blob: fdd7d4cf50416f32b365178c485ec9018b81196b [file] [log] [blame]
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
#include "memory.h"
#include <string.h>
#include <initializer_list>
KJ_BEGIN_HEADER
namespace kj {
// =======================================================================================
// ArrayDisposer -- Implementation details.
class ArrayDisposer {
// Much like Disposer from memory.h.
protected:
// Do not declare a destructor, as doing so will force a global initializer for
// HeapArrayDisposer::instance.
virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
size_t capacity, void (*destroyElement)(void*)) const = 0;
// Disposes of the array. `destroyElement` invokes the destructor of each element, or is nullptr
// if the elements have trivial destructors. `capacity` is the amount of space that was
// allocated while `elementCount` is the number of elements that were actually constructed;
// these are always the same number for Array<T> but may be different when using ArrayBuilder<T>.
public:
template <typename T>
void dispose(T* firstElement, size_t elementCount, size_t capacity) const;
// Helper wrapper around disposeImpl().
//
// Callers must not call dispose() on the same array twice, even if the first call throws
// an exception.
private:
template <typename T, bool hasTrivialDestructor = __has_trivial_destructor(T)>
struct Dispose_;
};
class ExceptionSafeArrayUtil {
// Utility class that assists in constructing or destroying elements of an array, where the
// constructor or destructor could throw exceptions. In case of an exception,
// ExceptionSafeArrayUtil's destructor will call destructors on all elements that have been
// constructed but not destroyed. Remember that destructors that throw exceptions are required
// to use UnwindDetector to detect unwind and avoid exceptions in this case. Therefore, no more
// than one exception will be thrown (and the program will not terminate).
public:
inline ExceptionSafeArrayUtil(void* ptr, size_t elementSize, size_t constructedElementCount,
void (*destroyElement)(void*))
: pos(reinterpret_cast<byte*>(ptr) + elementSize * constructedElementCount),
elementSize(elementSize), constructedElementCount(constructedElementCount),
destroyElement(destroyElement) {}
KJ_DISALLOW_COPY(ExceptionSafeArrayUtil);
inline ~ExceptionSafeArrayUtil() noexcept(false) {
if (constructedElementCount > 0) destroyAll();
}
void construct(size_t count, void (*constructElement)(void*));
// Construct the given number of elements.
void destroyAll();
// Destroy all elements. Call this immediately before ExceptionSafeArrayUtil goes out-of-scope
// to ensure that one element throwing an exception does not prevent the others from being
// destroyed.
void release() { constructedElementCount = 0; }
// Prevent ExceptionSafeArrayUtil's destructor from destroying the constructed elements.
// Call this after you've successfully finished constructing.
private:
byte* pos;
size_t elementSize;
size_t constructedElementCount;
void (*destroyElement)(void*);
};
class DestructorOnlyArrayDisposer: public ArrayDisposer {
public:
static const DestructorOnlyArrayDisposer instance;
void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
size_t capacity, void (*destroyElement)(void*)) const override;
};
class NullArrayDisposer: public ArrayDisposer {
// An ArrayDisposer that does nothing. Can be used to construct a fake Arrays that doesn't
// actually own its content.
public:
static const NullArrayDisposer instance;
void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
size_t capacity, void (*destroyElement)(void*)) const override;
};
// =======================================================================================
// Array
template <typename T>
class Array {
// An owned array which will automatically be disposed of (using an ArrayDisposer) in the
// destructor. Can be moved, but not copied. Much like Own<T>, but for arrays rather than
// single objects.
