blob: d1694d67989329f6b807d69a228584b19fb9b6a9 [file] [log] [blame]
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// Header that should be #included by everyone.
//
// This defines very simple utilities that are widely applicable.
#pragma once
#if defined(__GNUC__) || defined(__clang__)
#define KJ_BEGIN_SYSTEM_HEADER _Pragma("GCC system_header")
#elif defined(_MSC_VER)
#define KJ_BEGIN_SYSTEM_HEADER __pragma(warning(push, 0))
#define KJ_END_SYSTEM_HEADER __pragma(warning(pop))
#endif
#ifndef KJ_BEGIN_SYSTEM_HEADER
#define KJ_BEGIN_SYSTEM_HEADER
#endif
#ifndef KJ_END_SYSTEM_HEADER
#define KJ_END_SYSTEM_HEADER
#endif
#if !defined(KJ_HEADER_WARNINGS) || !KJ_HEADER_WARNINGS
#define KJ_BEGIN_HEADER KJ_BEGIN_SYSTEM_HEADER
#define KJ_END_HEADER KJ_END_SYSTEM_HEADER
#else
#define KJ_BEGIN_HEADER
#define KJ_END_HEADER
#endif
#ifdef __has_cpp_attribute
#define KJ_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
#define KJ_HAS_CPP_ATTRIBUTE(x) 0
#endif
#ifdef __has_feature
#define KJ_HAS_COMPILER_FEATURE(x) __has_feature(x)
#else
#define KJ_HAS_COMPILER_FEATURE(x) 0
#endif
KJ_BEGIN_HEADER
#ifndef KJ_NO_COMPILER_CHECK
// Technically, __cplusplus should be 201402L for C++14, but GCC 4.9 -- which is supported -- still
// had it defined to 201300L even with -std=c++14.
#if __cplusplus < 201300L && !__CDT_PARSER__ && !_MSC_VER
#error "This code requires C++14. Either your compiler does not support it or it is not enabled."
#ifdef __GNUC__
// Compiler claims compatibility with GCC, so presumably supports -std.
#error "Pass -std=c++14 on the compiler command line to enable C++14."
#endif
#endif
#ifdef __GNUC__
#if __clang__
#if __clang_major__ < 5
#warning "This library requires at least Clang 5.0."
#elif __cplusplus >= 201402L && !__has_include(<initializer_list>)
#warning "Your compiler supports C++14 but your C++ standard library does not. If your "\
"system has libc++ installed (as should be the case on e.g. Mac OSX), try adding "\
"-stdlib=libc++ to your CXXFLAGS."
#endif
#else
#if __GNUC__ < 5
#warning "This library requires at least GCC 5.0."
#endif
#endif
#elif defined(_MSC_VER)
#if _MSC_VER < 1910 && !defined(__clang__)
#error "You need Visual Studio 2017 or better to compile this code."
#endif
#else
#warning "I don't recognize your compiler. As of this writing, Clang, GCC, and Visual Studio "\
"are the only known compilers with enough C++14 support for this library. "\
"#define KJ_NO_COMPILER_CHECK to make this warning go away."
#endif
#endif
#include <stddef.h>
#include <initializer_list>
#if __linux__ && __cplusplus > 201200L
// Hack around stdlib bug with C++14 that exists on some Linux systems.
// Apparently in this mode the C library decides not to define gets() but the C++ library still
// tries to import it into the std namespace. This bug has been fixed at the source but is still
// widely present in the wild e.g. on Ubuntu 14.04.
#undef _GLIBCXX_HAVE_GETS
#endif
#if _WIN32
// Windows likes to define macros for min() and max(). We just can't deal with this.
// If windows.h was included already, undef these.
#undef min
#undef max
// If windows.h was not included yet, define the macro that prevents min() and max() from being
// defined.
#ifndef NOMINMAX
#define NOMINMAX 1
#endif
#endif
#if defined(_MSC_VER)
#include <intrin.h> // __popcnt
#endif
// =======================================================================================
namespace kj {
typedef unsigned int uint;
typedef unsigned char byte;
// =======================================================================================
// Common macros, especially for common yet compiler-specific features.
// Detect whether RTTI and exceptions are enabled, assuming they are unless we have specific
// evidence to the contrary. Clients can always define KJ_NO_RTTI or KJ_NO_EXCEPTIONS explicitly
// to override these checks.
// TODO: Ideally we'd use __cpp_exceptions/__cpp_rtti not being defined as the first pass since
// that is the standard compliant way. However, it's unclear how to use those macros (or any
// others) to distinguish between the compiler supporting feature detection and the feature being
// disabled vs the compiler not supporting feature detection at all.
#if defined(__has_feature)
#if !defined(KJ_NO_RTTI) && !__has_feature(cxx_rtti)
#define KJ_NO_RTTI 1
#endif
#if !defined(KJ_NO_EXCEPTIONS) && !__has_feature(cxx_exceptions)
#define KJ_NO_EXCEPTIONS 1
#endif
#elif defined(__GNUC__)
#if !defined(KJ_NO_RTTI) && !__GXX_RTTI
#define KJ_NO_RTTI 1
#endif
#if !defined(KJ_NO_EXCEPTIONS) && !__EXCEPTIONS
#define KJ_NO_EXCEPTIONS 1
#endif
#elif defined(_MSC_VER)
#if !defined(KJ_NO_RTTI) && !defined(_CPPRTTI)
#define KJ_NO_RTTI 1
#endif
#if !defined(KJ_NO_EXCEPTIONS) && !defined(_CPPUNWIND)
#define KJ_NO_EXCEPTIONS 1
#endif
#endif
#if !defined(KJ_DEBUG) && !defined(KJ_NDEBUG)
// Heuristically decide whether to enable debug mode. If DEBUG or NDEBUG is defined, use that.
// Otherwise, fall back to checking whether optimization is enabled.
#if defined(DEBUG) || defined(_DEBUG)
#define KJ_DEBUG
#elif defined(NDEBUG)
#define KJ_NDEBUG
#elif __OPTIMIZE__
#define KJ_NDEBUG
#else
#define KJ_DEBUG
#endif
#endif
#define KJ_DISALLOW_COPY(classname) \
classname(const classname&) = delete; \
classname& operator=(const classname&) = delete
// Deletes the implicit copy constructor and assignment operator.
#ifdef __GNUC__
#define KJ_LIKELY(condition) __builtin_expect(condition, true)
#define KJ_UNLIKELY(condition) __builtin_expect(condition, false)
// Branch prediction macros. Evaluates to the condition given, but also tells the compiler that we
// expect the condition to be true/false enough of the time that it's worth hard-coding branch
// prediction.
#else
#define KJ_LIKELY(condition) (condition)
#define KJ_UNLIKELY(condition) (condition)
#endif
#if defined(KJ_DEBUG) || __NO_INLINE__
#define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__
// Don't force inline in debug mode.
#else
#if defined(_MSC_VER) && !defined(__clang__)
#define KJ_ALWAYS_INLINE(...) __forceinline __VA_ARGS__
#else
#define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__ __attribute__((always_inline))
#endif
// Force a function to always be inlined. Apply only to the prototype, not to the definition.
#endif
#if defined(_MSC_VER) && !defined(__clang__)
#define KJ_NOINLINE __declspec(noinline)
#else
#define KJ_NOINLINE __attribute__((noinline))
#endif
#if defined(_MSC_VER) && !__clang__
#define KJ_NORETURN(prototype) __declspec(noreturn) prototype
#define KJ_UNUSED
#define KJ_WARN_UNUSED_RESULT
// TODO(msvc): KJ_WARN_UNUSED_RESULT can use _Check_return_ on MSVC, but it's a prefix, so
// wrapping the whole prototype is needed. http://msdn.microsoft.com/en-us/library/jj159529.aspx
// Similarly, KJ_UNUSED could use __pragma(warning(suppress:...)), but again that's a prefix.
#else
#define KJ_NORETURN(prototype) prototype __attribute__((noreturn))
#define KJ_UNUSED __attribute__((unused))
#define KJ_WARN_UNUSED_RESULT __attribute__((warn_unused_result))
#endif
#if KJ_HAS_CPP_ATTRIBUTE(clang::lifetimebound)
// If this is generating too many false-positives, the user is responsible for disabling the
// problematic warning at the compiler switch level or by suppressing the place where the
// false-positive is reported through compiler-specific pragmas if available.
#define KJ_LIFETIMEBOUND [[clang::lifetimebound]]
#else
#define KJ_LIFETIMEBOUND
#endif
// Annotation that indicates the returned value is referencing a resource owned by this type (e.g.
