| // Copyright (c) 2013-2016 Sandstorm Development Group, Inc. and contributors |
| // Licensed under the MIT License: |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| |
| #pragma once |
| |
| #include <kj/common.h> |
| #include <kj/memory.h> |
| #include <kj/mutex.h> |
| #include <kj/debug.h> |
| #include <kj/vector.h> |
| #include "common.h" |
| #include "layout.h" |
| #include "any.h" |
| |
| CAPNP_BEGIN_HEADER |
| |
| namespace capnp { |
| |
| namespace _ { // private |
| class ReaderArena; |
| class BuilderArena; |
| struct CloneImpl; |
| } |
| |
| class StructSchema; |
| class Orphanage; |
| template <typename T> |
| class Orphan; |
| |
| // ======================================================================================= |
| |
| struct ReaderOptions { |
| // Options controlling how data is read. |
| |
| uint64_t traversalLimitInWords = 8 * 1024 * 1024; |
| // Limits how many total words of data are allowed to be traversed. Traversal is counted when |
| // a new struct or list builder is obtained, e.g. from a get() accessor. This means that calling |
| // the getter for the same sub-struct multiple times will cause it to be double-counted. Once |
| // the traversal limit is reached, an error will be reported. |
| // |
| // This limit exists for security reasons. It is possible for an attacker to construct a message |
| // in which multiple pointers point at the same location. This is technically invalid, but hard |
| // to detect. Using such a message, an attacker could cause a message which is small on the wire |
| // to appear much larger when actually traversed, possibly exhausting server resources leading to |
| // denial-of-service. |
| // |
| // It makes sense to set a traversal limit that is much larger than the underlying message. |
| // Together with sensible coding practices (e.g. trying to avoid calling sub-object getters |
| // multiple times, which is expensive anyway), this should provide adequate protection without |
| // inconvenience. |
| // |
| // The default limit is 64 MiB. This may or may not be a sensible number for any given use case, |
| // but probably at least prevents easy exploitation while also avoiding causing problems in most |
| // typical cases. |
| |
| int nestingLimit = 64; |
| // Limits how deeply-nested a message structure can be, e.g. structs containing other structs or |
| // lists of structs. |
| // |
| // Like the traversal limit, this limit exists for security reasons. Since it is common to use |
| // recursive code to traverse recursive data structures, an attacker could easily cause a stack |
| // overflow by sending a very-deeply-nested (or even cyclic) message, without the message even |
| // being very large. The default limit of 64 is probably low enough to prevent any chance of |
| // stack overflow, yet high enough that it is never a problem in practice. |
| }; |
| |
| class MessageReader { |
| // Abstract interface for an object used to read a Cap'n Proto message. Subclasses of |
| // MessageReader are responsible for reading the raw, flat message content. Callers should |
| // usually call `messageReader.getRoot<MyStructType>()` to get a `MyStructType::Reader` |
| // representing the root of the message, then use that to traverse the message content. |
| // |
| // Some common subclasses of `MessageReader` include `SegmentArrayMessageReader`, whose |
| // constructor accepts pointers to the raw data, and `StreamFdMessageReader` (from |
| // `serialize.h`), which reads the message from a file descriptor. One might implement other |
| // subclasses to handle things like reading from shared memory segments, mmap()ed files, etc. |
| |
| public: |
| MessageReader(ReaderOptions options); |
| // It is suggested that subclasses take ReaderOptions as a constructor parameter, but give it a |
| // default value of "ReaderOptions()". The base class constructor doesn't have a default value |
| // in order to remind subclasses that they really need to give the user a way to provide this. |
| |
| virtual ~MessageReader() noexcept(false); |
| |
| virtual kj::ArrayPtr<const word> getSegment(uint id) = 0; |
| // Gets the segment with the given ID, or returns null if no such segment exists. This method |
| // will be called at most once for each segment ID. |
| |
