blob: ab226500db8f071f544c4f20c9181861c1d87369 [file] [log] [blame]
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
#include "layout.h"
CAPNP_BEGIN_HEADER
namespace capnp {
class StructSchema;
class ListSchema;
struct DynamicStruct;
struct DynamicList;
namespace _ { struct OrphanageInternal; }
template <typename T>
class Orphan {
// Represents an object which is allocated within some message builder but has no pointers
// pointing at it. An Orphan can later be "adopted" by some other object as one of that object's
// fields, without having to copy the orphan. For a field `foo` of pointer type, the generated
// code will define builder methods `void adoptFoo(Orphan<T>)` and `Orphan<T> disownFoo()`.
// Orphans can also be created independently of any parent using an Orphanage.
//
// `Orphan<T>` can be moved but not copied, like `Own<T>`, so that it is impossible for one
// orphan to be adopted multiple times. If an orphan is destroyed without being adopted, its
// contents are zero'd out (and possibly reused, if we ever implement the ability to reuse space
// in a message arena).
public:
Orphan() = default;
KJ_DISALLOW_COPY(Orphan);
Orphan(Orphan&&) = default;
Orphan& operator=(Orphan&&) = default;
inline Orphan(_::OrphanBuilder&& builder): builder(kj::mv(builder)) {}
inline BuilderFor<T> get();
// Get the underlying builder. If the orphan is null, this will allocate and return a default
// object rather than crash. This is done for security -- otherwise, you might enable a DoS
// attack any time you disown a field and fail to check if it is null. In the case of structs,
// this means that the orphan is no longer null after get() returns. In the case of lists,
// no actual object is allocated since a simple empty ListBuilder can be returned.
inline ReaderFor<T> getReader() const;
inline bool operator==(decltype(nullptr)) const { return builder == nullptr; }
inline bool operator!=(decltype(nullptr)) const { return builder != nullptr; }
inline void truncate(uint size);
// Resize an object (which must be a list or a blob) to the given size.
//
// If the new size is less than the original, the remaining elements will be discarded. The
// list is never moved in this case. If the list happens to be located at the end of its segment
// (which is always true if the list was the last thing allocated), the removed memory will be
// reclaimed (reducing the messag size), otherwise it is simply zeroed. The reclaiming behavior
// is particularly useful for allocating buffer space when you aren't sure how much space you
// actually need: you can pre-allocate, say, a 4k byte array, read() from a file into it, and
// then truncate it back to the amount of space actually used.
//
// If the new size is greater than the original, the list is extended with default values. If
// the list is the last object in its segment *and* there is enough space left in the segment to
// extend it to cover the new values, then the list is extended in-place. Otherwise, it must be
// moved to a new location, leaving a zero'd hole in the previous space that won't be filled.
// This copy is shallow; sub-objects will simply be reparented, not copied.
//
// Any existing readers or builders pointing at the object are invalidated by this call (even if
// it doesn't move). You must call `get()` or `getReader()` again to get the new, valid pointer.
private:
_::OrphanBuilder builder;
template <typename, Kind>
friend struct _::PointerHelpers;
template <typename, Kind>
friend struct List;
template <typename U>
friend class Orphan;
friend class Orphanage;
friend class MessageBuilder;
};
class Orphanage: private kj::DisallowConstCopy {
// Use to directly allocate Orphan objects, without having a parent object allocate and then
// disown the object.
public:
inline Orphanage(): arena(nullptr) {}
template <typename BuilderType>
static Orphanage getForMessageContaining(BuilderType builder);
// Construct an Orphanage that allocates within the message containing the given Builder. This
// allows the constructed Orphans to be adopted by objects within said message.
//
// This constructor takes the builder rather than having the builder have a getOrphanage() method
// because this is an advanced feature and we don't want to pollute the builder APIs with it.
