| // This file was modified by Kenton Varda from code placed in the public domain. |
| // The code, which was originally C, was modified to give it a C++ interface. |
| // The original code bore the following notice: |
| |
| /* |
| * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc. |
| * MD5 Message-Digest Algorithm (RFC 1321). |
| * |
| * Homepage: |
| * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5 |
| * |
| * Author: |
| * Alexander Peslyak, better known as Solar Designer <solar at openwall.com> |
| * |
| * This software was written by Alexander Peslyak in 2001. No copyright is |
| * claimed, and the software is hereby placed in the public domain. |
| * In case this attempt to disclaim copyright and place the software in the |
| * public domain is deemed null and void, then the software is |
| * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the |
| * general public under the following terms: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted. |
| * |
| * There's ABSOLUTELY NO WARRANTY, express or implied. |
| * |
| * (This is a heavily cut-down "BSD license".) |
| * |
| * This differs from Colin Plumb's older public domain implementation in that |
| * no exactly 32-bit integer data type is required (any 32-bit or wider |
| * unsigned integer data type will do), there's no compile-time endianness |
| * configuration, and the function prototypes match OpenSSL's. No code from |
| * Colin Plumb's implementation has been reused; this comment merely compares |
| * the properties of the two independent implementations. |
| * |
| * The primary goals of this implementation are portability and ease of use. |
| * It is meant to be fast, but not as fast as possible. Some known |
| * optimizations are not included to reduce source code size and avoid |
| * compile-time configuration. |
| */ |
| |
| #include "md5.h" |
| #include <kj/debug.h> |
| #include <string.h> |
| |
| namespace capnp { |
| namespace compiler { |
| |
| /* |
| * The basic MD5 functions. |
| * |
| * F and G are optimized compared to their RFC 1321 definitions for |
| * architectures that lack an AND-NOT instruction, just like in Colin Plumb's |
| * implementation. |
| */ |
| #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) |
| #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y)))) |
| #define H(x, y, z) ((x) ^ (y) ^ (z)) |
| #define I(x, y, z) ((y) ^ ((x) | ~(z))) |
| |
| /* |
| * The MD5 transformation for all four rounds. |
| */ |
| #define STEP(f, a, b, c, d, x, t, s) \ |
| (a) += f((b), (c), (d)) + (x) + (t); \ |
| (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \ |
| (a) += (b); |
| |
| /* |
| * SET reads 4 input bytes in little-endian byte order and stores them |
| * in a properly aligned word in host byte order. |
| * |
| * The check for little-endian architectures that tolerate unaligned |
| * memory accesses is just an optimization. Nothing will break if it |
| * doesn't work. |
| */ |
| #if defined(__i386__) || defined(__x86_64__) || defined(__vax__) |
| #define SET(n) \ |
| (*(MD5_u32plus *)&ptr[(n) * 4]) |
| #define GET(n) \ |
| SET(n) |
| #else |
| #define SET(n) \ |
| (ctx->block[(n)] = \ |
| (MD5_u32plus)ptr[(n) * 4] | \ |
| ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \ |
| ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \ |
| ((MD5_u32plus)ptr[(n) * 4 + 3] << 24)) |
| #define GET(n) \ |
| (ctx->block[(n)]) |
| #endif |
| |
| /* |
| * This processes one or more 64-byte data blocks, but does NOT update |
| * the bit counters. There are no alignment requirements. |
| */ |
| const kj::byte* Md5::body(const kj::byte* ptr, size_t size) |
| { |
| MD5_u32plus a, b, c, d; |
| MD5_u32plus saved_a, saved_b, saved_c, saved_d; |
| |
| a = ctx.a; |
| b = ctx.b; |
| c = ctx.c; |
| d = ctx.d; |
| |
| do { |
| saved_a = a; |
| saved_b = b; |
| saved_c = c; |
| saved_d = d; |
| |
| /* Round 1 */ |
| STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7) |
| STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12) |
| STEP(F, c, d, a, b, SET(2), 0x242070db, 17) |
| STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22) |
| STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7) |
| STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12) |
| STEP(F, c, d, a, b, SET(6), 0xa8304613, 17) |
| STEP(F, b, c, d, a, SET(7), 0xfd469501, 22) |
| STEP(F, a, b, c, d, SET(8), 0x698098d8, 7) |
| STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12) |
| STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17) |
| STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22) |
| STEP(F, a, b, c, d, SET(12), 0x6b901122, 7) |
| STEP(F, d, a, b, c, SET(13), 0xfd987193, 12) |
| STEP(F, c, d, a, b, SET(14), 0xa679438e, 17) |
| STEP(F, b, c, d, a, SET(15), 0x49b40821, 22) |
| |
| /* Round 2 */ |
| STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5) |
| STEP(G, d, a, b, c, GET(6), 0xc040b340, 9) |
| STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14) |
| STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20) |
| STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5) |
| STEP(G, d, a, b, c, GET(10), 0x02441453, 9) |
| STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14) |
| STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20) |
| STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5) |
| STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9) |
| STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14) |
| STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20) |
| STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5) |
| STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9) |
| STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14) |
| STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20) |
| |
| /* Round 3 */ |
| STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4) |
| STEP(H, d, a, b, c, GET(8), 0x8771f681, 11) |
| STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16) |
| STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23) |
| STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4) |
| STEP(H, d, a, b, c, GET(4), 0x4bdecfa9, 11) |
| STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16) |
| STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23) |
| STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4) |
| STEP(H, d, a, b, c, GET(0), 0xeaa127fa, 11) |
| STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16) |
| STEP(H, b, c, d, a, GET(6), 0x04881d05, 23) |
| STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4) |
| STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11) |
| STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16) |
| STEP(H, b, c, d, a, GET(2), 0xc4ac5665, 23) |
| |
| /* Round 4 */ |
| STEP(I, a, b, c, d, GET(0), 0xf4292244, 6) |
| STEP(I, d, a, b, c, GET(7), 0x432aff97, 10) |
| STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15) |
| STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21) |
| STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6) |
| STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10) |
| STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15) |
| STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21) |
| STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6) |
| STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10) |
| STEP(I, c, d, a, b, GET(6), 0xa3014314, 15) |
| STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21) |
| STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6) |
| STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10) |
| STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15) |
| STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21) |
| |
| a += saved_a; |
| b += saved_b; |
| c += saved_c; |
| d += saved_d; |
| |
| ptr += 64; |
| } while (size -= 64); |
| |
| ctx.a = a; |
| ctx.b = b; |
| ctx.c = c; |
| ctx.d = d; |
| |
| return ptr; |
| } |
| |
| Md5::Md5() |
| { |
| ctx.a = 0x67452301; |
| ctx.b = 0xefcdab89; |
| ctx.c = 0x98badcfe; |
| ctx.d = 0x10325476; |
| |
| ctx.lo = 0; |
| ctx.hi = 0; |
| } |
| |
| void Md5::update(kj::ArrayPtr<const kj::byte> dataArray) |
| { |
| KJ_REQUIRE(!finished, "already called Md5::finish()"); |
| |
| const kj::byte* data = dataArray.begin(); |
| unsigned long size = dataArray.size(); |
| |
| MD5_u32plus saved_lo; |
| unsigned long used, free; |
| |
| saved_lo = ctx.lo; |
| if ((ctx.lo = (saved_lo + size) & 0x1fffffff) < saved_lo) |
| ctx.hi++; |
| ctx.hi += size >> 29; |
| |
| used = saved_lo & 0x3f; |
| |
| if (used) { |
| free = 64 - used; |
| |
| if (size < free) { |
| memcpy(&ctx.buffer[used], data, size); |
| return; |
| } |
| |
| memcpy(&ctx.buffer[used], data, free); |
| data = data + free; |
| size -= free; |
| body(ctx.buffer, 64); |
| } |
| |
| if (size >= 64) { |
| data = body(data, size & ~(unsigned long)0x3f); |
| size &= 0x3f; |
| } |
| |
| memcpy(ctx.buffer, data, size); |
| } |
| |
| kj::ArrayPtr<const kj::byte> Md5::finish() |
| { |
| if (!finished) { |
| unsigned long used, free; |
| |
| used = ctx.lo & 0x3f; |
| |
| ctx.buffer[used++] = 0x80; |
| |
| free = 64 - used; |
| |
| if (free < 8) { |
| memset(&ctx.buffer[used], 0, free); |
| body(ctx.buffer, 64); |
| used = 0; |
| free = 64; |
| } |
| |
| memset(&ctx.buffer[used], 0, free - 8); |
| |
| ctx.lo <<= 3; |
| ctx.buffer[56] = ctx.lo; |
| ctx.buffer[57] = ctx.lo >> 8; |
| ctx.buffer[58] = ctx.lo >> 16; |
| ctx.buffer[59] = ctx.lo >> 24; |
| ctx.buffer[60] = ctx.hi; |
| ctx.buffer[61] = ctx.hi >> 8; |
| ctx.buffer[62] = ctx.hi >> 16; |
| ctx.buffer[63] = ctx.hi >> 24; |
| |
| body(ctx.buffer, 64); |
| |
| // Store final result into ctx.buffer. |
| ctx.buffer[0] = ctx.a; |
| ctx.buffer[1] = ctx.a >> 8; |
| ctx.buffer[2] = ctx.a >> 16; |
| ctx.buffer[3] = ctx.a >> 24; |
| ctx.buffer[4] = ctx.b; |
| ctx.buffer[5] = ctx.b >> 8; |
| ctx.buffer[6] = ctx.b >> 16; |
| ctx.buffer[7] = ctx.b >> 24; |
| ctx.buffer[8] = ctx.c; |
| ctx.buffer[9] = ctx.c >> 8; |
| ctx.buffer[10] = ctx.c >> 16; |
| ctx.buffer[11] = ctx.c >> 24; |
| ctx.buffer[12] = ctx.d; |
| ctx.buffer[13] = ctx.d >> 8; |
| ctx.buffer[14] = ctx.d >> 16; |
| ctx.buffer[15] = ctx.d >> 24; |
| |
| finished = true; |
| } |
| |
| return kj::arrayPtr(ctx.buffer, 16); |
| } |
| |
| kj::StringPtr Md5::finishAsHex() { |
| static const char hexDigits[] = "0123456789abcdef"; |
| |
| kj::ArrayPtr<const kj::byte> bytes = finish(); |
| |
| char* chars = reinterpret_cast<char*>(ctx.buffer + 16); |
| char* pos = chars; |
| for (auto byte: bytes) { |
| *pos++ = hexDigits[byte / 16]; |
| *pos++ = hexDigits[byte % 16]; |
| } |
| *pos++ = '\0'; |
| |
| return kj::StringPtr(chars, 32); |
| } |
| |
| } // namespace compiler |
| } // namespace capnp |