blob: 25659c932fb3f403070f3e3f386561a440377c70 [file] [log] [blame]
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// This file declares convenient macros for debug logging and error handling. The macros make
// it excessively easy to extract useful context information from code. Example:
//
// KJ_ASSERT(a == b, a, b, "a and b must be the same.");
//
// On failure, this will throw an exception whose description looks like:
//
// myfile.c++:43: bug in code: expected a == b; a = 14; b = 72; a and b must be the same.
//
// As you can see, all arguments after the first provide additional context.
//
// The macros available are:
//
// * `KJ_LOG(severity, ...)`: Just writes a log message, to stderr by default (but you can
// intercept messages by implementing an ExceptionCallback). `severity` is `INFO`, `WARNING`,
// `ERROR`, or `FATAL`. By default, `INFO` logs are not written, but for command-line apps the
// user should be able to pass a flag like `--verbose` to enable them. Other log levels are
// enabled by default. Log messages -- like exceptions -- can be intercepted by registering an
// ExceptionCallback.
//
// * `KJ_DBG(...)`: Like `KJ_LOG`, but intended specifically for temporary log lines added while
// debugging a particular problem. Calls to `KJ_DBG` should always be deleted before committing
// code. It is suggested that you set up a pre-commit hook that checks for this.
//
// * `KJ_ASSERT(condition, ...)`: Throws an exception if `condition` is false, or aborts if
// exceptions are disabled. This macro should be used to check for bugs in the surrounding code
// and its dependencies, but NOT to check for invalid input. The macro may be followed by a
// brace-delimited code block; if so, the block will be executed in the case where the assertion
// fails, before throwing the exception. If control jumps out of the block (e.g. with "break",
// "return", or "goto"), then the error is considered "recoverable" -- in this case, if
// exceptions are disabled, execution will continue normally rather than aborting (but if
// exceptions are enabled, an exception will still be thrown on exiting the block). A "break"
// statement in particular will jump to the code immediately after the block (it does not break
// any surrounding loop or switch). Example:
//
// KJ_ASSERT(value >= 0, "Value cannot be negative.", value) {
// // Assertion failed. Set value to zero to "recover".
// value = 0;
// // Don't abort if exceptions are disabled. Continue normally.
// // (Still throw an exception if they are enabled, though.)
// break;
// }
// // When exceptions are disabled, we'll get here even if the assertion fails.
// // Otherwise, we get here only if the assertion passes.
//
// * `KJ_REQUIRE(condition, ...)`: Like `KJ_ASSERT` but used to check preconditions -- e.g. to
// validate parameters passed from a caller. A failure indicates that the caller is buggy.
//
// * `KJ_SYSCALL(code, ...)`: Executes `code` assuming it makes a system call. A negative result
// is considered an error, with error code reported via `errno`. EINTR is handled by retrying.
// Other errors are handled by throwing an exception. If you need to examine the return code,
// assign it to a variable like so:
//
// int fd;
// KJ_SYSCALL(fd = open(filename, O_RDONLY), filename);
//
// `KJ_SYSCALL` can be followed by a recovery block, just like `KJ_ASSERT`.
//
// * `KJ_NONBLOCKING_SYSCALL(code, ...)`: Like KJ_SYSCALL, but will not throw an exception on
// EAGAIN/EWOULDBLOCK. The calling code should check the syscall's return value to see if it
// indicates an error; in this case, it can assume the error was EAGAIN because any other error
// would have caused an exception to be thrown.
//
// * `KJ_CONTEXT(...)`: Notes additional contextual information relevant to any exceptions thrown
// from within the current scope. That is, until control exits the block in which KJ_CONTEXT()
// is used, if any exception is generated, it will contain the given information in its context
// chain. This is helpful because it can otherwise be very difficult to come up with error
// messages that make sense within low-level helper code. Note that the parameters to
// KJ_CONTEXT() are only evaluated if an exception is thrown. This implies that any variables
// used must remain valid until the end of the scope.
//
// Notes:
// * Do not write expressions with side-effects in the message content part of the macro, as the
// message will not necessarily be evaluated.