//
// Note that if you have a direct pointer to the `MessageBuilder`, you can simply call its
// `getOrphanage()` method.
template <typename RootType>
Orphan<RootType> newOrphan() const;
// Allocate a new orphaned struct.
template <typename RootType>
Orphan<RootType> newOrphan(uint size) const;
// Allocate a new orphaned list or blob.
Orphan<DynamicStruct> newOrphan(StructSchema schema) const;
// Dynamically create an orphan struct with the given schema. You must
// #include <capnp/dynamic.h> to use this.
Orphan<DynamicList> newOrphan(ListSchema schema, uint size) const;
// Dynamically create an orphan list with the given schema. You must #include <capnp/dynamic.h>
// to use this.
template <typename Reader>
Orphan<FromReader<Reader>> newOrphanCopy(Reader copyFrom) const;
// Allocate a new orphaned object (struct, list, or blob) and initialize it as a copy of the
// given object.
template <typename T>
Orphan<List<ListElementType<FromReader<T>>>> newOrphanConcat(kj::ArrayPtr<T> lists) const;
template <typename T>
Orphan<List<ListElementType<FromReader<T>>>> newOrphanConcat(kj::ArrayPtr<const T> lists) const;
// Given an array of List readers, copy and concatenate the lists, creating a new Orphan.
//
// Note that compared to allocating the list yourself and using `setWithCaveats()` to set each
// item, this method avoids the "caveats": the new list will be allocated with the element size
// being the maximum of that from all the input lists. This is particularly important when
// concatenating struct lists: if the lists were created using a newer version of the protocol
// in which some new fields had been added to the struct, using `setWithCaveats()` would
// truncate off those new fields.
Orphan<Data> referenceExternalData(Data::Reader data) const;
// Creates an Orphan<Data> that points at an existing region of memory (e.g. from another message)
// without copying it. There are some SEVERE restrictions on how this can be used:
// - The memory must remain valid until the `MessageBuilder` is destroyed (even if the orphan is
// abandoned).
// - Because the data is const, you will not be allowed to obtain a `Data::Builder`
// for this blob. Any call which would return such a builder will throw an exception. You
// can, however, obtain a Reader, e.g. via orphan.getReader() or from a parent Reader (once
// the orphan is adopted). It is your responsibility to make sure your code can deal with
// these problems when using this optimization; if you can't, allocate a copy instead.
// - `data.begin()` must be aligned to a machine word boundary (32-bit or 64-bit depending on
// the CPU). Any pointer returned by malloc() as well as any data blob obtained from another
// Cap'n Proto message satisfies this.
// - If `data.size()` is not a multiple of 8, extra bytes past data.end() up until the next 8-byte
// boundary will be visible in the raw message when it is written out. Thus, there must be no
// secrets in these bytes. Data blobs obtained from other Cap'n Proto messages should be safe
// as these bytes should be zero (unless the sender had the same problem).
//
// The array will actually become one of the message's segments. The data can thus be adopted
// into the message tree without copying it. This is particularly useful when referencing very
// large blobs, such as whole mmap'd files.
private:
_::BuilderArena* arena;
_::CapTableBuilder* capTable;
inline explicit Orphanage(_::BuilderArena* arena, _::CapTableBuilder* capTable)
: arena(arena), capTable(capTable) {}
template <typename T, Kind = CAPNP_KIND(T)>
struct GetInnerBuilder;
template <typename T, Kind = CAPNP_KIND(T)>
struct GetInnerReader;
template <typename T>
struct NewOrphanListImpl;
friend class MessageBuilder;
friend struct _::OrphanageInternal;
};
// =======================================================================================
// Inline implementation details.
