| // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors |
| // Licensed under the MIT License: |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| |
| // This file defines a notion of tuples that is simpler than `std::tuple`. It works as follows: |
| // - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C. |
| // - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves |
| // tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`. |
| // - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n. |
| // - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples |
| // in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`. |
| // |
| // Note that: |
| // - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the |
| // type. |
| // - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be |
| // flattened. |
| // - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause |
| // with type inference and `tuple()`. |
| |
| #pragma once |
| |
| #include "common.h" |
| |
| KJ_BEGIN_HEADER |
| |
| namespace kj { |
| namespace _ { // private |
| |
| template <size_t index, typename... T> |
| struct TypeByIndex_; |
| template <typename First, typename... Rest> |
| struct TypeByIndex_<0, First, Rest...> { |
| typedef First Type; |
| }; |
| template <size_t index, typename First, typename... Rest> |
| struct TypeByIndex_<index, First, Rest...> |
| : public TypeByIndex_<index - 1, Rest...> {}; |
| template <size_t index> |
| struct TypeByIndex_<index> { |
| static_assert(index != index, "Index out-of-range."); |
| }; |
| template <size_t index, typename... T> |
| using TypeByIndex = typename TypeByIndex_<index, T...>::Type; |
| // Chose a particular type out of a list of types, by index. |
| |
| template <size_t... s> |
| struct Indexes {}; |
| // Dummy helper type that just encapsulates a sequential list of indexes, so that we can match |
| // templates against them and unpack them with '...'. |
| |
| template <size_t end, size_t... prefix> |
| struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {}; |
| template <size_t... prefix> |
| struct MakeIndexes_<0, prefix...> { |
| typedef Indexes<prefix...> Type; |
| }; |
| template <size_t end> |
| using MakeIndexes = typename MakeIndexes_<end>::Type; |
| // Equivalent to Indexes<0, 1, 2, ..., end>. |
| |
| template <typename... T> |
| class Tuple; |
| template <size_t index, typename... U> |
| inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); |
| template <size_t index, typename... U> |
| inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); |
| template <size_t index, typename... U> |
| inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); |
| |
| template <uint index, typename T> |
| struct TupleElement { |
| // Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits |
| // from a TupleElement for each element, which is more efficient than a recursive definition. |
| |
| T value; |
| TupleElement() = default; |
| constexpr inline TupleElement(const T& value): value(value) {} |
| constexpr inline TupleElement(T&& value): value(kj::mv(value)) {} |
| }; |
| |
| template <uint index, typename T> |
| struct TupleElement<index, T&> { |
| // A tuple containing references can be constructed using refTuple(). |
| |
| T& value; |
| constexpr inline TupleElement(T& value): value(value) {} |
| }; |
| |
| template <uint index, typename... T> |
| struct TupleElement<index, Tuple<T...>> { |
| static_assert(sizeof(Tuple<T...>*) == 0, |
| "Tuples cannot contain other tuples -- they should be flattened."); |
| }; |
| |
| template <typename Indexes, typename... Types> |
| struct TupleImpl; |
| |
| template <size_t... indexes, typename... Types> |
| struct TupleImpl<Indexes<indexes...>, Types...> |
| : public TupleElement<indexes, Types>... { |
| // Implementation of Tuple. The only reason we need this rather than rolling this into class |
| // Tuple (below) is so that we can get "indexes" as an unpackable list. |
| |
| static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl."); |
| |
| TupleImpl() = default; |
| |
| template <typename... Params> |
| inline TupleImpl(Params&&... params) |
| : TupleElement<indexes, Types>(kj::fwd<Params>(params))... { |
| // Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes |
| // segfaults instead.) |
| static_assert(sizeof...(params) == sizeof...(indexes), |
| "Wrong number of parameters to Tuple constructor."); |
| } |
| |
| template <typename... U> |
| constexpr inline TupleImpl(Tuple<U...>&& other) |
| : TupleElement<indexes, Types>(kj::fwd<U>(getImpl<indexes>(other)))... {} |
| template <typename... U> |
| constexpr inline TupleImpl(Tuple<U...>& other) |
| : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} |
| template <typename... U> |
| constexpr inline TupleImpl(const Tuple<U...>& other) |
| : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} |
| }; |
| |
| struct MakeTupleFunc; |
| struct MakeRefTupleFunc; |
| |
| template <typename... T> |
| class Tuple { |
| // The actual Tuple class (used for tuples of size other than 1). |
| |
| public: |
| Tuple() = default; |
| |
| template <typename... U> |
| constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {} |
| template <typename... U> |
| constexpr inline Tuple(Tuple<U...>& other): impl(other) {} |
| template <typename... U> |
| constexpr inline Tuple(const Tuple<U...>& other): impl(other) {} |
| |
| private: |
| template <typename... Params> |
| constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {} |
| |
| TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl; |