// * For every macro `FOO` above except `LOG`, there is also a `FAIL_FOO` macro used to report
// failures that already happened. For the macros that check a boolean condition, `FAIL_FOO`
// omits the first parameter and behaves like it was `false`. `FAIL_SYSCALL` and
// `FAIL_RECOVERABLE_SYSCALL` take a string and an OS error number as the first two parameters.
// The string should be the name of the failed system call.
// * For every macro `FOO` above, there is a `DFOO` version (or `RECOVERABLE_DFOO`) which is only
// executed in debug mode, i.e. when KJ_DEBUG is defined. KJ_DEBUG is defined automatically
// by common.h when compiling without optimization (unless NDEBUG is defined), but you can also
// define it explicitly (e.g. -DKJ_DEBUG). Generally, production builds should NOT use KJ_DEBUG
// as it may enable expensive checks that are unlikely to fail.
#pragma once
#include "string.h"
#include "exception.h"
#include "windows-sanity.h" // work-around macro conflict with `ERROR`
KJ_BEGIN_HEADER
namespace kj {
#if _MSC_VER && !defined(__clang__)
// MSVC does __VA_ARGS__ differently from GCC:
// - A trailing comma before an empty __VA_ARGS__ is removed automatically, whereas GCC wants
// you to request this behavior with "##__VA_ARGS__".
// - If __VA_ARGS__ is passed directly as an argument to another macro, it will be treated as a
// *single* argument rather than an argument list. This can be worked around by wrapping the
// outer macro call in KJ_EXPAND(), which apparently forces __VA_ARGS__ to be expanded before
// the macro is evaluated. I don't understand the C preprocessor.
// - Using "#__VA_ARGS__" to stringify __VA_ARGS__ expands to zero tokens when __VA_ARGS__ is
// empty, rather than expanding to an empty string literal. We can work around by concatenating
// with an empty string literal.
#define KJ_EXPAND(X) X
#define KJ_LOG(severity, ...) \
for (bool _kj_shouldLog = ::kj::_::Debug::shouldLog(::kj::LogSeverity::severity); \
_kj_shouldLog; _kj_shouldLog = false) \
::kj::_::Debug::log(__FILE__, __LINE__, ::kj::LogSeverity::severity, \
"" #__VA_ARGS__, __VA_ARGS__)
#define KJ_DBG(...) KJ_EXPAND(KJ_LOG(DBG, __VA_ARGS__))
#define KJ_REQUIRE(cond, ...) \
if (auto _kjCondition = ::kj::_::MAGIC_ASSERT << cond) {} else \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \
#cond, "_kjCondition," #__VA_ARGS__, _kjCondition, __VA_ARGS__);; f.fatal())
#define KJ_FAIL_REQUIRE(...) \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \
nullptr, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal())
#define KJ_SYSCALL(call, ...) \
if (auto _kjSyscallResult = ::kj::_::Debug::syscall([&](){return (call);}, false)) {} else \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \
_kjSyscallResult.getErrorNumber(), #call, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal())
#define KJ_NONBLOCKING_SYSCALL(call, ...) \
if (auto _kjSyscallResult = ::kj::_::Debug::syscall([&](){return (call);}, true)) {} else \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \
_kjSyscallResult.getErrorNumber(), #call, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal())
#define KJ_FAIL_SYSCALL(code, errorNumber, ...) \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \
errorNumber, code, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal())
#if _WIN32 || __CYGWIN__
#define KJ_WIN32(call, ...) \
if (auto _kjWin32Result = ::kj::_::Debug::win32Call(call)) {} else \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \
_kjWin32Result, #call, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal())
#define KJ_WINSOCK(call, ...) \
if (auto _kjWin32Result = ::kj::_::Debug::winsockCall(call)) {} else \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \
_kjWin32Result, #call, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal())
#define KJ_FAIL_WIN32(code, errorNumber, ...) \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \
::kj::_::Debug::Win32Result(errorNumber), code, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal())
#endif
#define KJ_UNIMPLEMENTED(...) \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, ::kj::Exception::Type::UNIMPLEMENTED, \
nullptr, "" #__VA_ARGS__, __VA_ARGS__);; f.fatal())
// TODO(msvc): MSVC mis-deduces `ContextImpl<decltype(func)>` as `ContextImpl<int>` in some edge
// cases, such as inside nested lambdas inside member functions. Wrapping the type in
// `decltype(instance<...>())` helps it deduce the context function's type correctly.
