERNAL DAMNATION ON ALL OF HUMANITY. DO NOT
// USE UNLESS YOU UNDERSTAND THE CONSEQUENCES.
//
// Given a pointer to a known-valid message located in a single contiguous memory segment,
// returns a reader for that message. No bounds-checking will be done while traversing this
// message. Use this only if you have already verified that all pointers are valid and in-bounds,
// and there are no far pointers in the message.
//
// To create a message that can be passed to this function, build a message using a MallocAllocator
// whose preferred segment size is larger than the message size. This guarantees that the message
// will be allocated as a single segment, meaning getSegmentsForOutput() returns a single word
// array. That word array is your message; you may pass a pointer to its first word into
// readMessageUnchecked() to read the message.
//
// This can be particularly handy for embedding messages in generated code: you can
// embed the raw bytes (using AlignedData) then make a Reader for it using this. This is the way
// default values are embedded in code generated by the Cap'n Proto compiler. E.g., if you have
// a message MyMessage, you can read its default value like so:
// MyMessage::Reader reader = Message<MyMessage>::readMessageUnchecked(MyMessage::DEFAULT.words);
//
// To sanitize a message from an untrusted source such that it can be safely passed to
// readMessageUnchecked(), use copyToUnchecked().
template <typename Reader>
void copyToUnchecked(Reader&& reader, kj::ArrayPtr<word> uncheckedBuffer);
// Copy the content of the given reader into the given buffer, such that it can safely be passed to
// readMessageUnchecked(). The buffer's size must be exactly reader.totalSizeInWords() + 1,
// otherwise an exception will be thrown. The buffer must be zero'd before calling.
template <typename RootType>
typename RootType::Reader readDataStruct(kj::ArrayPtr<const word> data);
// Interprets the given data as a single, data-only struct. Only primitive fields (booleans,
// numbers, and enums) will be readable; all pointers will be null. This is useful if you want
// to use Cap'n Proto as a language/platform-neutral way to pack some bits.
//
// The input is a word array rather than a byte array to enforce alignment. If you have a byte
// array which you know is word-aligned (or if your platform supports unaligned reads and you don't
// mind the performance penalty), then you can use `reinterpret_cast` to convert a byte array into
// a word array:
//
// kj::arrayPtr(reinterpret_cast<const word*>(bytes.begin()),
// reinterpret_cast<const word*>(bytes.end()))
template <typename BuilderType>
typename kj::ArrayPtr<const word> writeDataStruct(BuilderType builder);
// Given a struct builder, get the underlying data section as a word array, suitable for passing
// to `readDataStruct()`.
//
// Note that you may call `.toBytes()` on the returned value to convert to `ArrayPtr<const byte>`.
template <typename Type>
static typename Type::Reader defaultValue();
// Get a default instance of the given struct or list type.
//
// TODO(cleanup): Find a better home for this function?
template <typename Reader, typename = FromReader<Reader>>
kj::Own<kj::Decay<Reader>> clone(Reader&& reader);
// Make a deep copy of the given Reader on the heap, producing an owned pointer.
// =======================================================================================
class SegmentArrayMessageReader: public MessageReader {
// A simple MessageReader that reads from an array of word arrays representing all segments.
// In particular you can read directly from the output of MessageBuilder::getSegmentsForOutput()
// (although it would probably make more sense to call builder.getRoot().asReader() in that case).
public:
SegmentArrayMessageReader(kj::ArrayPtr<const kj::ArrayPtr<const word>> segments,
ReaderOptions options = ReaderOptions());
// Creates a message pointing at the given segment array, without taking ownership of the
// segments. All arrays passed in must remain valid until the MessageReader is destroyed.
