| // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors |
| // Licensed under the MIT License: |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| |
| #pragma once |
| |
| #include "memory.h" |
| #include <string.h> |
| #include <initializer_list> |
| |
| KJ_BEGIN_HEADER |
| |
| namespace kj { |
| |
| // ======================================================================================= |
| // ArrayDisposer -- Implementation details. |
| |
| class ArrayDisposer { |
| // Much like Disposer from memory.h. |
| |
| protected: |
| // Do not declare a destructor, as doing so will force a global initializer for |
| // HeapArrayDisposer::instance. |
| |
| virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, |
| size_t capacity, void (*destroyElement)(void*)) const = 0; |
| // Disposes of the array. `destroyElement` invokes the destructor of each element, or is nullptr |
| // if the elements have trivial destructors. `capacity` is the amount of space that was |
| // allocated while `elementCount` is the number of elements that were actually constructed; |
| // these are always the same number for Array<T> but may be different when using ArrayBuilder<T>. |
| |
| public: |
| |
| template <typename T> |
| void dispose(T* firstElement, size_t elementCount, size_t capacity) const; |
| // Helper wrapper around disposeImpl(). |
| // |
| // Callers must not call dispose() on the same array twice, even if the first call throws |
| // an exception. |
| |
| private: |
| template <typename T, bool hasTrivialDestructor = __has_trivial_destructor(T)> |
| struct Dispose_; |
| }; |
| |
| class ExceptionSafeArrayUtil { |
| // Utility class that assists in constructing or destroying elements of an array, where the |
| // constructor or destructor could throw exceptions. In case of an exception, |
| // ExceptionSafeArrayUtil's destructor will call destructors on all elements that have been |
| // constructed but not destroyed. Remember that destructors that throw exceptions are required |
| // to use UnwindDetector to detect unwind and avoid exceptions in this case. Therefore, no more |
| // than one exception will be thrown (and the program will not terminate). |
| |
| public: |
| inline ExceptionSafeArrayUtil(void* ptr, size_t elementSize, size_t constructedElementCount, |
| void (*destroyElement)(void*)) |
| : pos(reinterpret_cast<byte*>(ptr) + elementSize * constructedElementCount), |
| elementSize(elementSize), constructedElementCount(constructedElementCount), |
| destroyElement(destroyElement) {} |
| KJ_DISALLOW_COPY(ExceptionSafeArrayUtil); |
| |
| inline ~ExceptionSafeArrayUtil() noexcept(false) { |
| if (constructedElementCount > 0) destroyAll(); |
| } |
| |
| void construct(size_t count, void (*constructElement)(void*)); |
| // Construct the given number of elements. |
| |
| void destroyAll(); |
| // Destroy all elements. Call this immediately before ExceptionSafeArrayUtil goes out-of-scope |
| // to ensure that one element throwing an exception does not prevent the others from being |
| // destroyed. |
| |
| void release() { constructedElementCount = 0; } |
| // Prevent ExceptionSafeArrayUtil's destructor from destroying the constructed elements. |
| // Call this after you've successfully finished constructing. |
| |
| private: |
| byte* pos; |
| size_t elementSize; |
| size_t constructedElementCount; |
| void (*destroyElement)(void*); |
| }; |
| |
| class DestructorOnlyArrayDisposer: public ArrayDisposer { |
| public: |
| static const DestructorOnlyArrayDisposer instance; |
| |
| void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, |
| size_t capacity, void (*destroyElement)(void*)) const override; |
| }; |
| |
| class NullArrayDisposer: public ArrayDisposer { |
| // An ArrayDisposer that does nothing. Can be used to construct a fake Arrays that doesn't |
| // actually own its content. |
| |
| public: |
| static const NullArrayDisposer instance; |
| |