#define KJ_CONTEXT(...) \
auto KJ_UNIQUE_NAME(_kjContextFunc) = [&]() -> ::kj::_::Debug::Context::Value { \
return ::kj::_::Debug::Context::Value(__FILE__, __LINE__, \
::kj::_::Debug::makeDescription("" #__VA_ARGS__, __VA_ARGS__)); \
}; \
decltype(::kj::instance<::kj::_::Debug::ContextImpl<decltype(KJ_UNIQUE_NAME(_kjContextFunc))>>()) \
KJ_UNIQUE_NAME(_kjContext)(KJ_UNIQUE_NAME(_kjContextFunc))
#define KJ_REQUIRE_NONNULL(value, ...) \
(*[&] { \
auto _kj_result = ::kj::_::readMaybe(value); \
if (KJ_UNLIKELY(!_kj_result)) { \
::kj::_::Debug::Fault(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \
#value " != nullptr", "" #__VA_ARGS__, __VA_ARGS__).fatal(); \
} \
return _kj_result; \
}())
#define KJ_EXCEPTION(type, ...) \
::kj::Exception(::kj::Exception::Type::type, __FILE__, __LINE__, \
::kj::_::Debug::makeDescription("" #__VA_ARGS__, __VA_ARGS__))
#else
#define KJ_LOG(severity, ...) \
for (bool _kj_shouldLog = ::kj::_::Debug::shouldLog(::kj::LogSeverity::severity); \
_kj_shouldLog; _kj_shouldLog = false) \
::kj::_::Debug::log(__FILE__, __LINE__, ::kj::LogSeverity::severity, \
#__VA_ARGS__, ##__VA_ARGS__)
#define KJ_DBG(...) KJ_LOG(DBG, ##__VA_ARGS__)
#define KJ_REQUIRE(cond, ...) \
if (auto _kjCondition = ::kj::_::MAGIC_ASSERT << cond) {} else \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \
#cond, "_kjCondition," #__VA_ARGS__, _kjCondition, ##__VA_ARGS__);; f.fatal())
#define KJ_FAIL_REQUIRE(...) \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \
nullptr, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal())
#define KJ_SYSCALL(call, ...) \
if (auto _kjSyscallResult = ::kj::_::Debug::syscall([&](){return (call);}, false)) {} else \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \
_kjSyscallResult.getErrorNumber(), #call, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal())
#define KJ_NONBLOCKING_SYSCALL(call, ...) \
if (auto _kjSyscallResult = ::kj::_::Debug::syscall([&](){return (call);}, true)) {} else \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \
_kjSyscallResult.getErrorNumber(), #call, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal())
#define KJ_FAIL_SYSCALL(code, errorNumber, ...) \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \
errorNumber, code, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal())
#if _WIN32 || __CYGWIN__
#define KJ_WIN32(call, ...) \
if (auto _kjWin32Result = ::kj::_::Debug::win32Call(call)) {} else \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \
_kjWin32Result, #call, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal())
// Invoke a Win32 syscall that returns either BOOL or HANDLE, and throw an exception if it fails.
#define KJ_WINSOCK(call, ...) \
if (auto _kjWin32Result = ::kj::_::Debug::winsockCall(call)) {} else \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \
_kjWin32Result, #call, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal())
// Like KJ_WIN32 but for winsock calls which return `int` with SOCKET_ERROR indicating failure.
