blob: 862f97b9c7941ea8b8a7f69090ba34b2fadc8862 [file] [log] [blame]
// Copyright (c) 2014 Google Inc. (contributed by Remy Blank <[email protected]>)
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
#include "time.h"
#include "async.h"
KJ_BEGIN_HEADER
namespace kj {
class Timer: public MonotonicClock {
// Interface to time and timer functionality.
//
// Each `Timer` may have a different origin, and some `Timer`s may in fact tick at a different
// rate than real time (e.g. a `Timer` could represent CPU time consumed by a thread). However,
// all `Timer`s are monotonic: time will never appear to move backwards, even if the calendar
// date as tracked by the system is manually modified.
//
// That said, the `Timer` returned by `kj::setupAsyncIo().provider->getTimer()` in particular is
// guaranteed to be synchronized with the `MonotonicClock` returned by
// `systemPreciseMonotonicClock()` (or, more precisely, is updated to match that clock whenever
// the loop waits).
//
// Note that the value returned by `Timer::now()` only changes each time the
// event loop waits for I/O from the system. While the event loop is actively
// running, the time stays constant. This is intended to make behavior more
// deterministic and reproducible. However, if you need up-to-the-cycle
// accurate time, then `Timer::now()` is not appropriate. Instead, use
// `systemPreciseMonotonicClock()` directly in this case.
public:
virtual TimePoint now() const = 0;
// Returns the current value of a clock that moves steadily forward, independent of any
// changes in the wall clock. The value is updated every time the event loop waits,
// and is constant in-between waits.
virtual Promise<void> atTime(TimePoint time) = 0;
// Returns a promise that returns as soon as now() >= time.
virtual Promise<void> afterDelay(Duration delay) = 0;
// Equivalent to atTime(now() + delay).
template <typename T>
Promise<T> timeoutAt(TimePoint time, Promise<T>&& promise) KJ_WARN_UNUSED_RESULT;
// Return a promise equivalent to `promise` but which throws an exception (and cancels the
// original promise) if it hasn't completed by `time`. The thrown exception is of type
// "OVERLOADED".
template <typename T>
Promise<T> timeoutAfter(Duration delay, Promise<T>&& promise) KJ_WARN_UNUSED_RESULT;
// Return a promise equivalent to `promise` but which throws an exception (and cancels the
// original promise) if it hasn't completed after `delay` from now. The thrown exception is of
// type "OVERLOADED".
private:
static kj::Exception makeTimeoutException();
};
class TimerImpl final: public Timer {
// Implementation of Timer that expects an external caller -- usually, the EventPort
// implementation -- to tell it when time has advanced.
public:
TimerImpl(TimePoint startTime);
~TimerImpl() noexcept(false);
Maybe<TimePoint> nextEvent();
// Returns the time at which the next scheduled timer event will occur, or null if no timer
// events are scheduled.
Maybe<uint64_t> timeoutToNextEvent(TimePoint start, Duration unit, uint64_t max);
// Convenience method which computes a timeout value to pass to an event-waiting system call to
// cause it to time out when the next timer event occurs.
//
// `start` is the time at which the timeout starts counting. This is typically not the same as
// now() since some time may have passed since the last time advanceTo() was called.
//
// `unit` is the time unit in which the timeout is measured. This is often MILLISECONDS. Note
// that this method will fractional values *up*, to guarantee that the returned timeout waits
// until just *after* the time the event is scheduled.
//
// The timeout will be clamped to `max`. Use this to avoid an overflow if e.g. the OS wants a
// 32-bit value or a signed value.
//
// Returns nullptr if there are no future events.
void advanceTo(TimePoint newTime);
// Set the time to `time` and fire any at() events that have been passed.
// implements Timer ----------------------------------------------------------
TimePoint now() const override;
Promise<void> atTime(TimePoint time) override;
Promise<void> afterDelay(Duration delay) override;
private:
struct Impl;
class TimerPromiseAdapter;
TimePoint time;
Own<Impl> impl;
};
// =======================================================================================
// inline implementation details
template <typename T>
Promise<T> Timer::timeoutAt(TimePoint time, Promise<T>&& promise) {
return promise.exclusiveJoin(atTime(time).then([]() -> kj::Promise<T> {
return makeTimeoutException();
}));
}
template <typename T>
Promise<T> Timer::timeoutAfter(Duration delay, Promise<T>&& promise) {
return promise.exclusiveJoin(afterDelay(delay).then([]() -> kj::Promise<T> {
return makeTimeoutException();
}));
}
inline TimePoint TimerImpl::now() const { return time; }
} // namespace kj
KJ_END_HEADER