| void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, |
| size_t capacity, void (*destroyElement)(void*)) const override; |
| }; |
| |
| // ======================================================================================= |
| // Array |
| |
| template <typename T> |
| class Array { |
| // An owned array which will automatically be disposed of (using an ArrayDisposer) in the |
| // destructor. Can be moved, but not copied. Much like Own<T>, but for arrays rather than |
| // single objects. |
| |
| public: |
| inline Array(): ptr(nullptr), size_(0), disposer(nullptr) {} |
| inline Array(decltype(nullptr)): ptr(nullptr), size_(0), disposer(nullptr) {} |
| inline Array(Array&& other) noexcept |
| : ptr(other.ptr), size_(other.size_), disposer(other.disposer) { |
| other.ptr = nullptr; |
| other.size_ = 0; |
| } |
| inline Array(Array<RemoveConstOrDisable<T>>&& other) noexcept |
| : ptr(other.ptr), size_(other.size_), disposer(other.disposer) { |
| other.ptr = nullptr; |
| other.size_ = 0; |
| } |
| inline Array(T* firstElement KJ_LIFETIMEBOUND, size_t size, const ArrayDisposer& disposer) |
| : ptr(firstElement), size_(size), disposer(&disposer) {} |
| |
| KJ_DISALLOW_COPY(Array); |
| inline ~Array() noexcept { dispose(); } |
| |
| inline operator ArrayPtr<T>() KJ_LIFETIMEBOUND { |
| return ArrayPtr<T>(ptr, size_); |
| } |
| inline operator ArrayPtr<const T>() const KJ_LIFETIMEBOUND { |
| return ArrayPtr<T>(ptr, size_); |
| } |
| inline ArrayPtr<T> asPtr() KJ_LIFETIMEBOUND { |
| return ArrayPtr<T>(ptr, size_); |
| } |
| inline ArrayPtr<const T> asPtr() const KJ_LIFETIMEBOUND { |
| return ArrayPtr<T>(ptr, size_); |
| } |
| |
| inline size_t size() const { return size_; } |
| inline T& operator[](size_t index) KJ_LIFETIMEBOUND { |
| KJ_IREQUIRE(index < size_, "Out-of-bounds Array access."); |
| return ptr[index]; |
| } |
| inline const T& operator[](size_t index) const KJ_LIFETIMEBOUND { |
| KJ_IREQUIRE(index < size_, "Out-of-bounds Array access."); |
| return ptr[index]; |
| } |
| |
| inline const T* begin() const KJ_LIFETIMEBOUND { return ptr; } |
| inline const T* end() const KJ_LIFETIMEBOUND { return ptr + size_; } |
| inline const T& front() const KJ_LIFETIMEBOUND { return *ptr; } |
| inline const T& back() const KJ_LIFETIMEBOUND { return *(ptr + size_ - 1); } |
| inline T* begin() KJ_LIFETIMEBOUND { return ptr; } |
| inline T* end() KJ_LIFETIMEBOUND { return ptr + size_; } |
| inline T& front() KJ_LIFETIMEBOUND { return *ptr; } |
| inline T& back() KJ_LIFETIMEBOUND { return *(ptr + size_ - 1); } |
| |
| template <typename U> |
| inline bool operator==(const U& other) const { return asPtr() == other; } |
| template <typename U> |
| inline bool operator!=(const U& other) const { return asPtr() != other; } |
| |
| inline ArrayPtr<T> slice(size_t start, size_t end) KJ_LIFETIMEBOUND { |
| KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice()."); |
| return ArrayPtr<T>(ptr + start, end - start); |
| } |
| inline ArrayPtr<const T> slice(size_t start, size_t end) const KJ_LIFETIMEBOUND { |
| KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice()."); |
| return ArrayPtr<const T>(ptr + start, end - start); |
| } |
| |
| inline ArrayPtr<const byte> asBytes() const KJ_LIFETIMEBOUND { return asPtr().asBytes(); } |
| inline ArrayPtr<PropagateConst<T, byte>> asBytes() KJ_LIFETIMEBOUND { return asPtr().asBytes(); } |
| inline ArrayPtr<const char> asChars() const KJ_LIFETIMEBOUND { return asPtr().asChars(); } |
| inline ArrayPtr<PropagateConst<T, char>> asChars() KJ_LIFETIMEBOUND { return asPtr().asChars(); } |
| |
| inline Array<PropagateConst<T, byte>> releaseAsBytes() { |
| // Like asBytes() but transfers ownership. |
| static_assert(sizeof(T) == sizeof(byte), |
| "releaseAsBytes() only possible on arrays with byte-size elements (e.g. chars)."); |
| Array<PropagateConst<T, byte>> result( |
| reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_, *disposer); |