// cStr() on a std::string). Unfortunately this lifetime can only be superficial currently & cannot
// track further. For example, there's no way to get `array.asPtr().slice(5, 6))` to warn if the
// last slice exceeds the lifetime of `array`. That's because in the general case `ArrayPtr::slice`
// can't have the lifetime bound annotation since it's not wrong to do something like:
// ArrayPtr<char> doSomething(ArrayPtr<char> foo) {
// ...
// return foo.slice(5, 6);
// }
// If `ArrayPtr::slice` had a lifetime bound then the compiler would warn about this perfectly
// legitimate method. Really there needs to be 2 more annotations. One to inherit the lifetime bound
// and another to inherit the lifetime bound from a parameter (which really could be the same thing
// by allowing a syntax like `[[clang::lifetimebound(*this)]]`.
// https://clang.llvm.org/docs/AttributeReference.html#lifetimebound
#if __clang__
#define KJ_UNUSED_MEMBER __attribute__((unused))
// Inhibits "unused" warning for member variables. Only Clang produces such a warning, while GCC
// complains if the attribute is set on members.
#else
#define KJ_UNUSED_MEMBER
#endif
#if __cplusplus > 201703L || (__clang__ && __clang_major__ >= 9 && __cplusplus >= 201103L)
// Technically this was only added to C++20 but Clang allows it for >= C++11 and spelunking the
// attributes manual indicates it first came in with Clang 9.
#define KJ_NO_UNIQUE_ADDRESS [[no_unique_address]]
#else
#define KJ_NO_UNIQUE_ADDRESS
#endif
#if KJ_HAS_COMPILER_FEATURE(thread_sanitizer) || defined(__SANITIZE_THREAD__)
#define KJ_DISABLE_TSAN __attribute__((no_sanitize("thread"), noinline))
#else
#define KJ_DISABLE_TSAN
#endif
#if __clang__
#define KJ_DEPRECATED(reason) \
__attribute__((deprecated(reason)))
#define KJ_UNAVAILABLE(reason) \
__attribute__((unavailable(reason)))
#elif __GNUC__
#define KJ_DEPRECATED(reason) \
__attribute__((deprecated))
#define KJ_UNAVAILABLE(reason)
#else
#define KJ_DEPRECATED(reason)
#define KJ_UNAVAILABLE(reason)
// TODO(msvc): Again, here, MSVC prefers a prefix, __declspec(deprecated).
#endif
#if KJ_TESTING_KJ // defined in KJ's own unit tests; others should not define this
#undef KJ_DEPRECATED
#define KJ_DEPRECATED(reason)
#endif
namespace _ { // private
KJ_NORETURN(void inlineRequireFailure(
const char* file, int line, const char* expectation, const char* macroArgs,
const char* message = nullptr));
KJ_NORETURN(void unreachable());
} // namespace _ (private)
#ifdef KJ_DEBUG
#if _MSC_VER && !defined(__clang__) && (!defined(_MSVC_TRADITIONAL) || _MSVC_TRADITIONAL)
#define KJ_MSVC_TRADITIONAL_CPP 1
#endif
#if KJ_MSVC_TRADITIONAL_CPP
#define KJ_IREQUIRE(condition, ...) \
if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
__FILE__, __LINE__, #condition, "" #__VA_ARGS__, __VA_ARGS__)
// Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users. Used to
// check preconditions inside inline methods. KJ_IREQUIRE is particularly useful in that
// it will be enabled depending on whether the application is compiled in debug mode rather than
// whether libkj is.
#else
#define KJ_IREQUIRE(condition, ...) \
if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
__FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__)
// Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users. Used to
// check preconditions inside inline methods. KJ_IREQUIRE is particularly useful in that
// it will be enabled depending on whether the application is compiled in debug mode rather than
// whether libkj is.
#endif
#else
#define KJ_IREQUIRE(condition, ...)
#endif
#define KJ_IASSERT KJ_IREQUIRE
#define KJ_UNREACHABLE ::kj::_::unreachable();
// Put this on code paths that cannot be reached to suppress compiler warnings about missing
// returns.
#if __clang__
#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT
#else
#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT KJ_UNREACHABLE
#endif
#if __clang__
#define KJ_KNOWN_UNREACHABLE(code) \
do { \
_Pragma("clang diagnostic push") \
_Pragma("clang diagnostic ignored \"-Wunreachable-code\"") \
code; \
_Pragma("clang diagnostic pop") \
} while (false)
// Suppress "unreachable code" warnings on intentionally unreachable code.
#else
// TODO(someday): Add support for non-clang compilers.
#define KJ_KNOWN_UNREACHABLE(code) do {code;} while(false)
#endif
#if KJ_HAS_CPP_ATTRIBUTE(fallthrough)
#define KJ_FALLTHROUGH [[fallthrough]]
#else
#define KJ_FALLTHROUGH
#endif
// #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack)
//
// Allocate an array, preferably on the stack, unless it is too big. On GCC this will use
// variable-sized arrays. For other compilers we could just use a fixed-size array. `minStack`
// is the stack array size to use if variable-width arrays are not supported. `maxStack` is the
// maximum stack array size if variable-width arrays *are* supported.
#if __GNUC__ && !__clang__
#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
size_t name##_size = (size); \
bool name##_isOnStack = name##_size <= (maxStack); \
type name##_stack[kj::max(1, name##_isOnStack ? name##_size : 0)]; \
::kj::Array<type> name##_heap = name##_isOnStack ? \
nullptr : kj::heapArray<type>(name##_size); \
::kj::ArrayPtr<type> name = name##_isOnStack ? \
kj::arrayPtr(name##_stack, name##_size) : name##_heap
#else
#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
size_t name##_size = (size); \
bool name##_isOnStack = name##_size <= (minStack); \
type name##_stack[minStack]; \
::kj::Array<type> name##_heap = name##_isOnStack ? \
nullptr : kj::heapArray<type>(name##_size); \
::kj::ArrayPtr<type> name = name##_isOnStack ? \
kj::arrayPtr(name##_stack, name##_size) : name##_heap
#endif
#define KJ_CONCAT_(x, y) x##y
#define KJ_CONCAT(x, y) KJ_CONCAT_(x, y)
#define KJ_UNIQUE_NAME(prefix) KJ_CONCAT(prefix, __LINE__)
// Create a unique identifier name. We use concatenate __LINE__ rather than __COUNTER__ so that
// the name can be used multiple times in the same macro.
#if _MSC_VER && !defined(__clang__)
#define KJ_CONSTEXPR(...) __VA_ARGS__
// Use in cases where MSVC barfs on constexpr. A replacement keyword (e.g. "const") can be
// provided, or just leave blank to remove the keyword entirely.
//
// TODO(msvc): Remove this hack once MSVC fully supports constexpr.
#ifndef __restrict__
#define __restrict__ __restrict
// TODO(msvc): Would it be better to define a KJ_RESTRICT macro?
#endif
#pragma warning(disable: 4521 4522)
// This warning complains when there are two copy constructors, one for a const reference and
// one for a non-const reference. It is often quite necessary to do this in wrapper templates,
// therefore this warning is dumb and we disable it.
#pragma warning(disable: 4458)
// Warns when a parameter name shadows a class member. Unfortunately my code does this a lot,
// since I don't use a special name format for members.