public:
inline Array(): ptr(nullptr), size_(0), disposer(nullptr) {}
inline Array(decltype(nullptr)): ptr(nullptr), size_(0), disposer(nullptr) {}
inline Array(Array&& other) noexcept
: ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
other.ptr = nullptr;
other.size_ = 0;
}
inline Array(Array<RemoveConstOrDisable<T>>&& other) noexcept
: ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
other.ptr = nullptr;
other.size_ = 0;
}
inline Array(T* firstElement KJ_LIFETIMEBOUND, size_t size, const ArrayDisposer& disposer)
: ptr(firstElement), size_(size), disposer(&disposer) {}
KJ_DISALLOW_COPY(Array);
inline ~Array() noexcept { dispose(); }
inline operator ArrayPtr<T>() KJ_LIFETIMEBOUND {
return ArrayPtr<T>(ptr, size_);
}
inline operator ArrayPtr<const T>() const KJ_LIFETIMEBOUND {
return ArrayPtr<T>(ptr, size_);
}
inline ArrayPtr<T> asPtr() KJ_LIFETIMEBOUND {
return ArrayPtr<T>(ptr, size_);
}
inline ArrayPtr<const T> asPtr() const KJ_LIFETIMEBOUND {
return ArrayPtr<T>(ptr, size_);
}
inline size_t size() const { return size_; }
inline T& operator[](size_t index) KJ_LIFETIMEBOUND {
KJ_IREQUIRE(index < size_, "Out-of-bounds Array access.");
return ptr[index];
}
inline const T& operator[](size_t index) const KJ_LIFETIMEBOUND {
KJ_IREQUIRE(index < size_, "Out-of-bounds Array access.");
return ptr[index];
}
inline const T* begin() const KJ_LIFETIMEBOUND { return ptr; }
inline const T* end() const KJ_LIFETIMEBOUND { return ptr + size_; }
inline const T& front() const KJ_LIFETIMEBOUND { return *ptr; }
inline const T& back() const KJ_LIFETIMEBOUND { return *(ptr + size_ - 1); }
inline T* begin() KJ_LIFETIMEBOUND { return ptr; }
inline T* end() KJ_LIFETIMEBOUND { return ptr + size_; }
inline T& front() KJ_LIFETIMEBOUND { return *ptr; }
inline T& back() KJ_LIFETIMEBOUND { return *(ptr + size_ - 1); }
template <typename U>
inline bool operator==(const U& other) const { return asPtr() == other; }
template <typename U>
inline bool operator!=(const U& other) const { return asPtr() != other; }
inline ArrayPtr<T> slice(size_t start, size_t end) KJ_LIFETIMEBOUND {
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
return ArrayPtr<T>(ptr + start, end - start);
}
inline ArrayPtr<const T> slice(size_t start, size_t end) const KJ_LIFETIMEBOUND {
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
return ArrayPtr<const T>(ptr + start, end - start);
}
inline ArrayPtr<const byte> asBytes() const KJ_LIFETIMEBOUND { return asPtr().asBytes(); }
inline ArrayPtr<PropagateConst<T, byte>> asBytes() KJ_LIFETIMEBOUND { return asPtr().asBytes(); }
inline ArrayPtr<const char> asChars() const KJ_LIFETIMEBOUND { return asPtr().asChars(); }
inline ArrayPtr<PropagateConst<T, char>> asChars() KJ_LIFETIMEBOUND { return asPtr().asChars(); }
inline Array<PropagateConst<T, byte>> releaseAsBytes() {
// Like asBytes() but transfers ownership.
static_assert(sizeof(T) == sizeof(byte),
"releaseAsBytes() only possible on arrays with byte-size elements (e.g. chars).");
Array<PropagateConst<T, byte>> result(
reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_, *disposer);
ptr = nullptr;
size_ = 0;
return result;
}
inline Array<PropagateConst<T, char>> releaseAsChars() {
// Like asChars() but transfers ownership.
static_assert(sizeof(T) == sizeof(PropagateConst<T, char>),
"releaseAsChars() only possible on arrays with char-size elements (e.g. bytes).");
Array<PropagateConst<T, char>> result(
reinterpret_cast<PropagateConst<T, char>*>(ptr), size_, *disposer);
ptr = nullptr;
size_ = 0;
return result;
}
inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
inline Array& operator=(decltype(nullptr)) {
dispose();
return *this;
}
inline Array& operator=(Array&& other) {
dispose();
ptr = other.ptr;
size_ = other.size_;
disposer = other.disposer;
other.ptr = nullptr;
other.size_ = 0;
return *this;
}
template <typename... Attachments>
Array<T> attach(Attachments&&... attachments) KJ_WARN_UNUSED_RESULT;
// Like Own<T>::attach(), but attaches to an Array.
private:
T* ptr;
size_t size_;
const ArrayDisposer* disposer;
inline void dispose() {
// Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
// dispose again.