| ptr = nullptr; |
| size_ = 0; |
| return result; |
| } |
| inline Array<PropagateConst<T, char>> releaseAsChars() { |
| // Like asChars() but transfers ownership. |
| static_assert(sizeof(T) == sizeof(PropagateConst<T, char>), |
| "releaseAsChars() only possible on arrays with char-size elements (e.g. bytes)."); |
| Array<PropagateConst<T, char>> result( |
| reinterpret_cast<PropagateConst<T, char>*>(ptr), size_, *disposer); |
| ptr = nullptr; |
| size_ = 0; |
| return result; |
| } |
| |
| inline bool operator==(decltype(nullptr)) const { return size_ == 0; } |
| inline bool operator!=(decltype(nullptr)) const { return size_ != 0; } |
| |
| inline Array& operator=(decltype(nullptr)) { |
| dispose(); |
| return *this; |
| } |
| |
| inline Array& operator=(Array&& other) { |
| dispose(); |
| ptr = other.ptr; |
| size_ = other.size_; |
| disposer = other.disposer; |
| other.ptr = nullptr; |
| other.size_ = 0; |
| return *this; |
| } |
| |
| template <typename... Attachments> |
| Array<T> attach(Attachments&&... attachments) KJ_WARN_UNUSED_RESULT; |
| // Like Own<T>::attach(), but attaches to an Array. |
| |
| private: |
| T* ptr; |
| size_t size_; |
| const ArrayDisposer* disposer; |
| |
| inline void dispose() { |
| // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly |
| // dispose again. |
| T* ptrCopy = ptr; |
| size_t sizeCopy = size_; |
| if (ptrCopy != nullptr) { |
| ptr = nullptr; |
| size_ = 0; |
| disposer->dispose(ptrCopy, sizeCopy, sizeCopy); |
| } |
| } |
| |
| template <typename U> |
| friend class Array; |
| template <typename U> |
| friend class ArrayBuilder; |
| }; |
| |
| static_assert(!canMemcpy<Array<char>>(), "canMemcpy<>() is broken"); |
| |
| namespace _ { // private |
| |
| class HeapArrayDisposer final: public ArrayDisposer { |
| public: |
| template <typename T> |
| static T* allocate(size_t count); |
| template <typename T> |
| static T* allocateUninitialized(size_t count); |
| |
| static const HeapArrayDisposer instance; |
| |
| private: |
| static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity, |
| void (*constructElement)(void*), void (*destroyElement)(void*)); |
| // Allocates and constructs the array. Both function pointers are null if the constructor is |
| // trivial, otherwise destroyElement is null if the constructor doesn't throw. |
| |
| virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, |
| size_t capacity, void (*destroyElement)(void*)) const override; |
| |
| template <typename T, bool hasTrivialConstructor = __has_trivial_constructor(T), |
| bool hasNothrowConstructor = __has_nothrow_constructor(T)> |
| struct Allocate_; |
| }; |
| |
| } // namespace _ (private) |
| |
| template <typename T> |
| inline Array<T> heapArray(size_t size) { |
| // Much like `heap<T>()` from memory.h, allocates a new array on the heap. |
| |
| return Array<T>(_::HeapArrayDisposer::allocate<T>(size), size, |
| _::HeapArrayDisposer::instance); |
| } |
| |
| template <typename T> Array<T> heapArray(const T* content, size_t size); |
| template <typename T> Array<T> heapArray(ArrayPtr<T> content); |
| template <typename T> Array<T> heapArray(ArrayPtr<const T> content); |
| template <typename T, typename Iterator> Array<T> heapArray(Iterator begin, Iterator end); |
| template <typename T> Array<T> heapArray(std::initializer_list<T> init); |
| // Allocate a heap array containing a copy of the given content. |
| |
| template <typename T, typename Container> |
| Array<T> heapArrayFromIterable(Container&& a) { return heapArray<T>(a.begin(), a.end()); } |
| template <typename T> |
| Array<T> heapArrayFromIterable(Array<T>&& a) { return mv(a); } |
| |
| // ======================================================================================= |
| // ArrayBuilder |
| |
| template <typename T> |
| class ArrayBuilder { |
| // Class which lets you build an Array<T> specifying the exact constructor arguments for each |