KJ_DISALLOW_COPY(SegmentArrayMessageReader);
~SegmentArrayMessageReader() noexcept(false);
virtual kj::ArrayPtr<const word> getSegment(uint id) override;
private:
kj::ArrayPtr<const kj::ArrayPtr<const word>> segments;
};
enum class AllocationStrategy: uint8_t {
FIXED_SIZE,
// The builder will prefer to allocate the same amount of space for each segment with no
// heuristic growth. It will still allocate larger segments when the preferred size is too small
// for some single object. This mode is generally not recommended, but can be particularly useful
// for testing in order to force a message to allocate a predictable number of segments. Note
// that you can force every single object in the message to be located in a separate segment by
// using this mode with firstSegmentWords = 0.
GROW_HEURISTICALLY
// The builder will heuristically decide how much space to allocate for each segment. Each
// allocated segment will be progressively larger than the previous segments on the assumption
// that message sizes are exponentially distributed. The total number of segments that will be
// allocated for a message of size n is O(log n).
};
constexpr uint SUGGESTED_FIRST_SEGMENT_WORDS = 1024;
constexpr AllocationStrategy SUGGESTED_ALLOCATION_STRATEGY = AllocationStrategy::GROW_HEURISTICALLY;
class MallocMessageBuilder: public MessageBuilder {
// A simple MessageBuilder that uses malloc() (actually, calloc()) to allocate segments. This
// implementation should be reasonable for any case that doesn't require writing the message to
// a specific location in memory.
public:
explicit MallocMessageBuilder(uint firstSegmentWords = SUGGESTED_FIRST_SEGMENT_WORDS,
AllocationStrategy allocationStrategy = SUGGESTED_ALLOCATION_STRATEGY);
// Creates a BuilderContext which allocates at least the given number of words for the first
// segment, and then uses the given strategy to decide how much to allocate for subsequent
// segments. When choosing a value for firstSegmentWords, consider that:
// 1) Reading and writing messages gets slower when multiple segments are involved, so it's good
// if most messages fit in a single segment.
// 2) Unused bytes will not be written to the wire, so generally it is not a big deal to allocate
// more space than you need. It only becomes problematic if you are allocating many messages
// in parallel and thus use lots of memory, or if you allocate so much extra space that just
// zeroing it out becomes a bottleneck.
// The defaults have been chosen to be reasonable for most people, so don't change them unless you
// have reason to believe you need to.
explicit MallocMessageBuilder(kj::ArrayPtr<word> firstSegment,
AllocationStrategy allocationStrategy = SUGGESTED_ALLOCATION_STRATEGY);
// This version always returns the given array for the first segment, and then proceeds with the
// allocation strategy. This is useful for optimization when building lots of small messages in
// a tight loop: you can reuse the space for the first segment.
//
// firstSegment MUST be zero-initialized. MallocMessageBuilder's destructor will write new zeros
// over any space that was used so that it can be reused.
KJ_DISALLOW_COPY(MallocMessageBuilder);
virtual ~MallocMessageBuilder() noexcept(false);
virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) override;
private:
uint nextSize;
AllocationStrategy allocationStrategy;
bool ownFirstSegment;
bool returnedFirstSegment;
void* firstSegment;
kj::Vector<void*> moreSegments;
};
class FlatMessageBuilder: public MessageBuilder {
// THIS IS NOT THE CLASS YOU'RE LOOKING FOR.
//
// If you want to write a message into already-existing scratch space, use `MallocMessageBuilder`
// and pass the scratch space to its constructor. It will then only fall back to malloc() if
// the scratch space is not large enough.
//
// Do NOT use this class unless you really know what you're doing. This class is problematic
// because it requires advance knowledge of the size of your message, which is usually impossible
// to determine without actually building the message. The class was created primarily to
// implement `copyToUnchecked()`, which itself exists only to support other internal parts of
// the Cap'n Proto implementation.
public:
explicit FlatMessageBuilder(kj::ArrayPtr<word> array);
KJ_DISALLOW_COPY(FlatMessageBuilder);
virtual ~FlatMessageBuilder() noexcept(false);
void requireFilled();
// Throws an exception if the flat array is not exactly full.
virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) override;
private:
kj::ArrayPtr<word> array;
bool allocated;
};
// =======================================================================================
// implementation details
inline const ReaderOptions& MessageReader::getOptions() {
return options;
}
template <typename RootType>
inline typename RootType::Reader MessageReader::getRoot() {
return getRootInternal().getAs<RootType>();
}
template <typename RootType>
inline typename RootType::Builder MessageBuilder::initRoot() {
return getRootInternal().initAs<RootType>();
}
template <typename Reader>
inline void MessageBuilder::setRoot(Reader&& value) {
getRootInternal().setAs<FromReader<Reader>>(value);
}
template <typename RootType>
inline typename RootType::Builder MessageBuilder::getRoot() {
return getRootInternal().getAs<RootType>();
}
template <typename T>
void MessageBuilder::adoptRoot(Orphan<T>&& orphan) {
return getRootInternal().adopt(kj::mv(orphan));
}
template <typename RootType, typename SchemaType>
typename RootType::Reader MessageReader::getRoot(SchemaType schema) {
return getRootInternal().getAs<RootType>(schema);
}
template <typename RootType, typename SchemaType>
typename RootType::Builder MessageBuilder::getRoot(SchemaType schema) {
return getRootInternal().getAs<RootType>(schema);
}
template <typename RootType, typename SchemaType>
typename RootType::Builder MessageBuilder::initRoot(SchemaType schema) {
return getRootInternal().initAs<RootType>(schema);
}
template <typename RootType>
typename RootType::Reader readMessageUnchecked(const word* data) {
return AnyPointer::Reader(_::PointerReader::getRootUnchecked(data)).getAs<RootType>();
}
template <typename Reader>
void copyToUnchecked(Reader&& reader, kj::ArrayPtr<word> uncheckedBuffer) {
FlatMessageBuilder builder(uncheckedBuffer);
builder.setRoot(kj::fwd<Reader>(reader));
builder.requireFilled();
}
template <typename RootType>
typename RootType::Reader readDataStruct(kj::ArrayPtr<const word> data) {
return typename RootType::Reader(_::StructReader(data));
}
template <typename BuilderType>
typename kj::ArrayPtr<const word> writeDataStruct(BuilderType builder) {
auto bytes = _::PointerHelpers<FromBuilder<BuilderType>>::getInternalBuilder(kj::mv(builder))
.getDataSectionAsBlob();
return kj::arrayPtr(reinterpret_cast<word*>(bytes.begin()),
reinterpret_cast<word*>(bytes.end()));
}
template <typename Type>
static typename Type::Reader defaultValue() {
return typename Type::Reader(_::StructReader());
}
namespace _ {
struct CloneImpl {
static inline kj::Own<_::CapTableBuilder> releaseBuiltinCapTable(MessageBuilder& message) {
return message.releaseBuiltinCapTable();
}
};
};
template <typename Reader, typename>
kj::Own<kj::Decay<Reader>> clone(Reader&& reader) {
auto size = reader.totalSize();
auto buffer = kj::heapArray<capnp::word>(size.wordCount + 1);
memset(buffer.asBytes().begin(), 0, buffer.asBytes().size());
if (size.capCount == 0) {
copyToUnchecked(reader, buffer);
auto result = readMessageUnchecked<FromReader<Reader>>(buffer.begin());
return kj::attachVal(result, kj::mv(buffer));
} else {
FlatMessageBuilder builder(buffer);
builder.setRoot(kj::fwd<Reader>(reader));
builder.requireFilled();
auto capTable = _::CloneImpl::releaseBuiltinCapTable(builder);
AnyPointer::Reader raw(_::PointerReader::getRootUnchecked(buffer.begin()).imbue(capTable));
return kj::attachVal(raw.getAs<FromReader<Reader>>(), kj::mv(buffer), kj::mv(capTable));
}
}
template <typename T>
kj::Array<word> canonicalize(T&& reader) {
return _::PointerHelpers<FromReader<T>>::getInternalReader(reader).canonicalize();
}
} // namespace capnp
CAPNP_END_HEADER