| inline const ReaderOptions& getOptions(); |
| // Get the options passed to the constructor. |
| |
| template <typename RootType> |
| typename RootType::Reader getRoot(); |
| // Get the root struct of the message, interpreting it as the given struct type. |
| |
| template <typename RootType, typename SchemaType> |
| typename RootType::Reader getRoot(SchemaType schema); |
| // Dynamically interpret the root struct of the message using the given schema (a StructSchema). |
| // RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to |
| // use this. |
| |
| bool isCanonical(); |
| // Returns whether the message encoded in the reader is in canonical form. |
| |
| size_t sizeInWords(); |
| // Add up the size of all segments. |
| |
| private: |
| ReaderOptions options; |
| |
| #if defined(__EMSCRIPTEN__) |
| static constexpr size_t arenaSpacePadding = 19; |
| #else |
| static constexpr size_t arenaSpacePadding = 18; |
| #endif |
| |
| // Space in which we can construct a ReaderArena. We don't use ReaderArena directly here |
| // because we don't want clients to have to #include arena.h, which itself includes a bunch of |
| // other headers. We don't use a pointer to a ReaderArena because that would require an |
| // extra malloc on every message which could be expensive when processing small messages. |
| alignas(8) void* arenaSpace[arenaSpacePadding + sizeof(kj::MutexGuarded<void*>) / sizeof(void*)]; |
| bool allocatedArena; |
| |
| _::ReaderArena* arena() { return reinterpret_cast<_::ReaderArena*>(arenaSpace); } |
| AnyPointer::Reader getRootInternal(); |
| }; |
| |
| class MessageBuilder { |
| // Abstract interface for an object used to allocate and build a message. Subclasses of |
| // MessageBuilder are responsible for allocating the space in which the message will be written. |
| // The most common subclass is `MallocMessageBuilder`, but other subclasses may be used to do |
| // tricky things like allocate messages in shared memory or mmap()ed files. |
| // |
| // Creating a new message ususually means allocating a new MessageBuilder (ideally on the stack) |
| // and then calling `messageBuilder.initRoot<MyStructType>()` to get a `MyStructType::Builder`. |
| // That, in turn, can be used to fill in the message content. When done, you can call |
| // `messageBuilder.getSegmentsForOutput()` to get a list of flat data arrays containing the |
| // message. |
| |
| public: |
| MessageBuilder(); |
| virtual ~MessageBuilder() noexcept(false); |
| KJ_DISALLOW_COPY(MessageBuilder); |
| |
| struct SegmentInit { |
| kj::ArrayPtr<word> space; |
| |
| size_t wordsUsed; |
| // Number of words in `space` which are used; the rest are free space in which additional |
| // objects may be allocated. |
| }; |
| |
| explicit MessageBuilder(kj::ArrayPtr<SegmentInit> segments); |
| // Create a MessageBuilder backed by existing memory. This is an advanced interface that most |
| // people should not use. THIS METHOD IS INSECURE; see below. |
| // |
| // This allows a MessageBuilder to be constructed to modify an in-memory message without first |
| // making a copy of the content. This is especially useful in conjunction with mmap(). |
| // |
| // The contents of each segment must outlive the MessageBuilder, but the SegmentInit array itself |
| // only need outlive the constructor. |
| // |
| // SECURITY: Do not use this in conjunction with untrusted data. This constructor assumes that |
| // the input message is valid. This constructor is designed to be used with data you control, |
| // e.g. an mmap'd file which is owned and accessed by only one program. When reading data you |
| // do not trust, you *must* load it into a Reader and then copy into a Builder as a means of |
| // validating the content. |
| // |
| // WARNING: It is NOT safe to initialize a MessageBuilder in this way from memory that is |
| // currently in use by another MessageBuilder or MessageReader. Other readers/builders will |
| // not observe changes to the segment sizes nor newly-allocated segments caused by allocating |
| // new objects in this message. |
| |
| virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) = 0; |
| // Allocates an array of at least the given number of zero'd words, throwing an exception or |
| // crashing if this is not possible. It is expected that this method will usually return more |