| // element, rather than starting by default-constructing them. |
| |
| public: |
| ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {} |
| ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {} |
| explicit ArrayBuilder(RemoveConst<T>* firstElement, size_t capacity, |
| const ArrayDisposer& disposer) |
| : ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity), |
| disposer(&disposer) {} |
| ArrayBuilder(ArrayBuilder&& other) |
| : ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) { |
| other.ptr = nullptr; |
| other.pos = nullptr; |
| other.endPtr = nullptr; |
| } |
| ArrayBuilder(Array<T>&& other) |
| : ptr(other.ptr), pos(other.ptr + other.size_), endPtr(pos), disposer(other.disposer) { |
| // Create an already-full ArrayBuilder from an Array of the same type. This constructor |
| // primarily exists to enable Vector<T> to be constructed from Array<T>. |
| other.ptr = nullptr; |
| other.size_ = 0; |
| } |
| KJ_DISALLOW_COPY(ArrayBuilder); |
| inline ~ArrayBuilder() noexcept(false) { dispose(); } |
| |
| inline operator ArrayPtr<T>() KJ_LIFETIMEBOUND { |
| return arrayPtr(ptr, pos); |
| } |
| inline operator ArrayPtr<const T>() const KJ_LIFETIMEBOUND { |
| return arrayPtr(ptr, pos); |
| } |
| inline ArrayPtr<T> asPtr() KJ_LIFETIMEBOUND { |
| return arrayPtr(ptr, pos); |
| } |
| inline ArrayPtr<const T> asPtr() const KJ_LIFETIMEBOUND { |
| return arrayPtr(ptr, pos); |
| } |
| |
| inline size_t size() const { return pos - ptr; } |
| inline size_t capacity() const { return endPtr - ptr; } |
| inline T& operator[](size_t index) KJ_LIFETIMEBOUND { |
| KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access."); |
| return ptr[index]; |
| } |
| inline const T& operator[](size_t index) const KJ_LIFETIMEBOUND { |
| KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access."); |
| return ptr[index]; |
| } |
| |
| inline const T* begin() const KJ_LIFETIMEBOUND { return ptr; } |
| inline const T* end() const KJ_LIFETIMEBOUND { return pos; } |
| inline const T& front() const KJ_LIFETIMEBOUND { return *ptr; } |
| inline const T& back() const KJ_LIFETIMEBOUND { return *(pos - 1); } |
| inline T* begin() KJ_LIFETIMEBOUND { return ptr; } |
| inline T* end() KJ_LIFETIMEBOUND { return pos; } |
| inline T& front() KJ_LIFETIMEBOUND { return *ptr; } |
| inline T& back() KJ_LIFETIMEBOUND { return *(pos - 1); } |
| |
| ArrayBuilder& operator=(ArrayBuilder&& other) { |
| dispose(); |
| ptr = other.ptr; |
| pos = other.pos; |
| endPtr = other.endPtr; |
| disposer = other.disposer; |
| other.ptr = nullptr; |
| other.pos = nullptr; |
| other.endPtr = nullptr; |
| return *this; |
| } |
| ArrayBuilder& operator=(decltype(nullptr)) { |
| dispose(); |
| return *this; |
| } |
| |
| template <typename... Params> |
| T& add(Params&&... params) KJ_LIFETIMEBOUND { |
| KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder."); |
| ctor(*pos, kj::fwd<Params>(params)...); |
| return *pos++; |
| } |
| |
| template <typename Container> |
| void addAll(Container&& container) { |
| addAll<decltype(container.begin()), !isReference<Container>()>( |
| container.begin(), container.end()); |
| } |
| |
| template <typename Iterator, bool move = false> |
| void addAll(Iterator start, Iterator end); |
| |
| void removeLast() { |
| KJ_IREQUIRE(pos > ptr, "No elements present to remove."); |
| kj::dtor(*--pos); |
| } |
| |
| void truncate(size_t size) { |
| KJ_IREQUIRE(size <= this->size(), "can't use truncate() to expand"); |
| |
| T* target = ptr + size; |
| if (__has_trivial_destructor(T)) { |
| pos = target; |
| } else { |
| while (pos > target) { |
| kj::dtor(*--pos); |
| } |
| } |
| } |
| |
| void clear() { |
| if (__has_trivial_destructor(T)) { |
| pos = ptr; |
| } else { |
| while (pos > ptr) { |
| kj::dtor(*--pos); |
| } |
| } |
| } |
| |
| void resize(size_t size) { |
| KJ_IREQUIRE(size <= capacity(), "can't resize past capacity"); |
| |
| T* target = ptr + size; |
| if (target > pos) { |
| // expand |