#else // _MSC_VER
#define KJ_CONSTEXPR(...) constexpr
#endif
// =======================================================================================
// Template metaprogramming helpers.
template <typename T> struct NoInfer_ { typedef T Type; };
template <typename T> using NoInfer = typename NoInfer_<T>::Type;
// Use NoInfer<T>::Type in place of T for a template function parameter to prevent inference of
// the type based on the parameter value.
template <typename T> struct RemoveConst_ { typedef T Type; };
template <typename T> struct RemoveConst_<const T> { typedef T Type; };
template <typename T> using RemoveConst = typename RemoveConst_<T>::Type;
template <typename> struct IsLvalueReference_ { static constexpr bool value = false; };
template <typename T> struct IsLvalueReference_<T&> { static constexpr bool value = true; };
template <typename T>
inline constexpr bool isLvalueReference() { return IsLvalueReference_<T>::value; }
template <typename T> struct Decay_ { typedef T Type; };
template <typename T> struct Decay_<T&> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<T&&> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<T[]> { typedef typename Decay_<T*>::Type Type; };
template <typename T> struct Decay_<const T[]> { typedef typename Decay_<const T*>::Type Type; };
template <typename T, size_t s> struct Decay_<T[s]> { typedef typename Decay_<T*>::Type Type; };
template <typename T, size_t s> struct Decay_<const T[s]> { typedef typename Decay_<const T*>::Type Type; };
template <typename T> struct Decay_<const T> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<volatile T> { typedef typename Decay_<T>::Type Type; };
template <typename T> using Decay = typename Decay_<T>::Type;
template <bool b> struct EnableIf_;
template <> struct EnableIf_<true> { typedef void Type; };
template <bool b> using EnableIf = typename EnableIf_<b>::Type;
// Use like:
//
// template <typename T, typename = EnableIf<isValid<T>()>>
// void func(T&& t);
template <typename...> struct VoidSfinae_ { using Type = void; };
template <typename... Ts> using VoidSfinae = typename VoidSfinae_<Ts...>::Type;
// Note: VoidSfinae is std::void_t from C++17.
template <typename T>
T instance() noexcept;
// Like std::declval, but doesn't transform T into an rvalue reference. If you want that, specify
// instance<T&&>().
struct DisallowConstCopy {
// Inherit from this, or declare a member variable of this type, to prevent the class from being
// copyable from a const reference -- instead, it will only be copyable from non-const references.
// This is useful for enforcing transitive constness of contained pointers.
//
// For example, say you have a type T which contains a pointer. T has non-const methods which
// modify the value at that pointer, but T's const methods are designed to allow reading only.
// Unfortunately, if T has a regular copy constructor, someone can simply make a copy of T and
// then use it to modify the pointed-to value. However, if T inherits DisallowConstCopy, then
// callers will only be able to copy non-const instances of T. Ideally, there is some
// parallel type ImmutableT which is like a version of T that only has const methods, and can
// be copied from a const T.
//
// Note that due to C++ rules about implicit copy constructors and assignment operators, any
// type that contains or inherits from a type that disallows const copies will also automatically
// disallow const copies. Hey, cool, that's exactly what we want.
#if CAPNP_DEBUG_TYPES
// Alas! Declaring a defaulted non-const copy constructor tickles a bug which causes GCC and
// Clang to disagree on ABI, using different calling conventions to pass this type, leading to
// immediate segfaults. See:
// https://bugs.llvm.org/show_bug.cgi?id=23764
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58074
//
// Because of this, we can't use this technique. We guard it by CAPNP_DEBUG_TYPES so that it
// still applies to the Cap'n Proto developers during internal testing.
DisallowConstCopy() = default;
DisallowConstCopy(DisallowConstCopy&) = default;
DisallowConstCopy(DisallowConstCopy&&) = default;
DisallowConstCopy& operator=(DisallowConstCopy&) = default;
DisallowConstCopy& operator=(DisallowConstCopy&&) = default;
#endif
};
#if _MSC_VER && !defined(__clang__)
#define KJ_CPCAP(obj) obj=::kj::cp(obj)
// TODO(msvc): MSVC refuses to invoke non-const versions of copy constructors in by-value lambda
// captures. Wrap your captured object in this macro to force the compiler to perform a copy.
// Example:
//
// struct Foo: DisallowConstCopy {};
// Foo foo;
// auto lambda = [KJ_CPCAP(foo)] {};
#else
#define KJ_CPCAP(obj) obj
// Clang and gcc both already perform copy capturing correctly with non-const copy constructors.
#endif
template <typename T>
struct DisallowConstCopyIfNotConst: public DisallowConstCopy {
// Inherit from this when implementing a template that contains a pointer to T and which should
// enforce transitive constness. If T is a const type, this has no effect. Otherwise, it is
// an alias for DisallowConstCopy.
};
template <typename T>
struct DisallowConstCopyIfNotConst<const T> {};
template <typename T> struct IsConst_ { static constexpr bool value = false; };
template <typename T> struct IsConst_<const T> { static constexpr bool value = true; };
template <typename T> constexpr bool isConst() { return IsConst_<T>::value; }
template <typename T> struct EnableIfNotConst_ { typedef T Type; };
template <typename T> struct EnableIfNotConst_<const T>;
template <typename T> using EnableIfNotConst = typename EnableIfNotConst_<T>::Type;
template <typename T> struct EnableIfConst_;
template <typename T> struct EnableIfConst_<const T> { typedef T Type; };
template <typename T> using EnableIfConst = typename EnableIfConst_<T>::Type;
template <typename T> struct RemoveConstOrDisable_ { struct Type; };
template <typename T> struct RemoveConstOrDisable_<const T> { typedef T Type; };
template <typename T> using RemoveConstOrDisable = typename RemoveConstOrDisable_<T>::Type;
template <typename T> struct IsReference_ { static constexpr bool value = false; };
template <typename T> struct IsReference_<T&> { static constexpr bool value = true; };
template <typename T> constexpr bool isReference() { return IsReference_<T>::value; }
template <typename From, typename To>
struct PropagateConst_ { typedef To Type; };
template <typename From, typename To>
struct PropagateConst_<const From, To> { typedef const To Type; };
template <typename From, typename To>
using PropagateConst = typename PropagateConst_<From, To>::Type;
namespace _ { // private
template <typename T>
T refIfLvalue(T&&);
} // namespace _ (private)
#define KJ_DECLTYPE_REF(exp) decltype(::kj::_::refIfLvalue(exp))
// Like decltype(exp), but if exp is an lvalue, produces a reference type.
//
// int i;
// decltype(i) i1(i); // i1 has type int.
// KJ_DECLTYPE_REF(i + 1) i2(i + 1); // i2 has type int.
// KJ_DECLTYPE_REF(i) i3(i); // i3 has type int&.
// KJ_DECLTYPE_REF(kj::mv(i)) i4(kj::mv(i)); // i4 has type int.
template <typename T, typename U> struct IsSameType_ { static constexpr bool value = false; };
template <typename T> struct IsSameType_<T, T> { static constexpr bool value = true; };
template <typename T, typename U> constexpr bool isSameType() { return IsSameType_<T, U>::value; }
template <typename T>
struct CanConvert_ {
static int sfinae(T);
static bool sfinae(...);
};
template <typename T, typename U>
constexpr bool canConvert() {
return sizeof(CanConvert_<U>::sfinae(instance<T>())) == sizeof(int);
}
#if __GNUC__ && !__clang__ && __GNUC__ < 5
template <typename T>
constexpr bool canMemcpy() {
// Returns true if T can be copied using memcpy instead of using the copy constructor or
// assignment operator.
// GCC 4 does not have __is_trivially_constructible and friends, and there doesn't seem to be
// any reliable alternative. __has_trivial_copy() and __has_trivial_assign() return the right
// thing at one point but later on they changed such that a deleted copy constructor was
// considered "trivial" (apparently technically correct, though useless). So, on GCC 4 we give up
// and assume we can't memcpy() at all, and must explicitly copy-construct everything.
return false;
}
#define KJ_ASSERT_CAN_MEMCPY(T)
#else
template <typename T>
constexpr bool canMemcpy() {
// Returns true if T can be copied using memcpy instead of using the copy constructor or
// assignment operator.
return __is_trivially_constructible(T, const T&) && __is_trivially_assignable(T, const T&);
}
#define KJ_ASSERT_CAN_MEMCPY(T) \
static_assert(kj::canMemcpy<T>(), "this code expects this type to be memcpy()-able");
#endif
template <typename T>
class Badge {
// A pattern for marking individual methods such that they can only be called from a specific
// caller class: Make the method public but give it a parameter of type `Badge<Caller>`. Only
// `Caller` can construct one, so only `Caller` can call the method.
//
// // We only allow calls from the class `Bar`.
// void foo(Badge<Bar>)
//
// The call site looks like:
//
// foo({});
//
// This pattern also works well for declaring private constructors, but still being able to use
// them with `kj::heap()`, etc.
//
// Idea from: https://awesomekling.github.io/Serenity-C++-patterns-The-Badge/
//
// Note that some forms of this idea make the copy constructor private as well, in order to
// prohibit `Badge<NotMe>(*(Badge<NotMe>*)nullptr)`. However, that would prevent badges from
// being passed through forwarding functions like `kj::heap()`, which would ruin one of the main
// use cases for this pattern in KJ. In any case, dereferencing a null pointer is UB; there are
// plenty of other ways to get access to private members if you're willing to go UB. For one-off
// debugging purposes, you might as well use `#define private public` at the top of the file.
private:
Badge() {}
friend T;
};
// =======================================================================================
// Equivalents to std::move() and std::forward(), since these are very commonly needed and the
// std header <utility> pulls in lots of other stuff.