| // space than requested, and the caller should use that extra space as much as possible before |
| // allocating more. The returned space remains valid at least until the MessageBuilder is |
| // destroyed. |
| // |
| // allocateSegment() is responsible for zeroing the memory before returning. This is required |
| // because otherwise the Cap'n Proto implementation would have to zero the memory anyway, and |
| // many allocators are able to provide already-zero'd memory more efficiently. |
| |
| template <typename RootType> |
| typename RootType::Builder initRoot(); |
| // Initialize the root struct of the message as the given struct type. |
| |
| template <typename Reader> |
| void setRoot(Reader&& value); |
| // Set the root struct to a deep copy of the given struct. |
| |
| template <typename RootType> |
| typename RootType::Builder getRoot(); |
| // Get the root struct of the message, interpreting it as the given struct type. |
| |
| template <typename RootType, typename SchemaType> |
| typename RootType::Builder getRoot(SchemaType schema); |
| // Dynamically interpret the root struct of the message using the given schema (a StructSchema). |
| // RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to |
| // use this. |
| |
| template <typename RootType, typename SchemaType> |
| typename RootType::Builder initRoot(SchemaType schema); |
| // Dynamically init the root struct of the message using the given schema (a StructSchema). |
| // RootType in this case must be DynamicStruct, and you must #include <capnp/dynamic.h> to |
| // use this. |
| |
| template <typename T> |
| void adoptRoot(Orphan<T>&& orphan); |
| // Like setRoot() but adopts the orphan without copying. |
| |
| kj::ArrayPtr<const kj::ArrayPtr<const word>> getSegmentsForOutput(); |
| // Get the raw data that makes up the message. |
| |
| Orphanage getOrphanage(); |
| |
| bool isCanonical(); |
| // Check whether the message builder is in canonical form |
| |
| size_t sizeInWords(); |
| // Add up the allocated space from all segments. |
| |
| private: |
| alignas(8) void* arenaSpace[22]; |
| // Space in which we can construct a BuilderArena. We don't use BuilderArena directly here |
| // because we don't want clients to have to #include arena.h, which itself includes a bunch of |
| // big STL headers. We don't use a pointer to a BuilderArena because that would require an |
| // extra malloc on every message which could be expensive when processing small messages. |
| |
| bool allocatedArena = false; |
| // We have to initialize the arena lazily because when we do so we want to allocate the root |
| // pointer immediately, and this will allocate a segment, which requires a virtual function |
| // call on the MessageBuilder. We can't do such a call in the constructor since the subclass |
| // isn't constructed yet. This is kind of annoying because it means that getOrphanage() is |
| // not thread-safe, but that shouldn't be a huge deal... |
| |
| _::BuilderArena* arena() { return reinterpret_cast<_::BuilderArena*>(arenaSpace); } |
| _::SegmentBuilder* getRootSegment(); |
| AnyPointer::Builder getRootInternal(); |
| |
| kj::Own<_::CapTableBuilder> releaseBuiltinCapTable(); |
| // Hack for clone() to extract the cap table. |
| |
| friend struct _::CloneImpl; |
| // We can't declare clone() as a friend directly because old versions of GCC incorrectly demand |
| // that the first declaration (even if it is a friend declaration) specify the default type args, |
| // whereas correct compilers do not permit default type args to be specified on a friend decl. |
| }; |
| |
| template <typename RootType> |
| typename RootType::Reader readMessageUnchecked(const word* data); |
| // IF THE INPUT IS INVALID, THIS MAY CRASH, CORRUPT MEMORY, CREATE A SECURITY HOLE IN YOUR APP, |
| // MURDER YOUR FIRST-BORN CHILD, AND/OR BRING ABOUT ETERNAL DAMNATION ON ALL OF HUMANITY. DO NOT |
| // USE UNLESS YOU UNDERSTAND THE CONSEQUENCES. |
| // |
| // Given a pointer to a known-valid message located in a single contiguous memory segment, |
| // returns a reader for that message. No bounds-checking will be done while traversing this |
| // message. Use this only if you have already verified that all pointers are valid and in-bounds, |