| if (__has_trivial_constructor(T)) { |
| pos = target; |
| } else { |
| while (pos < target) { |
| kj::ctor(*pos++); |
| } |
| } |
| } else { |
| // truncate |
| if (__has_trivial_destructor(T)) { |
| pos = target; |
| } else { |
| while (pos > target) { |
| kj::dtor(*--pos); |
| } |
| } |
| } |
| } |
| |
| Array<T> finish() { |
| // We could safely remove this check if we assume that the disposer implementation doesn't |
| // need to know the original capacity, as is the case with HeapArrayDisposer since it uses |
| // operator new() or if we created a custom disposer for ArrayBuilder which stores the capacity |
| // in a prefix. But that would make it hard to write cleverer heap allocators, and anyway this |
| // check might catch bugs. Probably people should use Vector if they want to build arrays |
| // without knowing the final size in advance. |
| KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely."); |
| Array<T> result(reinterpret_cast<T*>(ptr), pos - ptr, *disposer); |
| ptr = nullptr; |
| pos = nullptr; |
| endPtr = nullptr; |
| return result; |
| } |
| |
| inline bool isFull() const { |
| return pos == endPtr; |
| } |
| |
| private: |
| T* ptr; |
| RemoveConst<T>* pos; |
| T* endPtr; |
| const ArrayDisposer* disposer = &NullArrayDisposer::instance; |
| |
| inline void dispose() { |
| // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly |
| // dispose again. |
| T* ptrCopy = ptr; |
| T* posCopy = pos; |
| T* endCopy = endPtr; |
| if (ptrCopy != nullptr) { |
| ptr = nullptr; |
| pos = nullptr; |
| endPtr = nullptr; |
| disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy); |
| } |
| } |
| }; |
| |
| template <typename T> |
| inline ArrayBuilder<T> heapArrayBuilder(size_t size) { |
| // Like `heapArray<T>()` but does not default-construct the elements. You must construct them |
| // manually by calling `add()`. |
| |
| return ArrayBuilder<T>(_::HeapArrayDisposer::allocateUninitialized<RemoveConst<T>>(size), |
| size, _::HeapArrayDisposer::instance); |
| } |
| |
| // ======================================================================================= |
| // Inline Arrays |
| |
| template <typename T, size_t fixedSize> |
| class FixedArray { |
| // A fixed-width array whose storage is allocated inline rather than on the heap. |
| |
| public: |
| inline constexpr size_t size() const { return fixedSize; } |
| inline constexpr T* begin() KJ_LIFETIMEBOUND { return content; } |
| inline constexpr T* end() KJ_LIFETIMEBOUND { return content + fixedSize; } |
| inline constexpr const T* begin() const KJ_LIFETIMEBOUND { return content; } |
| inline constexpr const T* end() const KJ_LIFETIMEBOUND { return content + fixedSize; } |
| |
| inline constexpr operator ArrayPtr<T>() KJ_LIFETIMEBOUND { |
| return arrayPtr(content, fixedSize); |
| } |
| inline constexpr operator ArrayPtr<const T>() const KJ_LIFETIMEBOUND { |
| return arrayPtr(content, fixedSize); |
| } |
| |
| inline constexpr T& operator[](size_t index) KJ_LIFETIMEBOUND { return content[index]; } |
| inline constexpr const T& operator[](size_t index) const KJ_LIFETIMEBOUND { |
| return content[index]; |
| } |
| |
| private: |
| T content[fixedSize]; |
| }; |
| |
| template <typename T, size_t fixedSize> |
| class CappedArray { |
| // Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit |
| // specified by the template parameter. |
| // |
| // TODO(someday): Don't construct elements past currentSize? |
| |
| public: |
| inline KJ_CONSTEXPR() CappedArray(): currentSize(fixedSize) {} |
| inline explicit constexpr CappedArray(size_t s): currentSize(s) {} |
| |
| inline size_t size() const { return currentSize; } |
| inline void setSize(size_t s) { KJ_IREQUIRE(s <= fixedSize); currentSize = s; } |
| inline T* begin() KJ_LIFETIMEBOUND { return content; } |
| inline T* end() KJ_LIFETIMEBOUND { return content + currentSize; } |
| inline const T* begin() const KJ_LIFETIMEBOUND { return content; } |