//
// We use abbreviated names mv and fwd because these helpers (especially mv) are so commonly used
// that the cost of typing more letters outweighs the cost of being slightly harder to understand
// when first encountered.
template<typename T> constexpr T&& mv(T& t) noexcept { return static_cast<T&&>(t); }
template<typename T> constexpr T&& fwd(NoInfer<T>& t) noexcept { return static_cast<T&&>(t); }
template<typename T> constexpr T cp(T& t) noexcept { return t; }
template<typename T> constexpr T cp(const T& t) noexcept { return t; }
// Useful to force a copy, particularly to pass into a function that expects T&&.
template <typename T, typename U, bool takeT, bool uOK = true> struct ChooseType_;
template <typename T, typename U> struct ChooseType_<T, U, true, true> { typedef T Type; };
template <typename T, typename U> struct ChooseType_<T, U, true, false> { typedef T Type; };
template <typename T, typename U> struct ChooseType_<T, U, false, true> { typedef U Type; };
template <typename T, typename U>
using WiderType = typename ChooseType_<T, U, sizeof(T) >= sizeof(U)>::Type;
template <typename T, typename U>
inline constexpr auto min(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> {
return a < b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b);
}
template <typename T, typename U>
inline constexpr auto max(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> {
return a > b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b);
}
template <typename T, size_t s>
inline constexpr size_t size(T (&arr)[s]) { return s; }
template <typename T>
inline constexpr size_t size(T&& arr) { return arr.size(); }
// Returns the size of the parameter, whether the parameter is a regular C array or a container
// with a `.size()` method.
class MaxValue_ {
private:
template <typename T>
inline constexpr T maxSigned() const {
return (1ull << (sizeof(T) * 8 - 1)) - 1;
}
template <typename T>
inline constexpr T maxUnsigned() const {
return ~static_cast<T>(0u);
}
public:
#define _kJ_HANDLE_TYPE(T) \
inline constexpr operator signed T() const { return MaxValue_::maxSigned < signed T>(); } \
inline constexpr operator unsigned T() const { return MaxValue_::maxUnsigned<unsigned T>(); }
_kJ_HANDLE_TYPE(char)
_kJ_HANDLE_TYPE(short)
_kJ_HANDLE_TYPE(int)
_kJ_HANDLE_TYPE(long)
_kJ_HANDLE_TYPE(long long)
#undef _kJ_HANDLE_TYPE
inline constexpr operator char() const {
// `char` is different from both `signed char` and `unsigned char`, and may be signed or
// unsigned on different platforms. Ugh.
return char(-1) < 0 ? MaxValue_::maxSigned<char>()
: MaxValue_::maxUnsigned<char>();
}
};
class MinValue_ {
private:
template <typename T>
inline constexpr T minSigned() const {
return 1ull << (sizeof(T) * 8 - 1);
}
template <typename T>
inline constexpr T minUnsigned() const {
return 0u;
}
public:
#define _kJ_HANDLE_TYPE(T) \
inline constexpr operator signed T() const { return MinValue_::minSigned < signed T>(); } \
inline constexpr operator unsigned T() const { return MinValue_::minUnsigned<unsigned T>(); }
_kJ_HANDLE_TYPE(char)
_kJ_HANDLE_TYPE(short)
_kJ_HANDLE_TYPE(int)
_kJ_HANDLE_TYPE(long)
_kJ_HANDLE_TYPE(long long)
#undef _kJ_HANDLE_TYPE
inline constexpr operator char() const {
// `char` is different from both `signed char` and `unsigned char`, and may be signed or
// unsigned on different platforms. Ugh.
return char(-1) < 0 ? MinValue_::minSigned<char>()
: MinValue_::minUnsigned<char>();
}
};
static KJ_CONSTEXPR(const) MaxValue_ maxValue = MaxValue_();
// A special constant which, when cast to an integer type, takes on the maximum possible value of
// that type. This is useful to use as e.g. a parameter to a function because it will be robust
// in the face of changes to the parameter's type.
//
// `char` is not supported, but `signed char` and `unsigned char` are.
static KJ_CONSTEXPR(const) MinValue_ minValue = MinValue_();
// A special constant which, when cast to an integer type, takes on the minimum possible value
// of that type. This is useful to use as e.g. a parameter to a function because it will be robust
// in the face of changes to the parameter's type.
//
// `char` is not supported, but `signed char` and `unsigned char` are.
template <typename T>
inline bool operator==(T t, MaxValue_) { return t == Decay<T>(maxValue); }
template <typename T>
inline bool operator==(T t, MinValue_) { return t == Decay<T>(minValue); }
template <uint bits>
inline constexpr unsigned long long maxValueForBits() {
// Get the maximum integer representable in the given number of bits.
// 1ull << 64 is unfortunately undefined.
return (bits == 64 ? 0 : (1ull << bits)) - 1;
}
struct ThrowOverflow {
// Functor which throws an exception complaining about integer overflow. Usually this is used
// with the interfaces in units.h, but is defined here because Cap'n Proto wants to avoid
// including units.h when not using CAPNP_DEBUG_TYPES.
[[noreturn]] void operator()() const;
};
#if __GNUC__ || __clang__ || _MSC_VER
inline constexpr float inf() { return __builtin_huge_valf(); }
inline constexpr float nan() { return __builtin_nanf(""); }
#else
#error "Not sure how to support your compiler."
#endif
inline constexpr bool isNaN(float f) { return f != f; }
inline constexpr bool isNaN(double f) { return f != f; }
inline int popCount(unsigned int x) {
#if defined(_MSC_VER) && !defined(__clang__)
return __popcnt(x);
// Note: __popcnt returns unsigned int, but the value is clearly guaranteed to fit into an int
#else
return __builtin_popcount(x);
#endif
}
// =======================================================================================
// Useful fake containers
template <typename T>
class Range {
public:
inline constexpr Range(const T& begin, const T& end): begin_(begin), end_(end) {}
inline explicit constexpr Range(const T& end): begin_(0), end_(end) {}
class Iterator {
public:
Iterator() = default;
inline Iterator(const T& value): value(value) {}
inline const T& operator* () const { return value; }
inline const T& operator[](size_t index) const { return value + index; }
inline Iterator& operator++() { ++value; return *this; }
inline Iterator operator++(int) { return Iterator(value++); }
inline Iterator& operator--() { --value; return *this; }
inline Iterator operator--(int) { return Iterator(value--); }
inline Iterator& operator+=(ptrdiff_t amount) { value += amount; return *this; }
inline Iterator& operator-=(ptrdiff_t amount) { value -= amount; return *this; }
inline Iterator operator+ (ptrdiff_t amount) const { return Iterator(value + amount); }
inline Iterator operator- (ptrdiff_t amount) const { return Iterator(value - amount); }
inline ptrdiff_t operator- (const Iterator& other) const { return value - other.value; }
inline bool operator==(const Iterator& other) const { return value == other.value; }
inline bool operator!=(const Iterator& other) const { return value != other.value; }
inline bool operator<=(const Iterator& other) const { return value <= other.value; }
inline bool operator>=(const Iterator& other) const { return value >= other.value; }
inline bool operator< (const Iterator& other) const { return value < other.value; }
inline bool operator> (const Iterator& other) const { return value > other.value; }
private:
T value;
};
inline Iterator begin() const { return Iterator(begin_); }
inline Iterator end() const { return Iterator(end_); }
inline auto size() const -> decltype(instance<T>() - instance<T>()) { return end_ - begin_; }
private:
T begin_;
T end_;
};
template <typename T, typename U>
inline constexpr Range<WiderType<Decay<T>, Decay<U>>> range(T begin, U end) {
return Range<WiderType<Decay<T>, Decay<U>>>(begin, end);
}
template <typename T>
inline constexpr Range<Decay<T>> range(T begin, T end) { return Range<Decay<T>>(begin, end); }
// Returns a fake iterable container containing all values of T from `begin` (inclusive) to `end`
// (exclusive). Example:
//
// // Prints 1, 2, 3, 4, 5, 6, 7, 8, 9.