| // and there are no far pointers in the message. |
| // |
| // To create a message that can be passed to this function, build a message using a MallocAllocator |
| // whose preferred segment size is larger than the message size. This guarantees that the message |
| // will be allocated as a single segment, meaning getSegmentsForOutput() returns a single word |
| // array. That word array is your message; you may pass a pointer to its first word into |
| // readMessageUnchecked() to read the message. |
| // |
| // This can be particularly handy for embedding messages in generated code: you can |
| // embed the raw bytes (using AlignedData) then make a Reader for it using this. This is the way |
| // default values are embedded in code generated by the Cap'n Proto compiler. E.g., if you have |
| // a message MyMessage, you can read its default value like so: |
| // MyMessage::Reader reader = Message<MyMessage>::readMessageUnchecked(MyMessage::DEFAULT.words); |
| // |
| // To sanitize a message from an untrusted source such that it can be safely passed to |
| // readMessageUnchecked(), use copyToUnchecked(). |
| |
| template <typename Reader> |
| void copyToUnchecked(Reader&& reader, kj::ArrayPtr<word> uncheckedBuffer); |
| // Copy the content of the given reader into the given buffer, such that it can safely be passed to |
| // readMessageUnchecked(). The buffer's size must be exactly reader.totalSizeInWords() + 1, |
| // otherwise an exception will be thrown. The buffer must be zero'd before calling. |
| |
| template <typename RootType> |
| typename RootType::Reader readDataStruct(kj::ArrayPtr<const word> data); |
| // Interprets the given data as a single, data-only struct. Only primitive fields (booleans, |
| // numbers, and enums) will be readable; all pointers will be null. This is useful if you want |
| // to use Cap'n Proto as a language/platform-neutral way to pack some bits. |
| // |
| // The input is a word array rather than a byte array to enforce alignment. If you have a byte |
| // array which you know is word-aligned (or if your platform supports unaligned reads and you don't |
| // mind the performance penalty), then you can use `reinterpret_cast` to convert a byte array into |
| // a word array: |
| // |
| // kj::arrayPtr(reinterpret_cast<const word*>(bytes.begin()), |
| // reinterpret_cast<const word*>(bytes.end())) |
| |
| template <typename BuilderType> |
| typename kj::ArrayPtr<const word> writeDataStruct(BuilderType builder); |
| // Given a struct builder, get the underlying data section as a word array, suitable for passing |
| // to `readDataStruct()`. |
| // |
| // Note that you may call `.toBytes()` on the returned value to convert to `ArrayPtr<const byte>`. |
| |
| template <typename Type> |
| static typename Type::Reader defaultValue(); |
| // Get a default instance of the given struct or list type. |
| // |
| // TODO(cleanup): Find a better home for this function? |
| |
| template <typename Reader, typename = FromReader<Reader>> |
| kj::Own<kj::Decay<Reader>> clone(Reader&& reader); |
| // Make a deep copy of the given Reader on the heap, producing an owned pointer. |
| |
| // ======================================================================================= |
| |
| class SegmentArrayMessageReader: public MessageReader { |
| // A simple MessageReader that reads from an array of word arrays representing all segments. |
| // In particular you can read directly from the output of MessageBuilder::getSegmentsForOutput() |
| // (although it would probably make more sense to call builder.getRoot().asReader() in that case). |
| |
| public: |
| SegmentArrayMessageReader(kj::ArrayPtr<const kj::ArrayPtr<const word>> segments, |
| ReaderOptions options = ReaderOptions()); |
| // Creates a message pointing at the given segment array, without taking ownership of the |
| // segments. All arrays passed in must remain valid until the MessageReader is destroyed. |
| |
| KJ_DISALLOW_COPY(SegmentArrayMessageReader); |
| ~SegmentArrayMessageReader() noexcept(false); |
| |
| virtual kj::ArrayPtr<const word> getSegment(uint id) override; |
| |
| private: |
| kj::ArrayPtr<const kj::ArrayPtr<const word>> segments; |
| }; |
| |
| enum class AllocationStrategy: uint8_t { |
| FIXED_SIZE, |
| // The builder will prefer to allocate the same amount of space for each segment with no |