| inline const T* end() const KJ_LIFETIMEBOUND { return content + currentSize; } |
| |
| inline operator ArrayPtr<T>() KJ_LIFETIMEBOUND { |
| return arrayPtr(content, currentSize); |
| } |
| inline operator ArrayPtr<const T>() const KJ_LIFETIMEBOUND { |
| return arrayPtr(content, currentSize); |
| } |
| |
| inline T& operator[](size_t index) KJ_LIFETIMEBOUND { return content[index]; } |
| inline const T& operator[](size_t index) const KJ_LIFETIMEBOUND { return content[index]; } |
| |
| private: |
| size_t currentSize; |
| T content[fixedSize]; |
| }; |
| |
| // ======================================================================================= |
| // KJ_MAP |
| |
| #define KJ_MAP(elementName, array) \ |
| ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>(array) * \ |
| [&](typename ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>::Element elementName) |
| // Applies some function to every element of an array, returning an Array of the results, with |
| // nice syntax. Example: |
| // |
| // StringPtr foo = "abcd"; |
| // Array<char> bar = KJ_MAP(c, foo) -> char { return c + 1; }; |
| // KJ_ASSERT(str(bar) == "bcde"); |
| |
| namespace _ { // private |
| |
| template <typename T> |
| struct Mapper { |
| T array; |
| Mapper(T&& array): array(kj::fwd<T>(array)) {} |
| template <typename Func> |
| auto operator*(Func&& func) -> Array<decltype(func(*array.begin()))> { |
| auto builder = heapArrayBuilder<decltype(func(*array.begin()))>(array.size()); |
| for (auto iter = array.begin(); iter != array.end(); ++iter) { |
| builder.add(func(*iter)); |
| } |
| return builder.finish(); |
| } |
| typedef decltype(*kj::instance<T>().begin()) Element; |
| }; |
| |
| template <typename T, size_t s> |
| struct Mapper<T(&)[s]> { |
| T* array; |
| Mapper(T* array): array(array) {} |
| template <typename Func> |
| auto operator*(Func&& func) -> Array<decltype(func(*array))> { |
| auto builder = heapArrayBuilder<decltype(func(*array))>(s); |
| for (size_t i = 0; i < s; i++) { |
| builder.add(func(array[i])); |
| } |
| return builder.finish(); |
| } |
| typedef decltype(*array)& Element; |
| }; |
| |
| } // namespace _ (private) |
| |
| // ======================================================================================= |
| // Inline implementation details |
| |
| template <typename T> |
| struct ArrayDisposer::Dispose_<T, true> { |
| static void dispose(T* firstElement, size_t elementCount, size_t capacity, |
| const ArrayDisposer& disposer) { |
| disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement), |
| sizeof(T), elementCount, capacity, nullptr); |
| } |
| }; |
| template <typename T> |
| struct ArrayDisposer::Dispose_<T, false> { |
| static void destruct(void* ptr) { |
| kj::dtor(*reinterpret_cast<T*>(ptr)); |
| } |
| |
| static void dispose(T* firstElement, size_t elementCount, size_t capacity, |
| const ArrayDisposer& disposer) { |
| disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement), |
| sizeof(T), elementCount, capacity, &destruct); |
| } |
| }; |
| |
| template <typename T> |
| void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const { |
| Dispose_<T>::dispose(firstElement, elementCount, capacity, *this); |
| } |
| |
| namespace _ { // private |
| |
| template <typename T> |
| struct HeapArrayDisposer::Allocate_<T, true, true> { |
| static T* allocate(size_t elementCount, size_t capacity) { |
| return reinterpret_cast<T*>(allocateImpl( |
| sizeof(T), elementCount, capacity, nullptr, nullptr)); |
| } |
| }; |
| template <typename T> |
| struct HeapArrayDisposer::Allocate_<T, false, true> { |
| static void construct(void* ptr) { |
| kj::ctor(*reinterpret_cast<T*>(ptr)); |
| } |
| static T* allocate(size_t elementCount, size_t capacity) { |
| return reinterpret_cast<T*>(allocateImpl( |
| sizeof(T), elementCount, capacity, &construct, nullptr)); |
| } |
| }; |
| template <typename T> |
| struct HeapArrayDisposer::Allocate_<T, false, false> { |