// for (int i: kj::range(1, 10)) { print(i); }
template <typename T>
inline constexpr Range<Decay<T>> zeroTo(T end) { return Range<Decay<T>>(end); }
// Returns a fake iterable container containing all values of T from zero (inclusive) to `end`
// (exclusive). Example:
//
// // Prints 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
// for (int i: kj::zeroTo(10)) { print(i); }
template <typename T>
inline constexpr Range<size_t> indices(T&& container) {
// Shortcut for iterating over the indices of a container:
//
// for (size_t i: kj::indices(myArray)) { handle(myArray[i]); }
return range<size_t>(0, kj::size(container));
}
template <typename T>
class Repeat {
public:
inline constexpr Repeat(const T& value, size_t count): value(value), count(count) {}
class Iterator {
public:
Iterator() = default;
inline Iterator(const T& value, size_t index): value(value), index(index) {}
inline const T& operator* () const { return value; }
inline const T& operator[](ptrdiff_t index) const { return value; }
inline Iterator& operator++() { ++index; return *this; }
inline Iterator operator++(int) { return Iterator(value, index++); }
inline Iterator& operator--() { --index; return *this; }
inline Iterator operator--(int) { return Iterator(value, index--); }
inline Iterator& operator+=(ptrdiff_t amount) { index += amount; return *this; }
inline Iterator& operator-=(ptrdiff_t amount) { index -= amount; return *this; }
inline Iterator operator+ (ptrdiff_t amount) const { return Iterator(value, index + amount); }
inline Iterator operator- (ptrdiff_t amount) const { return Iterator(value, index - amount); }
inline ptrdiff_t operator- (const Iterator& other) const { return index - other.index; }
inline bool operator==(const Iterator& other) const { return index == other.index; }
inline bool operator!=(const Iterator& other) const { return index != other.index; }
inline bool operator<=(const Iterator& other) const { return index <= other.index; }
inline bool operator>=(const Iterator& other) const { return index >= other.index; }
inline bool operator< (const Iterator& other) const { return index < other.index; }
inline bool operator> (const Iterator& other) const { return index > other.index; }
private:
T value;
size_t index;
};
inline Iterator begin() const { return Iterator(value, 0); }
inline Iterator end() const { return Iterator(value, count); }
inline size_t size() const { return count; }
inline const T& operator[](ptrdiff_t) const { return value; }
private:
T value;
size_t count;
};
template <typename T>
inline constexpr Repeat<Decay<T>> repeat(T&& value, size_t count) {
// Returns a fake iterable which contains `count` repeats of `value`. Useful for e.g. creating
// a bunch of spaces: `kj::repeat(' ', indent * 2)`
return Repeat<Decay<T>>(value, count);
}
template <typename Inner, class Mapping>
class MappedIterator: private Mapping {
// An iterator that wraps some other iterator and maps the values through a mapping function.
// The type `Mapping` must define a method `map()` which performs this mapping.
public:
template <typename... Params>
MappedIterator(Inner inner, Params&&... params)
: Mapping(kj::fwd<Params>(params)...), inner(inner) {}
inline auto operator->() const { return &Mapping::map(*inner); }
inline decltype(auto) operator* () const { return Mapping::map(*inner); }
inline decltype(auto) operator[](size_t index) const { return Mapping::map(inner[index]); }
inline MappedIterator& operator++() { ++inner; return *this; }
inline MappedIterator operator++(int) { return MappedIterator(inner++, *this); }
inline MappedIterator& operator--() { --inner; return *this; }
inline MappedIterator operator--(int) { return MappedIterator(inner--, *this); }
inline MappedIterator& operator+=(ptrdiff_t amount) { inner += amount; return *this; }
inline MappedIterator& operator-=(ptrdiff_t amount) { inner -= amount; return *this; }
inline MappedIterator operator+ (ptrdiff_t amount) const {
return MappedIterator(inner + amount, *this);
}
inline MappedIterator operator- (ptrdiff_t amount) const {
return MappedIterator(inner - amount, *this);
}
inline ptrdiff_t operator- (const MappedIterator& other) const { return inner - other.inner; }
inline bool operator==(const MappedIterator& other) const { return inner == other.inner; }
inline bool operator!=(const MappedIterator& other) const { return inner != other.inner; }
inline bool operator<=(const MappedIterator& other) const { return inner <= other.inner; }
inline bool operator>=(const MappedIterator& other) const { return inner >= other.inner; }
inline bool operator< (const MappedIterator& other) const { return inner < other.inner; }
inline bool operator> (const MappedIterator& other) const { return inner > other.inner; }
private:
Inner inner;
};
template <typename Inner, typename Mapping>
class MappedIterable: private Mapping {
// An iterable that wraps some other iterable and maps the values through a mapping function.
// The type `Mapping` must define a method `map()` which performs this mapping.
public:
template <typename... Params>
MappedIterable(Inner inner, Params&&... params)
: Mapping(kj::fwd<Params>(params)...), inner(inner) {}
typedef Decay<decltype(instance<Inner>().begin())> InnerIterator;
typedef MappedIterator<InnerIterator, Mapping> Iterator;
typedef Decay<decltype(instance<const Inner>().begin())> InnerConstIterator;
typedef MappedIterator<InnerConstIterator, Mapping> ConstIterator;
inline Iterator begin() { return { inner.begin(), (Mapping&)*this }; }
inline Iterator end() { return { inner.end(), (Mapping&)*this }; }
inline ConstIterator begin() const { return { inner.begin(), (const Mapping&)*this }; }
inline ConstIterator end() const { return { inner.end(), (const Mapping&)*this }; }
private:
Inner inner;
};
// =======================================================================================
// Manually invoking constructors and destructors
//
// ctor(x, ...) and dtor(x) invoke x's constructor or destructor, respectively.
// We want placement new, but we don't want to #include <new>. operator new cannot be defined in
// a namespace, and defining it globally conflicts with the definition in <new>. So we have to
// define a dummy type and an operator new that uses it.
namespace _ { // private
struct PlacementNew {};
} // namespace _ (private)
} // namespace kj
inline void* operator new(size_t, kj::_::PlacementNew, void* __p) noexcept {
return __p;
}
inline void operator delete(void*, kj::_::PlacementNew, void* __p) noexcept {}
namespace kj {
template <typename T, typename... Params>
inline void ctor(T& location, Params&&... params) {
new (_::PlacementNew(), &location) T(kj::fwd<Params>(params)...);
}
template <typename T>
inline void dtor(T& location) {
location.~T();
}
// =======================================================================================
// Maybe
//
// Use in cases where you want to indicate that a value may be null. Using Maybe<T&> instead of T*
// forces the caller to handle the null case in order to satisfy the compiler, thus reliably
// preventing null pointer dereferences at runtime.
//
// Maybe<T> can be implicitly constructed from T and from nullptr.
// To read the value of a Maybe<T>, do:
//
// KJ_IF_MAYBE(value, someFuncReturningMaybe()) {
// doSomething(*value);
// } else {
// maybeWasNull();
// }
//
// KJ_IF_MAYBE's first parameter is a variable name which will be defined within the following
// block. The variable will behave like a (guaranteed non-null) pointer to the Maybe's value,
// though it may or may not actually be a pointer.
//
// Note that Maybe<T&> actually just wraps a pointer, whereas Maybe<T> wraps a T and a boolean
// indicating nullness.
template <typename T>
class Maybe;
namespace _ { // private
template <typename T>
class NullableValue {
// Class whose interface behaves much like T*, but actually contains an instance of T and a
// boolean flag indicating nullness.
public:
inline NullableValue(NullableValue&& other)
: isSet(other.isSet) {
if (isSet) {
ctor(value, kj::mv(other.value));
}
}
inline NullableValue(const NullableValue& other)
: isSet(other.isSet) {
if (isSet) {
ctor(value, other.value);
}
}
inline NullableValue(NullableValue& other)
: isSet(other.isSet) {
if (isSet) {
ctor(value, other.value);
}
}
inline ~NullableValue()
#if _MSC_VER && !defined(__clang__)
// TODO(msvc): MSVC has a hard time with noexcept specifier expressions that are more complex
// than `true` or `false`. We had a workaround for VS2015, but VS2017 regressed.