T* ptrCopy = ptr;
size_t sizeCopy = size_;
if (ptrCopy != nullptr) {
ptr = nullptr;
size_ = 0;
disposer->dispose(ptrCopy, sizeCopy, sizeCopy);
}
}
template <typename U>
friend class Array;
template <typename U>
friend class ArrayBuilder;
};
static_assert(!canMemcpy<Array<char>>(), "canMemcpy<>() is broken");
namespace _ { // private
class HeapArrayDisposer final: public ArrayDisposer {
public:
template <typename T>
static T* allocate(size_t count);
template <typename T>
static T* allocateUninitialized(size_t count);
static const HeapArrayDisposer instance;
private:
static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity,
void (*constructElement)(void*), void (*destroyElement)(void*));
// Allocates and constructs the array. Both function pointers are null if the constructor is
// trivial, otherwise destroyElement is null if the constructor doesn't throw.
virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
size_t capacity, void (*destroyElement)(void*)) const override;
template <typename T, bool hasTrivialConstructor = __has_trivial_constructor(T),
bool hasNothrowConstructor = __has_nothrow_constructor(T)>
struct Allocate_;
};
} // namespace _ (private)
template <typename T>
inline Array<T> heapArray(size_t size) {
// Much like `heap<T>()` from memory.h, allocates a new array on the heap.
return Array<T>(_::HeapArrayDisposer::allocate<T>(size), size,
_::HeapArrayDisposer::instance);
}
template <typename T> Array<T> heapArray(const T* content, size_t size);
template <typename T> Array<T> heapArray(ArrayPtr<T> content);
template <typename T> Array<T> heapArray(ArrayPtr<const T> content);
template <typename T, typename Iterator> Array<T> heapArray(Iterator begin, Iterator end);
template <typename T> Array<T> heapArray(std::initializer_list<T> init);
// Allocate a heap array containing a copy of the given content.
template <typename T, typename Container>
Array<T> heapArrayFromIterable(Container&& a) { return heapArray<T>(a.begin(), a.end()); }
template <typename T>
Array<T> heapArrayFromIterable(Array<T>&& a) { return mv(a); }
// =======================================================================================
// ArrayBuilder
template <typename T>
class ArrayBuilder {
// Class which lets you build an Array<T> specifying the exact constructor arguments for each
// element, rather than starting by default-constructing them.
public:
ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
explicit ArrayBuilder(RemoveConst<T>* firstElement, size_t capacity,
const ArrayDisposer& disposer)
: ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity),
disposer(&disposer) {}
ArrayBuilder(ArrayBuilder&& other)
: ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) {
other.ptr = nullptr;
other.pos = nullptr;
other.endPtr = nullptr;
}
ArrayBuilder(Array<T>&& other)
: ptr(other.ptr), pos(other.ptr + other.size_), endPtr(pos), disposer(other.disposer) {
// Create an already-full ArrayBuilder from an Array of the same type. This constructor
// primarily exists to enable Vector<T> to be constructed from Array<T>.