//
// Unfortunately, it's impossible to distinguish these from BOOL-returning Win32 calls by type,
// since BOOL is in fact an alias for `int`. :(
#define KJ_FAIL_WIN32(code, errorNumber, ...) \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, \
::kj::_::Debug::Win32Result(errorNumber), code, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal())
#endif
#define KJ_UNIMPLEMENTED(...) \
for (::kj::_::Debug::Fault f(__FILE__, __LINE__, ::kj::Exception::Type::UNIMPLEMENTED, \
nullptr, #__VA_ARGS__, ##__VA_ARGS__);; f.fatal())
#define KJ_CONTEXT(...) \
auto KJ_UNIQUE_NAME(_kjContextFunc) = [&]() -> ::kj::_::Debug::Context::Value { \
return ::kj::_::Debug::Context::Value(__FILE__, __LINE__, \
::kj::_::Debug::makeDescription(#__VA_ARGS__, ##__VA_ARGS__)); \
}; \
::kj::_::Debug::ContextImpl<decltype(KJ_UNIQUE_NAME(_kjContextFunc))> \
KJ_UNIQUE_NAME(_kjContext)(KJ_UNIQUE_NAME(_kjContextFunc))
#define KJ_REQUIRE_NONNULL(value, ...) \
(*({ \
auto _kj_result = ::kj::_::readMaybe(value); \
if (KJ_UNLIKELY(!_kj_result)) { \
::kj::_::Debug::Fault(__FILE__, __LINE__, ::kj::Exception::Type::FAILED, \
#value " != nullptr", #__VA_ARGS__, ##__VA_ARGS__).fatal(); \
} \
kj::mv(_kj_result); \
}))
#define KJ_EXCEPTION(type, ...) \
::kj::Exception(::kj::Exception::Type::type, __FILE__, __LINE__, \
::kj::_::Debug::makeDescription(#__VA_ARGS__, ##__VA_ARGS__))
#endif
#define KJ_SYSCALL_HANDLE_ERRORS(call) \
if (int _kjSyscallError = ::kj::_::Debug::syscallError([&](){return (call);}, false)) \
switch (int error KJ_UNUSED = _kjSyscallError)
// Like KJ_SYSCALL, but doesn't throw. Instead, the block after the macro is a switch block on the
// error. Additionally, the int value `error` is defined within the block. So you can do:
//
// KJ_SYSCALL_HANDLE_ERRORS(foo()) {
// case ENOENT:
// handleNoSuchFile();
// break;
// case EEXIST:
// handleExists();
// break;
// default:
// KJ_FAIL_SYSCALL("foo()", error);
// } else {
// handleSuccessCase();
// }
#if _WIN32 || __CYGWIN__
#define KJ_WIN32_HANDLE_ERRORS(call) \
if (uint _kjWin32Error = ::kj::_::Debug::win32Call(call).number) \
switch (uint error KJ_UNUSED = _kjWin32Error)
// Like KJ_WIN32, but doesn't throw. Instead, the block after the macro is a switch block on the
// error. Additionally, the int value `error` is defined within the block. So you can do:
//
// KJ_SYSCALL_HANDLE_ERRORS(foo()) {
// case ERROR_FILE_NOT_FOUND:
// handleNoSuchFile();
// break;
// case ERROR_FILE_EXISTS:
// handleExists();
// break;
// default:
// KJ_FAIL_WIN32("foo()", error);
// } else {
// handleSuccessCase();
// }
#endif
#define KJ_ASSERT KJ_REQUIRE
#define KJ_FAIL_ASSERT KJ_FAIL_REQUIRE
#define KJ_ASSERT_NONNULL KJ_REQUIRE_NONNULL
// Use "ASSERT" in place of "REQUIRE" when the problem is local to the immediate surrounding code.
// That is, if the assert ever fails, it indicates that the immediate surrounding code is broken.