noexcept(false)
#else
noexcept(noexcept(instance<T&>().~T()))
#endif
{
if (isSet) {
dtor(value);
}
}
inline T& operator*() & { return value; }
inline const T& operator*() const & { return value; }
inline T&& operator*() && { return kj::mv(value); }
inline const T&& operator*() const && { return kj::mv(value); }
inline T* operator->() { return &value; }
inline const T* operator->() const { return &value; }
inline operator T*() { return isSet ? &value : nullptr; }
inline operator const T*() const { return isSet ? &value : nullptr; }
template <typename... Params>
inline T& emplace(Params&&... params) {
if (isSet) {
isSet = false;
dtor(value);
}
ctor(value, kj::fwd<Params>(params)...);
isSet = true;
return value;
}
inline NullableValue(): isSet(false) {}
inline NullableValue(T&& t)
: isSet(true) {
ctor(value, kj::mv(t));
}
inline NullableValue(T& t)
: isSet(true) {
ctor(value, t);
}
inline NullableValue(const T& t)
: isSet(true) {
ctor(value, t);
}
template <typename U>
inline NullableValue(NullableValue<U>&& other)
: isSet(other.isSet) {
if (isSet) {
ctor(value, kj::mv(other.value));
}
}
template <typename U>
inline NullableValue(const NullableValue<U>& other)
: isSet(other.isSet) {
if (isSet) {
ctor(value, other.value);
}
}
template <typename U>
inline NullableValue(const NullableValue<U&>& other)
: isSet(other.isSet) {
if (isSet) {
ctor(value, *other.ptr);
}
}
inline NullableValue(decltype(nullptr)): isSet(false) {}
inline NullableValue& operator=(NullableValue&& other) {
if (&other != this) {
// Careful about throwing destructors/constructors here.
if (isSet) {
isSet = false;
dtor(value);
}
if (other.isSet) {
ctor(value, kj::mv(other.value));
isSet = true;
}
}
return *this;
}
inline NullableValue& operator=(NullableValue& other) {
if (&other != this) {
// Careful about throwing destructors/constructors here.
if (isSet) {
isSet = false;
dtor(value);
}
if (other.isSet) {
ctor(value, other.value);
isSet = true;
}
}
return *this;
}
inline NullableValue& operator=(const NullableValue& other) {
if (&other != this) {
// Careful about throwing destructors/constructors here.
if (isSet) {
isSet = false;
dtor(value);
}
if (other.isSet) {
ctor(value, other.value);
isSet = true;
}
}
return *this;
}
inline NullableValue& operator=(T&& other) { emplace(kj::mv(other)); return *this; }
inline NullableValue& operator=(T& other) { emplace(other); return *this; }
inline NullableValue& operator=(const T& other) { emplace(other); return *this; }
template <typename U>
inline NullableValue& operator=(NullableValue<U>&& other) {
if (other.isSet) {
emplace(kj::mv(other.value));
} else {
*this = nullptr;
}
return *this;
}
template <typename U>
inline NullableValue& operator=(const NullableValue<U>& other) {
if (other.isSet) {
emplace(other.value);
} else {
*this = nullptr;
}
return *this;
}
template <typename U>
inline NullableValue& operator=(const NullableValue<U&>& other) {
if (other.isSet) {
emplace(other.value);
} else {
*this = nullptr;
}
return *this;
}
inline NullableValue& operator=(decltype(nullptr)) {
if (isSet) {
isSet = false;
dtor(value);
}
return *this;
}
inline bool operator==(decltype(nullptr)) const { return !isSet; }
inline bool operator!=(decltype(nullptr)) const { return isSet; }
NullableValue(const T* t) = delete;
NullableValue& operator=(const T* other) = delete;
// We used to permit assigning a Maybe<T> directly from a T*, and the assignment would check for
// nullness. This turned out never to be useful, and sometimes to be dangerous.
private:
bool isSet;
#if _MSC_VER && !defined(__clang__)
#pragma warning(push)
#pragma warning(disable: 4624)
// Warns that the anonymous union has a deleted destructor when T is non-trivial. This warning
// seems broken.
#endif
union {
T value;
};
#if _MSC_VER && !defined(__clang__)
#pragma warning(pop)
#endif
friend class kj::Maybe<T>;
template <typename U>
friend NullableValue<U>&& readMaybe(Maybe<U>&& maybe);
};
template <typename T>
inline NullableValue<T>&& readMaybe(Maybe<T>&& maybe) { return kj::mv(maybe.ptr); }
template <typename T>
inline T* readMaybe(Maybe<T>& maybe) { return maybe.ptr; }
template <typename T>
inline const T* readMaybe(const Maybe<T>& maybe) { return maybe.ptr; }
template <typename T>
inline T* readMaybe(Maybe<T&>&& maybe) { return maybe.ptr; }
template <typename T>
inline T* readMaybe(const Maybe<T&>& maybe) { return maybe.ptr; }
template <typename T>
inline T* readMaybe(T* ptr) { return ptr; }
// Allow KJ_IF_MAYBE to work on regular pointers.
} // namespace _ (private)
#define KJ_IF_MAYBE(name, exp) if (auto name = ::kj::_::readMaybe(exp))
#if __GNUC__
// These two macros provide a friendly syntax to extract the value of a Maybe or return early.
//
// Use KJ_UNWRAP_OR_RETURN if you just want to return a simple value when the Maybe is null:
//
// int foo(Maybe<int> maybe) {
// int value = KJ_UNWRAP_OR_RETURN(maybe, -1);
// // ... use value ...
// }
//
// For functions returning void, omit the second parameter to KJ_UNWRAP_OR_RETURN:
//
// void foo(Maybe<int> maybe) {
// int value = KJ_UNWRAP_OR_RETURN(maybe);
// // ... use value ...
// }
//
// Use KJ_UNWRAP_OR if you want to execute a block with multiple statements.
//
// int foo(Maybe<int> maybe) {
// int value = KJ_UNWRAP_OR(maybe, {
// KJ_LOG(ERROR, "problem!!!");
// return -1;
// });
// // ... use value ...
// }
//
// The block MUST return at the end or you will get a compiler error
//
// Unfortunately, these macros seem impossible to express without using GCC's non-standard
// "statement expressions" extension. IIFEs don't do the trick here because a lambda cannot
// return out of the parent scope. These macros should therefore only be used in projects that
// target GCC or GCC-compatible compilers.
#define KJ_UNWRAP_OR_RETURN(value, ...) \
(*({ \
auto _kj_result = ::kj::_::readMaybe(value); \
if (!_kj_result) { \
return __VA_ARGS__; \
} \
kj::mv(_kj_result); \
}))
#define KJ_UNWRAP_OR(value, block) \
(*({ \
auto _kj_result = ::kj::_::readMaybe(value); \
if (!_kj_result) { \
block; \
asm("KJ_UNWRAP_OR_block_is_missing_return_statement\n"); \
} \
kj::mv(_kj_result); \
}))
#endif
template <typename T>
class Maybe {
// A T, or nullptr.
// IF YOU CHANGE THIS CLASS: Note that there is a specialization of it in memory.h.
public:
Maybe(): ptr(nullptr) {}
Maybe(T&& t): ptr(kj::mv(t)) {}
Maybe(T& t): ptr(t) {}
Maybe(const T& t): ptr(t) {}
Maybe(Maybe&& other): ptr(kj::mv(other.ptr)) { other = nullptr; }
Maybe(const Maybe& other): ptr(other.ptr) {}
Maybe(Maybe& other): ptr(other.ptr) {}
template <typename U>
Maybe(Maybe<U>&& other) {
KJ_IF_MAYBE(val, kj::mv(other)) {
ptr.emplace(kj::mv(*val));
other = nullptr;
}
}
template <typename U>
Maybe(Maybe<U&>&& other) {
KJ_IF_MAYBE(val, other) {
ptr.emplace(*val);
other = nullptr;
}
}
template <typename U>
Maybe(const Maybe<U>& other) {
KJ_IF_MAYBE(val, other) {
ptr.emplace(*val);
}
}
Maybe(decltype(nullptr)): ptr(nullptr) {}
template <typename... Params>
inline T& emplace(Params&&... params) {
// Replace this Maybe's content with a new value constructed by passing the given parameters to
// T's constructor. This can be used to initialize a Maybe without copying or even moving a T.