other.ptr = nullptr;
other.size_ = 0;
}
KJ_DISALLOW_COPY(ArrayBuilder);
inline ~ArrayBuilder() noexcept(false) { dispose(); }
inline operator ArrayPtr<T>() KJ_LIFETIMEBOUND {
return arrayPtr(ptr, pos);
}
inline operator ArrayPtr<const T>() const KJ_LIFETIMEBOUND {
return arrayPtr(ptr, pos);
}
inline ArrayPtr<T> asPtr() KJ_LIFETIMEBOUND {
return arrayPtr(ptr, pos);
}
inline ArrayPtr<const T> asPtr() const KJ_LIFETIMEBOUND {
return arrayPtr(ptr, pos);
}
inline size_t size() const { return pos - ptr; }
inline size_t capacity() const { return endPtr - ptr; }
inline T& operator[](size_t index) KJ_LIFETIMEBOUND {
KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access.");
return ptr[index];
}
inline const T& operator[](size_t index) const KJ_LIFETIMEBOUND {
KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access.");
return ptr[index];
}
inline const T* begin() const KJ_LIFETIMEBOUND { return ptr; }
inline const T* end() const KJ_LIFETIMEBOUND { return pos; }
inline const T& front() const KJ_LIFETIMEBOUND { return *ptr; }
inline const T& back() const KJ_LIFETIMEBOUND { return *(pos - 1); }
inline T* begin() KJ_LIFETIMEBOUND { return ptr; }
inline T* end() KJ_LIFETIMEBOUND { return pos; }
inline T& front() KJ_LIFETIMEBOUND { return *ptr; }
inline T& back() KJ_LIFETIMEBOUND { return *(pos - 1); }
ArrayBuilder& operator=(ArrayBuilder&& other) {
dispose();
ptr = other.ptr;
pos = other.pos;
endPtr = other.endPtr;
disposer = other.disposer;
other.ptr = nullptr;
other.pos = nullptr;
other.endPtr = nullptr;
return *this;
}
ArrayBuilder& operator=(decltype(nullptr)) {
dispose();
return *this;
}
template <typename... Params>
T& add(Params&&... params) KJ_LIFETIMEBOUND {
KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder.");
ctor(*pos, kj::fwd<Params>(params)...);
return *pos++;
}
template <typename Container>
void addAll(Container&& container) {
addAll<decltype(container.begin()), !isReference<Container>()>(
container.begin(), container.end());
}
template <typename Iterator, bool move = false>
void addAll(Iterator start, Iterator end);
void removeLast() {
KJ_IREQUIRE(pos > ptr, "No elements present to remove.");
kj::dtor(*--pos);
}
void truncate(size_t size) {
KJ_IREQUIRE(size <= this->size(), "can't use truncate() to expand");
T* target = ptr + size;
if (__has_trivial_destructor(T)) {
pos = target;
} else {
while (pos > target) {
kj::dtor(*--pos);
}
}
}
void clear() {
if (__has_trivial_destructor(T)) {
pos = ptr;
} else {
while (pos > ptr) {
kj::dtor(*--pos);
}
}
}
void resize(size_t size) {
KJ_IREQUIRE(size <= capacity(), "can't resize past capacity");
T* target = ptr + size;
if (target > pos) {
// expand
if (__has_trivial_constructor(T)) {
pos = target;
} else {
while (pos < target) {
kj::ctor(*pos++);
}
}
} else {
// truncate
if (__has_trivial_destructor(T)) {
pos = target;
} else {
while (pos > target) {
kj::dtor(*--pos);
}
}
}
}
Array<T> finish() {
// We could safely remove this check if we assume that the disposer implementation doesn't
// need to know the original capacity, as is the case with HeapArrayDisposer since it uses
// operator new() or if we created a custom disposer for ArrayBuilder which stores the capacity
// in a prefix. But that would make it hard to write cleverer heap allocators, and anyway this
// check might catch bugs. Probably people should use Vector if they want to build arrays
// without knowing the final size in advance.
KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely.");
Array<T> result(reinterpret_cast<T*>(ptr), pos - ptr, *disposer);
ptr = nullptr;
pos = nullptr;
endPtr = nullptr;
return result;
}
inline bool isFull() const {
return pos == endPtr;
}
private:
T* ptr;
RemoveConst<T>* pos;
T* endPtr;
const ArrayDisposer* disposer = &NullArrayDisposer::instance;
inline void dispose() {
// Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
// dispose again.
T* ptrCopy = ptr;
T* posCopy = pos;
T* endCopy = endPtr;
if (ptrCopy != nullptr) {
ptr = nullptr;
pos = nullptr;
endPtr = nullptr;
disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy);
}
}
};
template <typename T>
inline ArrayBuilder<T> heapArrayBuilder(size_t size) {
// Like `heapArray<T>()` but does not default-construct the elements. You must construct them
// manually by calling `add()`.
return ArrayBuilder<T>(_::HeapArrayDisposer::allocateUninitialized<RemoveConst<T>>(size),
size, _::HeapArrayDisposer::instance);
}
// =======================================================================================
// Inline Arrays
template <typename T, size_t fixedSize>
class FixedArray {
// A fixed-width array whose storage is allocated inline rather than on the heap.