#ifdef KJ_DEBUG
#define KJ_DLOG KJ_LOG
#define KJ_DASSERT KJ_ASSERT
#define KJ_DREQUIRE KJ_REQUIRE
#else
#define KJ_DLOG(...) do {} while (false)
#define KJ_DASSERT(...) do {} while (false)
#define KJ_DREQUIRE(...) do {} while (false)
#endif
namespace _ { // private
class Debug {
public:
Debug() = delete;
typedef LogSeverity Severity; // backwards-compatibility
#if _WIN32 || __CYGWIN__
struct Win32Result {
uint number;
inline explicit Win32Result(uint number): number(number) {}
operator bool() const { return number == 0; }
};
#endif
static inline bool shouldLog(LogSeverity severity) { return severity >= minSeverity; }
// Returns whether messages of the given severity should be logged.
static inline void setLogLevel(LogSeverity severity) { minSeverity = severity; }
// Set the minimum message severity which will be logged.
//
// TODO(someday): Expose publicly.
template <typename... Params>
static void log(const char* file, int line, LogSeverity severity, const char* macroArgs,
Params&&... params);
class Fault {
public:
template <typename Code, typename... Params>
Fault(const char* file, int line, Code code,
const char* condition, const char* macroArgs, Params&&... params);
Fault(const char* file, int line, Exception::Type type,
const char* condition, const char* macroArgs);
Fault(const char* file, int line, int osErrorNumber,
const char* condition, const char* macroArgs);
#if _WIN32 || __CYGWIN__
Fault(const char* file, int line, Win32Result osErrorNumber,
const char* condition, const char* macroArgs);
#endif
~Fault() noexcept(false);
KJ_NOINLINE KJ_NORETURN(void fatal());
// Throw the exception.
private:
void init(const char* file, int line, Exception::Type type,
const char* condition, const char* macroArgs, ArrayPtr<String> argValues);
void init(const char* file, int line, int osErrorNumber,
const char* condition, const char* macroArgs, ArrayPtr<String> argValues);
#if _WIN32 || __CYGWIN__
void init(const char* file, int line, Win32Result osErrorNumber,
const char* condition, const char* macroArgs, ArrayPtr<String> argValues);
#endif
Exception* exception;
};
class SyscallResult {
public:
inline SyscallResult(int errorNumber): errorNumber(errorNumber) {}
inline operator void*() { return errorNumber == 0 ? this : nullptr; }
inline int getErrorNumber() { return errorNumber; }
private:
int errorNumber;
};
template <typename Call>
static SyscallResult syscall(Call&& call, bool nonblocking);
template <typename Call>
static int syscallError(Call&& call, bool nonblocking);
#if _WIN32 || __CYGWIN__
static Win32Result win32Call(int boolean);
static Win32Result win32Call(void* handle);
static Win32Result winsockCall(int result);
static uint getWin32ErrorCode();
#endif
class Context: public ExceptionCallback {
public:
Context();
KJ_DISALLOW_COPY(Context);
virtual ~Context() noexcept(false);
struct Value {
const char* file;
int line;
String description;
inline Value(const char* file, int line, String&& description)
: file(file), line(line), description(mv(description)) {}
};
virtual Value evaluate() = 0;
virtual void onRecoverableException(Exception&& exception) override;
virtual void onFatalException(Exception&& exception) override;
virtual void logMessage(LogSeverity severity, const char* file, int line, int contextDepth,
String&& text) override;
private:
bool logged;
Maybe<Value> value;
Value ensureInitialized();
};
template <typename Func>
class ContextImpl: public Context {
public:
inline ContextImpl(Func& func): func(func) {}
KJ_DISALLOW_COPY(ContextImpl);
Value evaluate() override {
return func();
}
private:
Func& func;
};
template <typename... Params>
static String makeDescription(const char* macroArgs, Params&&... params);
private:
static LogSeverity minSeverity;
static void logInternal(const char* file, int line, LogSeverity severity, const char* macroArgs,
ArrayPtr<String> argValues);
static String makeDescriptionInternal(const char* macroArgs, ArrayPtr<String> argValues);
static int getOsErrorNumber(bool nonblocking);
// Get the error code of the last error (e.g. from errno). Returns -1 on EINTR.