| |
| template <size_t index, typename... U> |
| friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); |
| template <size_t index, typename... U> |
| friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); |
| template <size_t index, typename... U> |
| friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); |
| friend struct MakeTupleFunc; |
| friend struct MakeRefTupleFunc; |
| }; |
| |
| template <> |
| class Tuple<> { |
| // Simplified zero-member version of Tuple. In particular this is important to make sure that |
| // Tuple<>() is constexpr. |
| }; |
| |
| template <typename T> |
| class Tuple<T>; |
| // Single-element tuple should never be used. The public API should ensure this. |
| |
| template <size_t index, typename... T> |
| inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) { |
| // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. |
| static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); |
| return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; |
| } |
| template <size_t index, typename... T> |
| inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) { |
| // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. |
| static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); |
| return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value); |
| } |
| template <size_t index, typename... T> |
| inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) { |
| // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. |
| static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); |
| return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; |
| } |
| template <size_t index, typename T> |
| inline T&& getImpl(T&& value) { |
| // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`. |
| |
| // Non-tuples are equivalent to one-element tuples. |
| static_assert(index == 0, "Tuple element index out-of-bounds."); |
| return kj::fwd<T>(value); |
| } |
| |
| |
| template <typename Func, typename SoFar, typename... T> |
| struct ExpandAndApplyResult_; |
| // Template which computes the return type of applying Func to T... after flattening tuples. |
| // SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template |
| // is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters. |
| |
| template <typename Func, typename First, typename... Rest, typename... T> |
| struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...> |
| : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {}; |
| template <typename Func, typename... FirstTypes, typename... Rest, typename... T> |
| struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...> |
| : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {}; |
| template <typename Func, typename... FirstTypes, typename... Rest, typename... T> |
| struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...> |
| : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {}; |
| template <typename Func, typename... FirstTypes, typename... Rest, typename... T> |
| struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...> |
| : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {}; |
| template <typename Func, typename... T> |
| struct ExpandAndApplyResult_<Func, Tuple<T...>> { |
| typedef decltype(instance<Func>()(instance<T&&>()...)) Type; |
| }; |
| template <typename Func, typename... T> |
| using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type; |
| // Computes the expected return type of `expandAndApply()`. |
| |
| template <typename Func> |
| inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> { |
| return func(); |
| } |
| |
| template <typename Func, typename First, typename... Rest> |
| struct ExpandAndApplyFunc { |
| Func&& func; |
| First&& first; |
| ExpandAndApplyFunc(Func&& func, First&& first) |
| : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {} |
| template <typename... T> |
| auto operator()(T&&... params) |
| -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) { |
| return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...); |
| } |
| }; |
| |
| template <typename Func, typename First, typename... Rest> |
| inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest) |
| -> ExpandAndApplyResult<Func, First, Rest...> { |
| |
| return expandAndApply( |
| ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)), |
| kj::fwd<Rest>(rest)...); |
| } |
| |
| template <typename Func, typename... FirstTypes, typename... Rest> |
| inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) |
| -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { |
| return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), |
| kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...); |
| } |
| |
| template <typename Func, typename... FirstTypes, typename... Rest> |
| inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest) |
| -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { |
| return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), |
| kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); |
| } |
| |
| template <typename Func, typename... FirstTypes, typename... Rest> |
| inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) |
| -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { |
| return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), |
| kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); |
| } |
| |
| template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> |
| inline auto expandAndApplyWithIndexes( |
| Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) |
| -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { |
| return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))..., |
| kj::fwd<Rest>(rest)...); |
| } |
| |
| template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> |
| inline auto expandAndApplyWithIndexes( |
| Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) |
| -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { |
| return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)..., |
| kj::fwd<Rest>(rest)...); |
| } |
| |
| struct MakeTupleFunc { |
| template <typename... Params> |
| Tuple<Decay<Params>...> operator()(Params&&... params) { |
| return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...); |
| } |
| template <typename Param> |
| Decay<Param> operator()(Param&& param) { |
| return kj::fwd<Param>(param); |
| } |
| }; |
| |
| struct MakeRefTupleFunc { |
| template <typename... Params> |
| Tuple<Params...> operator()(Params&&... params) { |
| return Tuple<Params...>(kj::fwd<Params>(params)...); |
| } |
| template <typename Param> |
| Param operator()(Param&& param) { |
| return kj::fwd<Param>(param); |
| } |
| }; |
| |
| } // namespace _ (private) |
| |
| template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; }; |
| template <typename T> struct Tuple_<T> { typedef T Type; }; |
| |
| template <typename... T> using Tuple = typename Tuple_<T...>::Type; |
| // Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size |
| // other than 1 expand to an internal type. Either way, you can construct a Tuple using |
| // `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple |
| // as arguments to a function using `kj::apply(func, myTuple)`. |
| // |
| // Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you |
| // construct a tuple from other tuples, the elements are flattened and concatenated. |
| |
| template <typename... Params> |
| inline auto tuple(Params&&... params) |
| -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) { |
| // Construct a new tuple from the given values. Any tuples in the argument list will be |
| // flattened into the result. |
| return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...); |
| } |
| |
| template <typename... Params> |
| inline auto refTuple(Params&&... params) |
| -> decltype(_::expandAndApply(_::MakeRefTupleFunc(), kj::fwd<Params>(params)...)) { |
| // Like tuple(), but if the params include lvalue references, they will be captured as |
| // references. rvalue references will still be captured as whole values (moved). |
| return _::expandAndApply(_::MakeRefTupleFunc(), kj::fwd<Params>(params)...); |
| } |
| |
| template <size_t index, typename Tuple> |
| inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) { |
| // Unpack and return the tuple element at the given index. The index is specified as a template |
| // parameter, e.g. `kj::get<3>(myTuple)`. |
| return _::getImpl<index>(kj::fwd<Tuple>(tuple)); |
| } |
| |
| template <typename Func, typename... Params> |
| inline auto apply(Func&& func, Params&&... params) |
| -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) { |
| // Apply a function to some arguments, expanding tuples into separate arguments. |
| return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...); |
| } |
| |
| template <typename T> struct TupleSize_ { static constexpr size_t size = 1; }; |
| template <typename... T> struct TupleSize_<_::Tuple<T...>> { |
| static constexpr size_t size = sizeof...(T); |
| }; |
| |
| template <typename T> |
| constexpr size_t tupleSize() { return TupleSize_<T>::size; } |
| // Returns size of the tuple T. |
| |
| template <typename T, typename Tuple> |
| struct IndexOfType_; |
| template <typename T, typename Tuple> |
| struct HasType_ { |
| static constexpr bool value = false; |
| }; |
| |
| template <typename T> |
| struct IndexOfType_<T, T> { |
| static constexpr size_t value = 0; |
| }; |
| template <typename T> |
| struct HasType_<T, T> { |
| static constexpr bool value = true; |
| }; |
| |
| template <typename T, typename... U> |
| struct IndexOfType_<T, _::Tuple<T, U...>> { |
| static constexpr size_t value = 0; |
| static_assert(!HasType_<T, _::Tuple<U...>>::value, |
| "requested type appears multiple times in tuple"); |
| }; |
| template <typename T, typename... U> |
| struct HasType_<T, _::Tuple<T, U...>> { |
| static constexpr bool value = true; |
| }; |
| |
| template <typename T, typename U, typename... V> |
| struct IndexOfType_<T, _::Tuple<U, V...>> { |
| static constexpr size_t value = IndexOfType_<T, _::Tuple<V...>>::value + 1; |
| }; |
| template <typename T, typename U, typename... V> |
| struct HasType_<T, _::Tuple<U, V...>> { |
| static constexpr bool value = HasType_<T, _::Tuple<V...>>::value; |
| }; |
| |
| template <typename T, typename U> |
| inline constexpr size_t indexOfType() { |
| static_assert(HasType_<T, U>::value, "type not present"); |
| return IndexOfType_<T, U>::value; |
| } |
| |
| template <size_t i, typename T> |
| struct TypeOfIndex_; |
| template <typename T> |
| struct TypeOfIndex_<0, T> { |
| typedef T Type; |
| }; |
| template <size_t i, typename T, typename... U> |
| struct TypeOfIndex_<i, _::Tuple<T, U...>> |
| : public TypeOfIndex_<i - 1, _::Tuple<U...>> {}; |
| template <typename T, typename... U> |
| struct TypeOfIndex_<0, _::Tuple<T, U...>> { |
| typedef T Type; |
| }; |
| |
| template <size_t i, typename Tuple> |
| using TypeOfIndex = typename TypeOfIndex_<i, Tuple>::Type; |
| |
| } // namespace kj |
| |
| KJ_END_HEADER |