public:
inline constexpr size_t size() const { return fixedSize; }
inline constexpr T* begin() KJ_LIFETIMEBOUND { return content; }
inline constexpr T* end() KJ_LIFETIMEBOUND { return content + fixedSize; }
inline constexpr const T* begin() const KJ_LIFETIMEBOUND { return content; }
inline constexpr const T* end() const KJ_LIFETIMEBOUND { return content + fixedSize; }
inline constexpr operator ArrayPtr<T>() KJ_LIFETIMEBOUND {
return arrayPtr(content, fixedSize);
}
inline constexpr operator ArrayPtr<const T>() const KJ_LIFETIMEBOUND {
return arrayPtr(content, fixedSize);
}
inline constexpr T& operator[](size_t index) KJ_LIFETIMEBOUND { return content[index]; }
inline constexpr const T& operator[](size_t index) const KJ_LIFETIMEBOUND {
return content[index];
}
private:
T content[fixedSize];
};
template <typename T, size_t fixedSize>
class CappedArray {
// Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit
// specified by the template parameter.
//
// TODO(someday): Don't construct elements past currentSize?
public:
inline KJ_CONSTEXPR() CappedArray(): currentSize(fixedSize) {}
inline explicit constexpr CappedArray(size_t s): currentSize(s) {}
inline size_t size() const { return currentSize; }
inline void setSize(size_t s) { KJ_IREQUIRE(s <= fixedSize); currentSize = s; }
inline T* begin() KJ_LIFETIMEBOUND { return content; }
inline T* end() KJ_LIFETIMEBOUND { return content + currentSize; }
inline const T* begin() const KJ_LIFETIMEBOUND { return content; }
inline const T* end() const KJ_LIFETIMEBOUND { return content + currentSize; }
inline operator ArrayPtr<T>() KJ_LIFETIMEBOUND {
return arrayPtr(content, currentSize);
}
inline operator ArrayPtr<const T>() const KJ_LIFETIMEBOUND {
return arrayPtr(content, currentSize);
}
inline T& operator[](size_t index) KJ_LIFETIMEBOUND { return content[index]; }
inline const T& operator[](size_t index) const KJ_LIFETIMEBOUND { return content[index]; }
private:
size_t currentSize;
T content[fixedSize];
};
// =======================================================================================
// KJ_MAP
#define KJ_MAP(elementName, array) \
::kj::_::Mapper<KJ_DECLTYPE_REF(array)>(array) * \
[&](typename ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>::Element elementName)
// Applies some function to every element of an array, returning an Array of the results, with
// nice syntax. Example:
//
// StringPtr foo = "abcd";
// Array<char> bar = KJ_MAP(c, foo) -> char { return c + 1; };
// KJ_ASSERT(str(bar) == "bcde");
namespace _ { // private
template <typename T>
struct Mapper {
T array;
Mapper(T&& array): array(kj::fwd<T>(array)) {}
template <typename Func>
auto operator*(Func&& func) -> Array<decltype(func(*array.begin()))> {
auto builder = heapArrayBuilder<decltype(func(*array.begin()))>(array.size());
for (auto iter = array.begin(); iter != array.end(); ++iter) {
builder.add(func(*iter));
}
return builder.finish();
}
typedef decltype(*kj::instance<T>().begin()) Element;
};
template <typename T, size_t s>
struct Mapper<T(&)[s]> {
T* array;
Mapper(T* array): array(array) {}
template <typename Func>
auto operator*(Func&& func) -> Array<decltype(func(*array))> {
auto builder = heapArrayBuilder<decltype(func(*array))>(s);
for (size_t i = 0; i < s; i++) {
builder.add(func(array[i]));
}
return builder.finish();
}
typedef decltype(*array)& Element;
};
} // namespace _ (private)
// =======================================================================================
// Inline implementation details
template <typename T>
struct ArrayDisposer::Dispose_<T, true> {
static void dispose(T* firstElement, size_t elementCount, size_t capacity,
const ArrayDisposer& disposer) {
disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement),
sizeof(T), elementCount, capacity, nullptr);
}
};
template <typename T>
struct ArrayDisposer::Dispose_<T, false> {
static void destruct(void* ptr) {
kj::dtor(*reinterpret_cast<T*>(ptr));
}
static void dispose(T* firstElement, size_t elementCount, size_t capacity,