| // heuristic growth. It will still allocate larger segments when the preferred size is too small |
| // for some single object. This mode is generally not recommended, but can be particularly useful |
| // for testing in order to force a message to allocate a predictable number of segments. Note |
| // that you can force every single object in the message to be located in a separate segment by |
| // using this mode with firstSegmentWords = 0. |
| |
| GROW_HEURISTICALLY |
| // The builder will heuristically decide how much space to allocate for each segment. Each |
| // allocated segment will be progressively larger than the previous segments on the assumption |
| // that message sizes are exponentially distributed. The total number of segments that will be |
| // allocated for a message of size n is O(log n). |
| }; |
| |
| constexpr uint SUGGESTED_FIRST_SEGMENT_WORDS = 1024; |
| constexpr AllocationStrategy SUGGESTED_ALLOCATION_STRATEGY = AllocationStrategy::GROW_HEURISTICALLY; |
| |
| class MallocMessageBuilder: public MessageBuilder { |
| // A simple MessageBuilder that uses malloc() (actually, calloc()) to allocate segments. This |
| // implementation should be reasonable for any case that doesn't require writing the message to |
| // a specific location in memory. |
| |
| public: |
| explicit MallocMessageBuilder(uint firstSegmentWords = SUGGESTED_FIRST_SEGMENT_WORDS, |
| AllocationStrategy allocationStrategy = SUGGESTED_ALLOCATION_STRATEGY); |
| // Creates a BuilderContext which allocates at least the given number of words for the first |
| // segment, and then uses the given strategy to decide how much to allocate for subsequent |
| // segments. When choosing a value for firstSegmentWords, consider that: |
| // 1) Reading and writing messages gets slower when multiple segments are involved, so it's good |
| // if most messages fit in a single segment. |
| // 2) Unused bytes will not be written to the wire, so generally it is not a big deal to allocate |
| // more space than you need. It only becomes problematic if you are allocating many messages |
| // in parallel and thus use lots of memory, or if you allocate so much extra space that just |
| // zeroing it out becomes a bottleneck. |
| // The defaults have been chosen to be reasonable for most people, so don't change them unless you |
| // have reason to believe you need to. |
| |
| explicit MallocMessageBuilder(kj::ArrayPtr<word> firstSegment, |
| AllocationStrategy allocationStrategy = SUGGESTED_ALLOCATION_STRATEGY); |
| // This version always returns the given array for the first segment, and then proceeds with the |
| // allocation strategy. This is useful for optimization when building lots of small messages in |
| // a tight loop: you can reuse the space for the first segment. |
| // |
| // firstSegment MUST be zero-initialized. MallocMessageBuilder's destructor will write new zeros |
| // over any space that was used so that it can be reused. |
| |
| KJ_DISALLOW_COPY(MallocMessageBuilder); |
| virtual ~MallocMessageBuilder() noexcept(false); |
| |
| virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) override; |
| |
| private: |
| uint nextSize; |
| AllocationStrategy allocationStrategy; |
| |
| bool ownFirstSegment; |
| bool returnedFirstSegment; |
| |
| void* firstSegment; |
| kj::Vector<void*> moreSegments; |
| }; |
| |
| class FlatMessageBuilder: public MessageBuilder { |
| // THIS IS NOT THE CLASS YOU'RE LOOKING FOR. |
| // |
| // If you want to write a message into already-existing scratch space, use `MallocMessageBuilder` |
| // and pass the scratch space to its constructor. It will then only fall back to malloc() if |
| // the scratch space is not large enough. |
| // |
| // Do NOT use this class unless you really know what you're doing. This class is problematic |
| // because it requires advance knowledge of the size of your message, which is usually impossible |
| // to determine without actually building the message. The class was created primarily to |
| // implement `copyToUnchecked()`, which itself exists only to support other internal parts of |
| // the Cap'n Proto implementation. |
| |
| public: |
| explicit FlatMessageBuilder(kj::ArrayPtr<word> array); |
| KJ_DISALLOW_COPY(FlatMessageBuilder); |