};
template <typename... Params>
void Debug::log(const char* file, int line, LogSeverity severity, const char* macroArgs,
Params&&... params) {
String argValues[sizeof...(Params)] = {str(params)...};
logInternal(file, line, severity, macroArgs, arrayPtr(argValues, sizeof...(Params)));
}
template <>
inline void Debug::log<>(const char* file, int line, LogSeverity severity, const char* macroArgs) {
logInternal(file, line, severity, macroArgs, nullptr);
}
template <typename Code, typename... Params>
Debug::Fault::Fault(const char* file, int line, Code code,
const char* condition, const char* macroArgs, Params&&... params)
: exception(nullptr) {
String argValues[sizeof...(Params)] = {str(params)...};
init(file, line, code, condition, macroArgs,
arrayPtr(argValues, sizeof...(Params)));
}
inline Debug::Fault::Fault(const char* file, int line, int osErrorNumber,
const char* condition, const char* macroArgs)
: exception(nullptr) {
init(file, line, osErrorNumber, condition, macroArgs, nullptr);
}
inline Debug::Fault::Fault(const char* file, int line, kj::Exception::Type type,
const char* condition, const char* macroArgs)
: exception(nullptr) {
init(file, line, type, condition, macroArgs, nullptr);
}
#if _WIN32 || __CYGWIN__
inline Debug::Fault::Fault(const char* file, int line, Win32Result osErrorNumber,
const char* condition, const char* macroArgs)
: exception(nullptr) {
init(file, line, osErrorNumber, condition, macroArgs, nullptr);
}
inline Debug::Win32Result Debug::win32Call(int boolean) {
return boolean ? Win32Result(0) : Win32Result(getWin32ErrorCode());
}
inline Debug::Win32Result Debug::win32Call(void* handle) {
// Assume null and INVALID_HANDLE_VALUE mean failure.
return win32Call(handle != nullptr && handle != (void*)-1);
}
inline Debug::Win32Result Debug::winsockCall(int result) {
// Expect a return value of SOCKET_ERROR means failure.
return win32Call(result != -1);
}
#endif
template <typename Call>
Debug::SyscallResult Debug::syscall(Call&& call, bool nonblocking) {
while (call() < 0) {
int errorNum = getOsErrorNumber(nonblocking);
// getOsErrorNumber() returns -1 to indicate EINTR.
// Also, if nonblocking is true, then it returns 0 on EAGAIN, which will then be treated as a
// non-error.
if (errorNum != -1) {
return SyscallResult(errorNum);
}
}
return SyscallResult(0);
}
template <typename Call>
int Debug::syscallError(Call&& call, bool nonblocking) {
while (call() < 0) {
int errorNum = getOsErrorNumber(nonblocking);
// getOsErrorNumber() returns -1 to indicate EINTR.
// Also, if nonblocking is true, then it returns 0 on EAGAIN, which will then be treated as a
// non-error.
if (errorNum != -1) {
return errorNum;
}
}
return 0;
}
template <typename... Params>
String Debug::makeDescription(const char* macroArgs, Params&&... params) {
String argValues[sizeof...(Params)] = {str(params)...};
return makeDescriptionInternal(macroArgs, arrayPtr(argValues, sizeof...(Params)));
}
template <>
inline String Debug::makeDescription<>(const char* macroArgs) {
return makeDescriptionInternal(macroArgs, nullptr);
}
// =======================================================================================
// Magic Asserts!
//
// When KJ_ASSERT(foo == bar) fails, `foo` and `bar`'s actual values will be stringified in the
// error message. How does it work? We use template magic and operator precedence. The assertion
// actually evaluates something like this:
//
// if (auto _kjCondition = kj::_::MAGIC_ASSERT << foo == bar)
//
// `<<` has operator precedence slightly above `==`, so `kj::_::MAGIC_ASSERT << foo` gets evaluated
// first. This wraps `foo` in a little wrapper that captures the comparison operators and keeps
// enough information around to be able to stringify the left and right sides of the comparison
// independently. As always, the stringification only actually occurs if the assert fails.
//
// You might ask why we use operator `<<` and not e.g. operator `<=`, since operators of the same
// precedence are evaluated left-to-right. The answer is that some compilers trigger all sorts of
// warnings when you seem to be using a comparison as the input to another comparison. The
// particular warning GCC produces is its general "-Wparentheses" warning which is broadly useful,
// so we don't want to disable it. `<<` also produces some warnings, but only on Clang and the
// specific warning is one we're comfortable disabling (see below). This does mean that we have to
// explicitly overload `operator<<` ourselves to make sure using it in an assert still works.