| static void construct(void* ptr) { |
| kj::ctor(*reinterpret_cast<T*>(ptr)); |
| } |
| static void destruct(void* ptr) { |
| kj::dtor(*reinterpret_cast<T*>(ptr)); |
| } |
| static T* allocate(size_t elementCount, size_t capacity) { |
| return reinterpret_cast<T*>(allocateImpl( |
| sizeof(T), elementCount, capacity, &construct, &destruct)); |
| } |
| }; |
| |
| template <typename T> |
| T* HeapArrayDisposer::allocate(size_t count) { |
| return Allocate_<T>::allocate(count, count); |
| } |
| |
| template <typename T> |
| T* HeapArrayDisposer::allocateUninitialized(size_t count) { |
| return Allocate_<T, true, true>::allocate(0, count); |
| } |
| |
| template <typename Element, typename Iterator, bool move, bool = canMemcpy<Element>()> |
| struct CopyConstructArray_; |
| |
| template <typename T, bool move> |
| struct CopyConstructArray_<T, T*, move, true> { |
| static inline T* apply(T* __restrict__ pos, T* start, T* end) { |
| if (end != start) { |
| memcpy(pos, start, reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start)); |
| } |
| return pos + (end - start); |
| } |
| }; |
| |
| template <typename T> |
| struct CopyConstructArray_<T, const T*, false, true> { |
| static inline T* apply(T* __restrict__ pos, const T* start, const T* end) { |
| if (end != start) { |
| memcpy(pos, start, reinterpret_cast<const byte*>(end) - reinterpret_cast<const byte*>(start)); |
| } |
| return pos + (end - start); |
| } |
| }; |
| |
| template <typename T, typename Iterator, bool move> |
| struct CopyConstructArray_<T, Iterator, move, true> { |
| static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) { |
| // Since both the copy constructor and assignment operator are trivial, we know that assignment |
| // is equivalent to copy-constructing. So we can make this case somewhat easier for the |
| // compiler to optimize. |
| while (start != end) { |
| *pos++ = *start++; |
| } |
| return pos; |
| } |
| }; |
| |
| template <typename T, typename Iterator> |
| struct CopyConstructArray_<T, Iterator, false, false> { |
| struct ExceptionGuard { |
| T* start; |
| T* pos; |
| inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {} |
| ~ExceptionGuard() noexcept(false) { |
| while (pos > start) { |
| dtor(*--pos); |
| } |
| } |
| }; |
| |
| static T* apply(T* __restrict__ pos, Iterator start, Iterator end) { |
| // Verify that T can be *implicitly* constructed from the source values. |
| if (false) implicitCast<T>(*start); |
| |
| if (noexcept(T(*start))) { |
| while (start != end) { |
| ctor(*pos++, *start++); |
| } |
| return pos; |
| } else { |
| // Crap. This is complicated. |
| ExceptionGuard guard(pos); |
| while (start != end) { |
| ctor(*guard.pos, *start++); |
| ++guard.pos; |
| } |
| guard.start = guard.pos; |
| return guard.pos; |
| } |
| } |
| }; |
| |
| template <typename T, typename Iterator> |
| struct CopyConstructArray_<T, Iterator, true, false> { |
| // Actually move-construct. |
| |
| struct ExceptionGuard { |
| T* start; |
| T* pos; |
| inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {} |
| ~ExceptionGuard() noexcept(false) { |
| while (pos > start) { |
| dtor(*--pos); |
| } |
| } |
| }; |
| |
| static T* apply(T* __restrict__ pos, Iterator start, Iterator end) { |
| // Verify that T can be *implicitly* constructed from the source values. |
| if (false) implicitCast<T>(kj::mv(*start)); |
| |
| if (noexcept(T(kj::mv(*start)))) { |
| while (start != end) { |
| ctor(*pos++, kj::mv(*start++)); |
| } |
| return pos; |
| } else { |
| // Crap. This is complicated. |
| ExceptionGuard guard(pos); |
| while (start != end) { |
| ctor(*guard.pos, kj::mv(*start++)); |
| ++guard.pos; |
| } |
| guard.start = guard.pos; |
| return guard.pos; |
| } |
| } |
| }; |
| |
| } // namespace _ (private) |
| |
| template <typename T> |
| template <typename Iterator, bool move> |
| void ArrayBuilder<T>::addAll(Iterator start, Iterator end) { |