| virtual ~FlatMessageBuilder() noexcept(false); |
| |
| void requireFilled(); |
| // Throws an exception if the flat array is not exactly full. |
| |
| virtual kj::ArrayPtr<word> allocateSegment(uint minimumSize) override; |
| |
| private: |
| kj::ArrayPtr<word> array; |
| bool allocated; |
| }; |
| |
| // ======================================================================================= |
| // implementation details |
| |
| inline const ReaderOptions& MessageReader::getOptions() { |
| return options; |
| } |
| |
| template <typename RootType> |
| inline typename RootType::Reader MessageReader::getRoot() { |
| return getRootInternal().getAs<RootType>(); |
| } |
| |
| template <typename RootType> |
| inline typename RootType::Builder MessageBuilder::initRoot() { |
| return getRootInternal().initAs<RootType>(); |
| } |
| |
| template <typename Reader> |
| inline void MessageBuilder::setRoot(Reader&& value) { |
| getRootInternal().setAs<FromReader<Reader>>(value); |
| } |
| |
| template <typename RootType> |
| inline typename RootType::Builder MessageBuilder::getRoot() { |
| return getRootInternal().getAs<RootType>(); |
| } |
| |
| template <typename T> |
| void MessageBuilder::adoptRoot(Orphan<T>&& orphan) { |
| return getRootInternal().adopt(kj::mv(orphan)); |
| } |
| |
| template <typename RootType, typename SchemaType> |
| typename RootType::Reader MessageReader::getRoot(SchemaType schema) { |
| return getRootInternal().getAs<RootType>(schema); |
| } |
| |
| template <typename RootType, typename SchemaType> |
| typename RootType::Builder MessageBuilder::getRoot(SchemaType schema) { |
| return getRootInternal().getAs<RootType>(schema); |
| } |
| |
| template <typename RootType, typename SchemaType> |
| typename RootType::Builder MessageBuilder::initRoot(SchemaType schema) { |
| return getRootInternal().initAs<RootType>(schema); |
| } |
| |
| template <typename RootType> |
| typename RootType::Reader readMessageUnchecked(const word* data) { |
| return AnyPointer::Reader(_::PointerReader::getRootUnchecked(data)).getAs<RootType>(); |
| } |
| |
| template <typename Reader> |
| void copyToUnchecked(Reader&& reader, kj::ArrayPtr<word> uncheckedBuffer) { |
| FlatMessageBuilder builder(uncheckedBuffer); |
| builder.setRoot(kj::fwd<Reader>(reader)); |
| builder.requireFilled(); |
| } |
| |
| template <typename RootType> |
| typename RootType::Reader readDataStruct(kj::ArrayPtr<const word> data) { |
| return typename RootType::Reader(_::StructReader(data)); |
| } |
| |
| template <typename BuilderType> |
| typename kj::ArrayPtr<const word> writeDataStruct(BuilderType builder) { |
| auto bytes = _::PointerHelpers<FromBuilder<BuilderType>>::getInternalBuilder(kj::mv(builder)) |
| .getDataSectionAsBlob(); |
| return kj::arrayPtr(reinterpret_cast<word*>(bytes.begin()), |
| reinterpret_cast<word*>(bytes.end())); |
| } |
| |
| template <typename Type> |
| static typename Type::Reader defaultValue() { |
| return typename Type::Reader(_::StructReader()); |
| } |
| |
| namespace _ { |
| struct CloneImpl { |
| static inline kj::Own<_::CapTableBuilder> releaseBuiltinCapTable(MessageBuilder& message) { |
| return message.releaseBuiltinCapTable(); |
| } |
| }; |
| }; |
| |
| template <typename Reader, typename> |
| kj::Own<kj::Decay<Reader>> clone(Reader&& reader) { |
| auto size = reader.totalSize(); |
| auto buffer = kj::heapArray<capnp::word>(size.wordCount + 1); |
| memset(buffer.asBytes().begin(), 0, buffer.asBytes().size()); |
| if (size.capCount == 0) { |
| copyToUnchecked(reader, buffer); |
| auto result = readMessageUnchecked<FromReader<Reader>>(buffer.begin()); |
| return kj::attachVal(result, kj::mv(buffer)); |
| } else { |
| FlatMessageBuilder builder(buffer); |
| builder.setRoot(kj::fwd<Reader>(reader)); |
| builder.requireFilled(); |
| auto capTable = _::CloneImpl::releaseBuiltinCapTable(builder); |
| AnyPointer::Reader raw(_::PointerReader::getRootUnchecked(buffer.begin()).imbue(capTable)); |
| return kj::attachVal(raw.getAs<FromReader<Reader>>(), kj::mv(buffer), kj::mv(capTable)); |
| } |
| } |
| |
| template <typename T> |
| kj::Array<word> canonicalize(T&& reader) { |
| return _::PointerHelpers<FromReader<T>>::getInternalReader(reader).canonicalize(); |
| } |
| |
| } // namespace capnp |
| |
| CAPNP_END_HEADER |