namespace _ { // private
template <typename T, Kind = CAPNP_KIND(T)>
struct OrphanGetImpl;
template <typename T>
struct OrphanGetImpl<T, Kind::PRIMITIVE> {
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
builder.truncate(size, _::elementSizeForType<T>());
}
};
template <typename T>
struct OrphanGetImpl<T, Kind::STRUCT> {
static inline typename T::Builder apply(_::OrphanBuilder& builder) {
return typename T::Builder(builder.asStruct(_::structSize<T>()));
}
static inline typename T::Reader applyReader(const _::OrphanBuilder& builder) {
return typename T::Reader(builder.asStructReader(_::structSize<T>()));
}
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
builder.truncate(size, _::structSize<T>());
}
};
#if !CAPNP_LITE
template <typename T>
struct OrphanGetImpl<T, Kind::INTERFACE> {
static inline typename T::Client apply(_::OrphanBuilder& builder) {
return typename T::Client(builder.asCapability());
}
static inline typename T::Client applyReader(const _::OrphanBuilder& builder) {
return typename T::Client(builder.asCapability());
}
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
builder.truncate(size, ElementSize::POINTER);
}
};
#endif // !CAPNP_LITE
template <typename T, Kind k>
struct OrphanGetImpl<List<T, k>, Kind::LIST> {
static inline typename List<T>::Builder apply(_::OrphanBuilder& builder) {
return typename List<T>::Builder(builder.asList(_::ElementSizeForType<T>::value));
}
static inline typename List<T>::Reader applyReader(const _::OrphanBuilder& builder) {
return typename List<T>::Reader(builder.asListReader(_::ElementSizeForType<T>::value));
}
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
builder.truncate(size, ElementSize::POINTER);
}
};
template <typename T>
struct OrphanGetImpl<List<T, Kind::STRUCT>, Kind::LIST> {
static inline typename List<T>::Builder apply(_::OrphanBuilder& builder) {
return typename List<T>::Builder(builder.asStructList(_::structSize<T>()));
}
static inline typename List<T>::Reader applyReader(const _::OrphanBuilder& builder) {
return typename List<T>::Reader(builder.asListReader(_::ElementSizeForType<T>::value));
}
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
builder.truncate(size, ElementSize::POINTER);
}
};
template <>
struct OrphanGetImpl<Text, Kind::BLOB> {
static inline Text::Builder apply(_::OrphanBuilder& builder) {
return Text::Builder(builder.asText());
}
static inline Text::Reader applyReader(const _::OrphanBuilder& builder) {
return Text::Reader(builder.asTextReader());
}
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
builder.truncate(size, ElementSize::POINTER);
}
};
template <>
struct OrphanGetImpl<Data, Kind::BLOB> {
static inline Data::Builder apply(_::OrphanBuilder& builder) {
return Data::Builder(builder.asData());
}
static inline Data::Reader applyReader(const _::OrphanBuilder& builder) {
return Data::Reader(builder.asDataReader());
}
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
builder.truncate(size, ElementSize::POINTER);
}
};
struct OrphanageInternal {
static inline _::BuilderArena* getArena(Orphanage orphanage) { return orphanage.arena; }
static inline _::CapTableBuilder* getCapTable(Orphanage orphanage) { return orphanage.capTable; }
};
} // namespace _ (private)
template <typename T>
inline BuilderFor<T> Orphan<T>::get() {
return _::OrphanGetImpl<T>::apply(builder);
}
template <typename T>
inline ReaderFor<T> Orphan<T>::getReader() const {
return _::OrphanGetImpl<T>::applyReader(builder);
}
template <typename T>
inline void Orphan<T>::truncate(uint size) {
_::OrphanGetImpl<ListElementType<T>>::truncateListOf(builder, bounded(size) * ELEMENTS);
}
template <>
inline void Orphan<Text>::truncate(uint size) {
builder.truncateText(bounded(size) * ELEMENTS);
}
template <>
inline void Orphan<Data>::truncate(uint size) {