// Returns a reference to the newly-constructed value.
return ptr.emplace(kj::fwd<Params>(params)...);
}
inline Maybe& operator=(T&& other) { ptr = kj::mv(other); return *this; }
inline Maybe& operator=(T& other) { ptr = other; return *this; }
inline Maybe& operator=(const T& other) { ptr = other; return *this; }
inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); other = nullptr; return *this; }
inline Maybe& operator=(Maybe& other) { ptr = other.ptr; return *this; }
inline Maybe& operator=(const Maybe& other) { ptr = other.ptr; return *this; }
template <typename U>
Maybe& operator=(Maybe<U>&& other) {
KJ_IF_MAYBE(val, kj::mv(other)) {
ptr.emplace(kj::mv(*val));
other = nullptr;
} else {
ptr = nullptr;
}
return *this;
}
template <typename U>
Maybe& operator=(const Maybe<U>& other) {
KJ_IF_MAYBE(val, other) {
ptr.emplace(*val);
} else {
ptr = nullptr;
}
return *this;
}
inline Maybe& operator=(decltype(nullptr)) { ptr = nullptr; return *this; }
inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
inline bool operator==(const Maybe<T>& other) const {
if (ptr == nullptr) {
return other == nullptr;
} else {
return other.ptr != nullptr && *ptr == *other.ptr;
}
}
inline bool operator!=(const Maybe<T>& other) const { return !(*this == other); }
Maybe(const T* t) = delete;
Maybe& operator=(const T* other) = delete;
// We used to permit assigning a Maybe<T> directly from a T*, and the assignment would check for
// nullness. This turned out never to be useful, and sometimes to be dangerous.
T& orDefault(T& defaultValue) & {
if (ptr == nullptr) {
return defaultValue;
} else {
return *ptr;
}
}
const T& orDefault(const T& defaultValue) const & {
if (ptr == nullptr) {
return defaultValue;
} else {
return *ptr;
}
}
T&& orDefault(T&& defaultValue) && {
if (ptr == nullptr) {
return kj::mv(defaultValue);
} else {
return kj::mv(*ptr);
}
}
const T&& orDefault(const T&& defaultValue) const && {
if (ptr == nullptr) {
return kj::mv(defaultValue);
} else {
return kj::mv(*ptr);
}
}
template <typename F,
typename Result = decltype(instance<bool>() ? instance<T&>() : instance<F>()())>
Result orDefault(F&& lazyDefaultValue) & {
if (ptr == nullptr) {
return lazyDefaultValue();
} else {
return *ptr;
}
}
template <typename F,
typename Result = decltype(instance<bool>() ? instance<const T&>() : instance<F>()())>
Result orDefault(F&& lazyDefaultValue) const & {
if (ptr == nullptr) {
return lazyDefaultValue();
} else {
return *ptr;
}
}
template <typename F,
typename Result = decltype(instance<bool>() ? instance<T&&>() : instance<F>()())>
Result orDefault(F&& lazyDefaultValue) && {
if (ptr == nullptr) {
return lazyDefaultValue();
} else {
return kj::mv(*ptr);
}
}
template <typename F,
typename Result = decltype(instance<bool>() ? instance<const T&&>() : instance<F>()())>
Result orDefault(F&& lazyDefaultValue) const && {
if (ptr == nullptr) {
return lazyDefaultValue();
} else {
return kj::mv(*ptr);
}
}
template <typename Func>
auto map(Func&& f) & -> Maybe<decltype(f(instance<T&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
return f(*ptr);
}
}
template <typename Func>
auto map(Func&& f) const & -> Maybe<decltype(f(instance<const T&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
return f(*ptr);
}
}
template <typename Func>
auto map(Func&& f) && -> Maybe<decltype(f(instance<T&&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
return f(kj::mv(*ptr));
}
}
template <typename Func>
auto map(Func&& f) const && -> Maybe<decltype(f(instance<const T&&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
return f(kj::mv(*ptr));
}
}
private:
_::NullableValue<T> ptr;
template <typename U>
friend class Maybe;
template <typename U>
friend _::NullableValue<U>&& _::readMaybe(Maybe<U>&& maybe);
template <typename U>
friend U* _::readMaybe(Maybe<U>& maybe);
template <typename U>
friend const U* _::readMaybe(const Maybe<U>& maybe);
};
template <typename T>
class Maybe<T&> {
public:
constexpr Maybe(): ptr(nullptr) {}
constexpr Maybe(T& t): ptr(&t) {}
constexpr Maybe(T* t): ptr(t) {}
inline constexpr Maybe(PropagateConst<T, Maybe>& other): ptr(other.ptr) {}
// Allow const copy only if `T` itself is const. Otherwise allow only non-const copy, to
// protect transitive constness. Clang is happy for this constructor to be declared `= default`
// since, after evaluation of `PropagateConst`, it does end up being a default-able constructor.
// But, GCC and MSVC both complain about that, claiming this constructor cannot be declared
// default. I don't know who is correct, but whatever, we'll write out an implementation, fine.
//
// Note that we can't solve this by inheriting DisallowConstCopyIfNotConst<T> because we want
// to override the move constructor, and if we override the move constructor then we must define
// the copy constructor here.
inline constexpr Maybe(Maybe&& other): ptr(other.ptr) { other.ptr = nullptr; }
template <typename U>
inline constexpr Maybe(Maybe<U&>& other): ptr(other.ptr) {}
template <typename U>
inline constexpr Maybe(const Maybe<U&>& other): ptr(const_cast<const U*>(other.ptr)) {}
template <typename U>
inline constexpr Maybe(Maybe<U&>&& other): ptr(other.ptr) { other.ptr = nullptr; }
template <typename U>
inline constexpr Maybe(const Maybe<U&>&& other) = delete;
template <typename U, typename = EnableIf<canConvert<U*, T*>()>>
constexpr Maybe(Maybe<U>& other): ptr(other.ptr.operator U*()) {}
template <typename U, typename = EnableIf<canConvert<const U*, T*>()>>
constexpr Maybe(const Maybe<U>& other): ptr(other.ptr.operator const U*()) {}
inline constexpr Maybe(decltype(nullptr)): ptr(nullptr) {}
inline Maybe& operator=(T& other) { ptr = &other; return *this; }
inline Maybe& operator=(T* other) { ptr = other; return *this; }
inline Maybe& operator=(PropagateConst<T, Maybe>& other) { ptr = other.ptr; return *this; }
inline Maybe& operator=(Maybe&& other) { ptr = other.ptr; other.ptr = nullptr; return *this; }
template <typename U>
inline Maybe& operator=(Maybe<U&>& other) { ptr = other.ptr; return *this; }
template <typename U>
inline Maybe& operator=(const Maybe<const U&>& other) { ptr = other.ptr; return *this; }
template <typename U>
inline Maybe& operator=(Maybe<U&>&& other) { ptr = other.ptr; other.ptr = nullptr; return *this; }
template <typename U>
inline Maybe& operator=(const Maybe<U&>&& other) = delete;
inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
T& orDefault(T& defaultValue) {
if (ptr == nullptr) {
return defaultValue;
} else {
return *ptr;
}
}
const T& orDefault(const T& defaultValue) const {
if (ptr == nullptr) {
return defaultValue;
} else {
return *ptr;
}
}
template <typename Func>
auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
return f(*ptr);
}
}
template <typename Func>
auto map(Func&& f) const -> Maybe<decltype(f(instance<const T&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
const T& ref = *ptr;
return f(ref);
}
}
private:
T* ptr;
template <typename U>
friend class Maybe;
template <typename U>
friend U* _::readMaybe(Maybe<U&>&& maybe);
template <typename U>
friend U* _::readMaybe(const Maybe<U&>& maybe);
};
// =======================================================================================
// ArrayPtr
//
// So common that we put it in common.h rather than array.h.
template <typename T>
class Array;
template <typename T>
class ArrayPtr: public DisallowConstCopyIfNotConst<T> {
// A pointer to an array. Includes a size. Like any pointer, it doesn't own the target data,
// and passing by value only copies the pointer, not the target.
public:
inline constexpr ArrayPtr(): ptr(nullptr), size_(0) {}
inline constexpr ArrayPtr(decltype(nullptr)): ptr(nullptr), size_(0) {}
inline constexpr ArrayPtr(T* ptr KJ_LIFETIMEBOUND, size_t size): ptr(ptr), size_(size) {}
inline constexpr ArrayPtr(T* begin KJ_LIFETIMEBOUND, T* end KJ_LIFETIMEBOUND)
: ptr(begin), size_(end - begin) {}
ArrayPtr<T>& operator=(Array<T>&&) = delete;
ArrayPtr<T>& operator=(decltype(nullptr)) {
ptr = nullptr;
size_ = 0;
return *this;
}
#if __GNUC__ && !__clang__ && __GNUC__ >= 9
// GCC 9 added a warning when we take an initializer_list as a constructor parameter and save a
// pointer to its content in a class member. GCC apparently imagines we're going to do something
// dumb like this:
// ArrayPtr<const int> ptr = { 1, 2, 3 };
// foo(ptr[1]); // undefined behavior!