const ArrayDisposer& disposer) {
disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement),
sizeof(T), elementCount, capacity, &destruct);
}
};
template <typename T>
void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const {
Dispose_<T>::dispose(firstElement, elementCount, capacity, *this);
}
namespace _ { // private
template <typename T>
struct HeapArrayDisposer::Allocate_<T, true, true> {
static T* allocate(size_t elementCount, size_t capacity) {
return reinterpret_cast<T*>(allocateImpl(
sizeof(T), elementCount, capacity, nullptr, nullptr));
}
};
template <typename T>
struct HeapArrayDisposer::Allocate_<T, false, true> {
static void construct(void* ptr) {
kj::ctor(*reinterpret_cast<T*>(ptr));
}
static T* allocate(size_t elementCount, size_t capacity) {
return reinterpret_cast<T*>(allocateImpl(
sizeof(T), elementCount, capacity, &construct, nullptr));
}
};
template <typename T>
struct HeapArrayDisposer::Allocate_<T, false, false> {
static void construct(void* ptr) {
kj::ctor(*reinterpret_cast<T*>(ptr));
}
static void destruct(void* ptr) {
kj::dtor(*reinterpret_cast<T*>(ptr));
}
static T* allocate(size_t elementCount, size_t capacity) {
return reinterpret_cast<T*>(allocateImpl(
sizeof(T), elementCount, capacity, &construct, &destruct));
}
};
template <typename T>
T* HeapArrayDisposer::allocate(size_t count) {
return Allocate_<T>::allocate(count, count);
}
template <typename T>
T* HeapArrayDisposer::allocateUninitialized(size_t count) {
return Allocate_<T, true, true>::allocate(0, count);
}
template <typename Element, typename Iterator, bool move, bool = canMemcpy<Element>()>
struct CopyConstructArray_;
template <typename T, bool move>
struct CopyConstructArray_<T, T*, move, true> {
static inline T* apply(T* __restrict__ pos, T* start, T* end) {
if (end != start) {
memcpy(pos, start, reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start));
}
return pos + (end - start);
}
};
template <typename T>
struct CopyConstructArray_<T, const T*, false, true> {
static inline T* apply(T* __restrict__ pos, const T* start, const T* end) {
if (end != start) {
memcpy(pos, start, reinterpret_cast<const byte*>(end) - reinterpret_cast<const byte*>(start));
}
return pos + (end - start);
}
};
template <typename T, typename Iterator, bool move>
struct CopyConstructArray_<T, Iterator, move, true> {
static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
// Since both the copy constructor and assignment operator are trivial, we know that assignment
// is equivalent to copy-constructing. So we can make this case somewhat easier for the
// compiler to optimize.
while (start != end) {
*pos++ = *start++;
}
return pos;
}
};
template <typename T, typename Iterator>
struct CopyConstructArray_<T, Iterator, false, false> {
struct ExceptionGuard {
T* start;
T* pos;
inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
~ExceptionGuard() noexcept(false) {
while (pos > start) {
dtor(*--pos);
}
}
};
static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
// Verify that T can be *implicitly* constructed from the source values.
if (false) implicitCast<T>(*start);
if (noexcept(T(*start))) {
while (start != end) {
ctor(*pos++, *start++);
}
return pos;
} else {
// Crap. This is complicated.
ExceptionGuard guard(pos);
while (start != end) {
ctor(*guard.pos, *start++);
++guard.pos;
}
guard.start = guard.pos;
return guard.pos;
}
}
};
template <typename T, typename Iterator>
struct CopyConstructArray_<T, Iterator, true, false> {
// Actually move-construct.
struct ExceptionGuard {
T* start;
T* pos;
inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
~ExceptionGuard() noexcept(false) {
while (pos > start) {
dtor(*--pos);
}
}
};
static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
// Verify that T can be *implicitly* constructed from the source values.
if (false) implicitCast<T>(kj::mv(*start));
if (noexcept(T(kj::mv(*start)))) {
while (start != end) {
ctor(*pos++, kj::mv(*start++));
}
return pos;
} else {
// Crap. This is complicated.