| pos = _::CopyConstructArray_<RemoveConst<T>, Decay<Iterator>, move>::apply(pos, start, end); |
| } |
| |
| template <typename T> |
| Array<T> heapArray(const T* content, size_t size) { |
| ArrayBuilder<T> builder = heapArrayBuilder<T>(size); |
| builder.addAll(content, content + size); |
| return builder.finish(); |
| } |
| |
| template <typename T> |
| Array<T> heapArray(T* content, size_t size) { |
| ArrayBuilder<T> builder = heapArrayBuilder<T>(size); |
| builder.addAll(content, content + size); |
| return builder.finish(); |
| } |
| |
| template <typename T> |
| Array<T> heapArray(ArrayPtr<T> content) { |
| ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size()); |
| builder.addAll(content); |
| return builder.finish(); |
| } |
| |
| template <typename T> |
| Array<T> heapArray(ArrayPtr<const T> content) { |
| ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size()); |
| builder.addAll(content); |
| return builder.finish(); |
| } |
| |
| template <typename T, typename Iterator> Array<T> |
| heapArray(Iterator begin, Iterator end) { |
| ArrayBuilder<T> builder = heapArrayBuilder<T>(end - begin); |
| builder.addAll(begin, end); |
| return builder.finish(); |
| } |
| |
| template <typename T> |
| inline Array<T> heapArray(std::initializer_list<T> init) { |
| return heapArray<T>(init.begin(), init.end()); |
| } |
| |
| #if __cplusplus > 201402L |
| template <typename T, typename... Params> |
| inline Array<Decay<T>> arr(T&& param1, Params&&... params) { |
| ArrayBuilder<Decay<T>> builder = heapArrayBuilder<Decay<T>>(sizeof...(params) + 1); |
| (builder.add(kj::fwd<T>(param1)), ... , builder.add(kj::fwd<Params>(params))); |
| return builder.finish(); |
| } |
| template <typename T, typename... Params> |
| inline Array<Decay<T>> arrOf(Params&&... params) { |
| ArrayBuilder<Decay<T>> builder = heapArrayBuilder<Decay<T>>(sizeof...(params)); |
| (... , builder.add(kj::fwd<Params>(params))); |
| return builder.finish(); |
| } |
| #endif |
| |
| namespace _ { // private |
| |
| template <typename... T> |
| struct ArrayDisposableOwnedBundle final: public ArrayDisposer, public OwnedBundle<T...> { |
| ArrayDisposableOwnedBundle(T&&... values): OwnedBundle<T...>(kj::fwd<T>(values)...) {} |
| void disposeImpl(void*, size_t, size_t, size_t, void (*)(void*)) const override { delete this; } |
| }; |
| |
| } // namespace _ (private) |
| |
| template <typename T> |
| template <typename... Attachments> |
| Array<T> Array<T>::attach(Attachments&&... attachments) { |
| T* ptrCopy = ptr; |
| auto sizeCopy = size_; |
| |
| KJ_IREQUIRE(ptrCopy != nullptr, "cannot attach to null pointer"); |
| |
| // HACK: If someone accidentally calls .attach() on a null pointer in opt mode, try our best to |
| // accomplish reasonable behavior: We turn the pointer non-null but still invalid, so that the |
| // disposer will still be called when the pointer goes out of scope. |
| if (ptrCopy == nullptr) ptrCopy = reinterpret_cast<T*>(1); |
| |
| auto bundle = new _::ArrayDisposableOwnedBundle<Array<T>, Attachments...>( |
| kj::mv(*this), kj::fwd<Attachments>(attachments)...); |
| return Array<T>(ptrCopy, sizeCopy, *bundle); |
| } |
| |
| template <typename T> |
| template <typename... Attachments> |
| Array<T> ArrayPtr<T>::attach(Attachments&&... attachments) const { |
| T* ptrCopy = ptr; |
| |
| KJ_IREQUIRE(ptrCopy != nullptr, "cannot attach to null pointer"); |
| |
| // HACK: If someone accidentally calls .attach() on a null pointer in opt mode, try our best to |
| // accomplish reasonable behavior: We turn the pointer non-null but still invalid, so that the |
| // disposer will still be called when the pointer goes out of scope. |
| if (ptrCopy == nullptr) ptrCopy = reinterpret_cast<T*>(1); |
| |
| auto bundle = new _::ArrayDisposableOwnedBundle<Attachments...>( |
| kj::fwd<Attachments>(attachments)...); |
| return Array<T>(ptrCopy, size_, *bundle); |
| } |
| |
| } // namespace kj |
| |
| KJ_END_HEADER |