// Any KJ programmer should be able to recognize that this is UB, because an ArrayPtr does not own
// its content. That's not what this constructor is for, tohugh. This constructor is meant to allow
// code like this:
// int foo(ArrayPtr<const int> p);
// // ... later ...
// foo({1, 2, 3});
// In this case, the initializer_list's backing array, like any temporary, lives until the end of
// the statement `foo({1, 2, 3});`. Therefore, it lives at least until the call to foo() has
// returned, which is exactly what we care about. This usage is fine! GCC is wrong to warn.
//
// Amusingly, Clang's implementation has a similar type that they call ArrayRef which apparently
// triggers this same GCC warning. My guess is that Clang will not introduce a similar warning
// given that it triggers on their own, legitimate code.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Winit-list-lifetime"
#endif
inline KJ_CONSTEXPR() ArrayPtr(
::std::initializer_list<RemoveConstOrDisable<T>> init KJ_LIFETIMEBOUND)
: ptr(init.begin()), size_(init.size()) {}
#if __GNUC__ && !__clang__ && __GNUC__ >= 9
#pragma GCC diagnostic pop
#endif
template <size_t size>
inline constexpr ArrayPtr(KJ_LIFETIMEBOUND T (&native)[size]): ptr(native), size_(size) {
// Construct an ArrayPtr from a native C-style array.
//
// We disable this constructor for const char arrays because otherwise you would be able to
// implicitly convert a character literal to ArrayPtr<const char>, which sounds really great,
// except that the NUL terminator would be included, which probably isn't what you intended.
//
// TODO(someday): Maybe we should support character literals but explicitly chop off the NUL
// terminator. This could do the wrong thing if someone tries to construct an
// ArrayPtr<const char> from a non-NUL-terminated char array, but evidence suggests that all
// real use cases are in fact intending to remove the NUL terminator. It's convenient to be
// able to specify ArrayPtr<const char> as a parameter type and be able to accept strings
// as input in addition to arrays. Currently, you'll need overloading to support string
// literals in this case, but if you overload StringPtr, then you'll find that several
// conversions (e.g. from String and from a literal char array) become ambiguous! You end up
// having to overload for literal char arrays specifically which is cumbersome.
static_assert(!isSameType<T, const char>(),
"Can't implicitly convert literal char array to ArrayPtr because we don't know if "
"you meant to include the NUL terminator. We may change this in the future to "
"automatically drop the NUL terminator. For now, try explicitly converting to StringPtr, "
"which can in turn implicitly convert to ArrayPtr<const char>.");
static_assert(!isSameType<T, const char16_t>(), "see above");
static_assert(!isSameType<T, const char32_t>(), "see above");
}
inline operator ArrayPtr<const T>() const {
return ArrayPtr<const T>(ptr, size_);
}
inline ArrayPtr<const T> asConst() const {
return ArrayPtr<const T>(ptr, size_);
}
inline constexpr size_t size() const { return size_; }
inline const T& operator[](size_t index) const {
KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
return ptr[index];
}
inline T& operator[](size_t index) {
KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
return ptr[index];
}
inline T* begin() { return ptr; }
inline T* end() { return ptr + size_; }
inline T& front() { return *ptr; }
inline T& back() { return *(ptr + size_ - 1); }
inline constexpr const T* begin() const { return ptr; }
inline constexpr const T* end() const { return ptr + size_; }
inline const T& front() const { return *ptr; }
inline const T& back() const { return *(ptr + size_ - 1); }
inline ArrayPtr<const T> slice(size_t start, size_t end) const {
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
return ArrayPtr<const T>(ptr + start, end - start);
}
inline ArrayPtr slice(size_t start, size_t end) {
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
return ArrayPtr(ptr + start, end - start);
}
inline ArrayPtr<PropagateConst<T, byte>> asBytes() const {
// Reinterpret the array as a byte array. This is explicitly legal under C++ aliasing
// rules.
return { reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_ * sizeof(T) };
}
inline ArrayPtr<PropagateConst<T, char>> asChars() const {
// Reinterpret the array as a char array. This is explicitly legal under C++ aliasing
// rules.
return { reinterpret_cast<PropagateConst<T, char>*>(ptr), size_ * sizeof(T) };
}
inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
inline bool operator==(const ArrayPtr& other) const {
if (size_ != other.size_) return false;
for (size_t i = 0; i < size_; i++) {
if (ptr[i] != other[i]) return false;
}
return true;
}
inline bool operator!=(const ArrayPtr& other) const { return !(*this == other); }
template <typename U>
inline bool operator==(const ArrayPtr<U>& other) const {
if (size_ != other.size()) return false;
for (size_t i = 0; i < size_; i++) {
if (ptr[i] != other[i]) return false;
}
return true;
}
template <typename U>
inline bool operator!=(const ArrayPtr<U>& other) const { return !(*this == other); }
template <typename... Attachments>
Array<T> attach(Attachments&&... attachments) const KJ_WARN_UNUSED_RESULT;
// Like Array<T>::attach(), but also promotes an ArrayPtr to an Array. Generally the attachment
// should be an object that actually owns the array that the ArrayPtr is pointing at.
//
// You must include kj/array.h to call this.
private:
T* ptr;
size_t size_;
};
template <typename T>
inline constexpr ArrayPtr<T> arrayPtr(T* ptr KJ_LIFETIMEBOUND, size_t size) {
// Use this function to construct ArrayPtrs without writing out the type name.
return ArrayPtr<T>(ptr, size);
}
template <typename T>
inline constexpr ArrayPtr<T> arrayPtr(T* begin KJ_LIFETIMEBOUND, T* end KJ_LIFETIMEBOUND) {
// Use this function to construct ArrayPtrs without writing out the type name.
return ArrayPtr<T>(begin, end);
}
// =======================================================================================
// Casts
template <typename To, typename From>
To implicitCast(From&& from) {
// `implicitCast<T>(value)` casts `value` to type `T` only if the conversion is implicit. Useful
// for e.g. resolving ambiguous overloads without sacrificing type-safety.
return kj::fwd<From>(from);
}
template <typename To, typename From>
Maybe<To&> dynamicDowncastIfAvailable(From& from) {
// If RTTI is disabled, always returns nullptr. Otherwise, works like dynamic_cast. Useful
// in situations where dynamic_cast could allow an optimization, but isn't strictly necessary
// for correctness. It is highly recommended that you try to arrange all your dynamic_casts
// this way, as a dynamic_cast that is necessary for correctness implies a flaw in the interface
// design.
// Force a compile error if To is not a subtype of From. Cross-casting is rare; if it is needed
// we should have a separate cast function like dynamicCrosscastIfAvailable().
if (false) {
kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
}
#if KJ_NO_RTTI
return nullptr;
#else
return dynamic_cast<To*>(&from);
#endif
}
template <typename To, typename From>
To& downcast(From& from) {
// Down-cast a value to a sub-type, asserting that the cast is valid. In opt mode this is a
// static_cast, but in debug mode (when RTTI is enabled) a dynamic_cast will be used to verify
// that the value really has the requested type.
// Force a compile error if To is not a subtype of From.
if (false) {
kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
}
#if !KJ_NO_RTTI
KJ_IREQUIRE(dynamic_cast<To*>(&from) != nullptr, "Value cannot be downcast() to requested type.");
#endif
return static_cast<To&>(from);
}
// =======================================================================================
// Defer
namespace _ { // private
template <typename Func>
class Deferred {
public:
inline Deferred(Func&& func): func(kj::fwd<Func>(func)), canceled(false) {}
inline ~Deferred() noexcept(false) { if (!canceled) func(); }
KJ_DISALLOW_COPY(Deferred);
// This move constructor is usually optimized away by the compiler.
inline Deferred(Deferred&& other): func(kj::fwd<Func>(other.func)), canceled(other.canceled) {
other.canceled = true;
}
void cancel() {
canceled = true;
}
private:
Func func;
bool canceled;
};
} // namespace _ (private)
template <typename Func>
_::Deferred<Func> defer(Func&& func) {
// Returns an object which will invoke the given functor in its destructor. The object is not
// copyable but is movable with the semantics you'd expect. Since the return type is private,
// you need to assign to an `auto` variable.
//
// The KJ_DEFER macro provides slightly more convenient syntax for the common case where you
// want some code to run at current scope exit.
return _::Deferred<Func>(kj::fwd<Func>(func));
}
#define KJ_DEFER(code) auto KJ_UNIQUE_NAME(_kjDefer) = ::kj::defer([&](){code;})
// Run the given code when the function exits, whether by return or exception.
} // namespace kj
KJ_END_HEADER