//
// You might also ask, if we're using operator `<<` anyway, why not start it from the right, in
// which case it would bind after computing any `<<` operators that were actually in the user's
// code? I tried this, but it resulted in a somewhat broader warning from clang that I felt worse
// about disabling (a warning about `<<` precedence not applying specifically to overloads) and
// also created ambiguous overload errors in the KJ units code.
#if __clang__
// We intentionally overload operator << for the specific purpose of evaluating it before
// evaluating comparison expressions, so stop Clang from warning about it. Unfortunately this means
// eliminating a warning that would otherwise be useful for people using iostreams... sorry.
#pragma GCC diagnostic ignored "-Woverloaded-shift-op-parentheses"
#endif
template <typename T>
struct DebugExpression;
template <typename T, typename = decltype(toCharSequence(instance<T&>()))>
inline auto tryToCharSequence(T* value) { return kj::toCharSequence(*value); }
inline StringPtr tryToCharSequence(...) { return "(can't stringify)"_kj; }
// SFINAE to stringify a value if and only if it can be stringified.
template <typename Left, typename Right>
struct DebugComparison {
Left left;
Right right;
StringPtr op;
bool result;
inline operator bool() const { return KJ_LIKELY(result); }
template <typename T> inline void operator&(T&& other) = delete;
template <typename T> inline void operator^(T&& other) = delete;
template <typename T> inline void operator|(T&& other) = delete;
};
template <typename Left, typename Right>
String KJ_STRINGIFY(DebugComparison<Left, Right>& cmp) {
return _::concat(tryToCharSequence(&cmp.left), cmp.op, tryToCharSequence(&cmp.right));
}
template <typename T>
struct DebugExpression {
DebugExpression(T&& value): value(kj::fwd<T>(value)) {}
T value;
// Handle comparison operations by constructing a DebugComparison value.
#define DEFINE_OPERATOR(OP) \
template <typename U> \
DebugComparison<T, U> operator OP(U&& other) { \
bool result = value OP other; \
return { kj::fwd<T>(value), kj::fwd<U>(other), " " #OP " "_kj, result }; \
}
DEFINE_OPERATOR(==);
DEFINE_OPERATOR(!=);
DEFINE_OPERATOR(<=);
DEFINE_OPERATOR(>=);
DEFINE_OPERATOR(< );
DEFINE_OPERATOR(> );
#undef DEFINE_OPERATOR
// Handle binary operators that have equal or lower precedence than comparisons by performing
// the operation and wrapping the result.
#define DEFINE_OPERATOR(OP) \
template <typename U> inline auto operator OP(U&& other) { \
return DebugExpression<decltype(kj::fwd<T>(value) OP kj::fwd<U>(other))>(\
kj::fwd<T>(value) OP kj::fwd<U>(other)); \
}
DEFINE_OPERATOR(<<);
DEFINE_OPERATOR(>>);
DEFINE_OPERATOR(&);
DEFINE_OPERATOR(^);
DEFINE_OPERATOR(|);
#undef DEFINE_OPERATOR
inline operator bool() {
// No comparison performed, we're just asserting the expression is truthy. This also covers
// the case of the logic operators && and || -- we cannot overload those because doing so would
// break short-circuiting behavior.
return value;
}
};
template <typename T>
StringPtr KJ_STRINGIFY(const DebugExpression<T>& exp) {
// Hack: This will only ever be called in cases where the expression's truthiness was asserted
// directly, and was determined to be falsy.
return "false"_kj;
}
struct DebugExpressionStart {
template <typename T>
DebugExpression<T> operator<<(T&& value) const {
return DebugExpression<T>(kj::fwd<T>(value));
}
};
static constexpr DebugExpressionStart MAGIC_ASSERT;
} // namespace _ (private)
} // namespace kj
KJ_END_HEADER