builder.truncate(bounded(size) * ELEMENTS, ElementSize::BYTE);
}
template <typename T>
struct Orphanage::GetInnerBuilder<T, Kind::STRUCT> {
static inline _::StructBuilder apply(typename T::Builder& t) {
return t._builder;
}
};
template <typename T>
struct Orphanage::GetInnerBuilder<T, Kind::LIST> {
static inline _::ListBuilder apply(typename T::Builder& t) {
return t.builder;
}
};
template <typename BuilderType>
Orphanage Orphanage::getForMessageContaining(BuilderType builder) {
auto inner = GetInnerBuilder<FromBuilder<BuilderType>>::apply(builder);
return Orphanage(inner.getArena(), inner.getCapTable());
}
template <typename RootType>
Orphan<RootType> Orphanage::newOrphan() const {
return Orphan<RootType>(_::OrphanBuilder::initStruct(arena, capTable, _::structSize<RootType>()));
}
template <typename T, Kind k>
struct Orphanage::NewOrphanListImpl<List<T, k>> {
static inline _::OrphanBuilder apply(
_::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
return _::OrphanBuilder::initList(
arena, capTable, bounded(size) * ELEMENTS, _::ElementSizeForType<T>::value);
}
};
template <typename T>
struct Orphanage::NewOrphanListImpl<List<T, Kind::STRUCT>> {
static inline _::OrphanBuilder apply(
_::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
return _::OrphanBuilder::initStructList(
arena, capTable, bounded(size) * ELEMENTS, _::structSize<T>());
}
};
template <>
struct Orphanage::NewOrphanListImpl<Text> {
static inline _::OrphanBuilder apply(
_::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
return _::OrphanBuilder::initText(arena, capTable, bounded(size) * BYTES);
}
};
template <>
struct Orphanage::NewOrphanListImpl<Data> {
static inline _::OrphanBuilder apply(
_::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
return _::OrphanBuilder::initData(arena, capTable, bounded(size) * BYTES);
}
};
template <typename RootType>
Orphan<RootType> Orphanage::newOrphan(uint size) const {
return Orphan<RootType>(NewOrphanListImpl<RootType>::apply(arena, capTable, size));
}
template <typename T>
struct Orphanage::GetInnerReader<T, Kind::STRUCT> {
static inline _::StructReader apply(const typename T::Reader& t) {
return t._reader;
}
};
template <typename T>
struct Orphanage::GetInnerReader<T, Kind::LIST> {
static inline _::ListReader apply(const typename T::Reader& t) {
return t.reader;
}
};
template <typename T>
struct Orphanage::GetInnerReader<T, Kind::BLOB> {
static inline const typename T::Reader& apply(const typename T::Reader& t) {
return t;
}
};
template <typename Reader>
inline Orphan<FromReader<Reader>> Orphanage::newOrphanCopy(Reader copyFrom) const {
return Orphan<FromReader<Reader>>(_::OrphanBuilder::copy(
arena, capTable, GetInnerReader<FromReader<Reader>>::apply(copyFrom)));
}
template <typename T>
inline Orphan<List<ListElementType<FromReader<T>>>>
Orphanage::newOrphanConcat(kj::ArrayPtr<T> lists) const {
return newOrphanConcat(kj::implicitCast<kj::ArrayPtr<const T>>(lists));
}
template <typename T>
inline Orphan<List<ListElementType<FromReader<T>>>>
Orphanage::newOrphanConcat(kj::ArrayPtr<const T> lists) const {
// Optimization / simplification: Rely on List<T>::Reader containing nothing except a
// _::ListReader.
static_assert(sizeof(T) == sizeof(_::ListReader), "lists are not bare readers?");
kj::ArrayPtr<const _::ListReader> raw(
reinterpret_cast<const _::ListReader*>(lists.begin()), lists.size());
typedef ListElementType<FromReader<T>> Element;
return Orphan<List<Element>>(
_::OrphanBuilder::concat(arena, capTable,
_::elementSizeForType<Element>(),
_::minStructSizeForElement<Element>(), raw));
}
inline Orphan<Data> Orphanage::referenceExternalData(Data::Reader data) const {
return Orphan<Data>(_::OrphanBuilder::referenceExternalData(arena, data));
}
} // namespace capnp
CAPNP_END_HEADER