ExceptionGuard guard(pos);
while (start != end) {
ctor(*guard.pos, kj::mv(*start++));
++guard.pos;
}
guard.start = guard.pos;
return guard.pos;
}
}
};
} // namespace _ (private)
template <typename T>
template <typename Iterator, bool move>
void ArrayBuilder<T>::addAll(Iterator start, Iterator end) {
pos = _::CopyConstructArray_<RemoveConst<T>, Decay<Iterator>, move>::apply(pos, start, end);
}
template <typename T>
Array<T> heapArray(const T* content, size_t size) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
builder.addAll(content, content + size);
return builder.finish();
}
template <typename T>
Array<T> heapArray(T* content, size_t size) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
builder.addAll(content, content + size);
return builder.finish();
}
template <typename T>
Array<T> heapArray(ArrayPtr<T> content) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
builder.addAll(content);
return builder.finish();
}
template <typename T>
Array<T> heapArray(ArrayPtr<const T> content) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
builder.addAll(content);
return builder.finish();
}
template <typename T, typename Iterator> Array<T>
heapArray(Iterator begin, Iterator end) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(end - begin);
builder.addAll(begin, end);
return builder.finish();
}
template <typename T>
inline Array<T> heapArray(std::initializer_list<T> init) {
return heapArray<T>(init.begin(), init.end());
}
#if __cplusplus > 201402L
template <typename T, typename... Params>
inline Array<Decay<T>> arr(T&& param1, Params&&... params) {
ArrayBuilder<Decay<T>> builder = heapArrayBuilder<Decay<T>>(sizeof...(params) + 1);
(builder.add(kj::fwd<T>(param1)), ... , builder.add(kj::fwd<Params>(params)));
return builder.finish();
}
template <typename T, typename... Params>
inline Array<Decay<T>> arrOf(Params&&... params) {
ArrayBuilder<Decay<T>> builder = heapArrayBuilder<Decay<T>>(sizeof...(params));
(... , builder.add(kj::fwd<Params>(params)));
return builder.finish();
}
#endif
namespace _ { // private
template <typename... T>
struct ArrayDisposableOwnedBundle final: public ArrayDisposer, public OwnedBundle<T...> {
ArrayDisposableOwnedBundle(T&&... values): OwnedBundle<T...>(kj::fwd<T>(values)...) {}
void disposeImpl(void*, size_t, size_t, size_t, void (*)(void*)) const override { delete this; }
};
} // namespace _ (private)
template <typename T>
template <typename... Attachments>
Array<T> Array<T>::attach(Attachments&&... attachments) {
T* ptrCopy = ptr;
auto sizeCopy = size_;
KJ_IREQUIRE(ptrCopy != nullptr, "cannot attach to null pointer");
// HACK: If someone accidentally calls .attach() on a null pointer in opt mode, try our best to
// accomplish reasonable behavior: We turn the pointer non-null but still invalid, so that the
// disposer will still be called when the pointer goes out of scope.
if (ptrCopy == nullptr) ptrCopy = reinterpret_cast<T*>(1);
auto bundle = new _::ArrayDisposableOwnedBundle<Array<T>, Attachments...>(
kj::mv(*this), kj::fwd<Attachments>(attachments)...);
return Array<T>(ptrCopy, sizeCopy, *bundle);
}
template <typename T>
template <typename... Attachments>
Array<T> ArrayPtr<T>::attach(Attachments&&... attachments) const {
T* ptrCopy = ptr;
KJ_IREQUIRE(ptrCopy != nullptr, "cannot attach to null pointer");
// HACK: If someone accidentally calls .attach() on a null pointer in opt mode, try our best to
// accomplish reasonable behavior: We turn the pointer non-null but still invalid, so that the
// disposer will still be called when the pointer goes out of scope.
if (ptrCopy == nullptr) ptrCopy = reinterpret_cast<T*>(1);
auto bundle = new _::ArrayDisposableOwnedBundle<Attachments...>(
kj::fwd<Attachments>(attachments)...);
return Array<T>(ptrCopy, size_, *bundle);
}
} // namespace kj
KJ_END_HEADER