| // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors |
| // Licensed under the MIT License: |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| |
| #pragma once |
| |
| #include "common.h" |
| |
| KJ_BEGIN_HEADER |
| |
| namespace kj { |
| |
| template <typename T> |
| inline constexpr bool _kj_internal_isPolymorphic(T*) { |
| // If you get a compiler error here complaining that T is incomplete, it's because you are trying |
| // to use kj::Own<T> with a type that has only been forward-declared. Since KJ doesn't know if |
| // the type might be involved in inheritance (especially multiple inheritance), it doesn't know |
| // how to correctly call the disposer to destroy the type, since the object's true memory address |
| // may differ from the address used to point to a superclass. |
| // |
| // However, if you know for sure that T is NOT polymorphic (i.e. it doesn't have a vtable and |
| // isn't involved in inheritance), then you can use KJ_DECLARE_NON_POLYMORPHIC(T) to declare this |
| // to KJ without actually completing the type. Place this macro invocation either in the global |
| // scope, or in the same namespace as T is defined. |
| return __is_polymorphic(T); |
| } |
| |
| #define KJ_DECLARE_NON_POLYMORPHIC(...) \ |
| inline constexpr bool _kj_internal_isPolymorphic(__VA_ARGS__*) { \ |
| return false; \ |
| } |
| // If you want to use kj::Own<T> for an incomplete type T that you know is not polymorphic, then |
| // write `KJ_DECLARE_NON_POLYMORPHIC(T)` either at the global scope or in the same namespace as |
| // T is declared. |
| // |
| // This also works for templates, e.g.: |
| // |
| // template <typename X, typename Y> |
| // struct MyType; |
| // template <typename X, typename Y> |
| // KJ_DECLARE_NON_POLYMORPHIC(MyType<X, Y>) |
| |
| namespace _ { // private |
| |
| template <typename T> struct RefOrVoid_ { typedef T& Type; }; |
| template <> struct RefOrVoid_<void> { typedef void Type; }; |
| template <> struct RefOrVoid_<const void> { typedef void Type; }; |
| |
| template <typename T> |
| using RefOrVoid = typename RefOrVoid_<T>::Type; |
| // Evaluates to T&, unless T is `void`, in which case evaluates to `void`. |
| // |
| // This is a hack needed to avoid defining Own<void> as a totally separate class. |
| |
| template <typename T, bool isPolymorphic = _kj_internal_isPolymorphic((T*)nullptr)> |
| struct CastToVoid_; |
| |
| template <typename T> |
| struct CastToVoid_<T, false> { |
| static void* apply(T* ptr) { |
| return static_cast<void*>(ptr); |
| } |
| static const void* applyConst(T* ptr) { |
| const T* cptr = ptr; |
| return static_cast<const void*>(cptr); |
| } |
| }; |
| |
| template <typename T> |
| struct CastToVoid_<T, true> { |
| static void* apply(T* ptr) { |
| return dynamic_cast<void*>(ptr); |
| } |
| static const void* applyConst(T* ptr) { |
| const T* cptr = ptr; |
| return dynamic_cast<const void*>(cptr); |
| } |
| }; |
| |
| template <typename T> |
| void* castToVoid(T* ptr) { |
| return CastToVoid_<T>::apply(ptr); |
| } |
| |
| template <typename T> |
| const void* castToConstVoid(T* ptr) { |
| return CastToVoid_<T>::applyConst(ptr); |
| } |
| |
| } // namespace _ (private) |
| |
| // ======================================================================================= |
| // Disposer -- Implementation details. |
| |
| class Disposer { |
| // Abstract interface for a thing that "disposes" of objects, where "disposing" usually means |
| // calling the destructor followed by freeing the underlying memory. `Own<T>` encapsulates an |
| // object pointer with corresponding Disposer. |
| // |
| // Few developers will ever touch this interface. It is primarily useful for those implementing |
| // custom memory allocators. |
| |
| protected: |
| // Do not declare a destructor, as doing so will force a global initializer for each HeapDisposer |
| // instance. Eww! |
| |
| virtual void disposeImpl(void* pointer) const = 0; |
| // Disposes of the object, given a pointer to the beginning of the object. If the object is |
| // polymorphic, this pointer is determined by dynamic_cast<void*>(). For non-polymorphic types, |
| // Own<T> does not allow any casting, so the pointer exactly matches the original one given to |
| // Own<T>. |
| |
| public: |
| |
| template <typename T> |
| void dispose(T* object) const; |
| // Helper wrapper around disposeImpl(). |
| // |
| // If T is polymorphic, calls `disposeImpl(dynamic_cast<void*>(object))`, otherwise calls |
| // `disposeImpl(implicitCast<void*>(object))`. |
| // |
| // Callers must not call dispose() on the same pointer twice, even if the first call throws |
| // an exception. |
| |
| private: |
| template <typename T, bool polymorphic = _kj_internal_isPolymorphic((T*)nullptr)> |
| struct Dispose_; |
| }; |
| |
| template <typename T> |
| class DestructorOnlyDisposer: public Disposer { |
| // A disposer that merely calls the type's destructor and nothing else. |
| |
| public: |
| static const DestructorOnlyDisposer instance; |
| |
| void disposeImpl(void* pointer) const override { |
| reinterpret_cast<T*>(pointer)->~T(); |
| } |
| }; |
| |
| template <typename T> |
| const DestructorOnlyDisposer<T> DestructorOnlyDisposer<T>::instance = DestructorOnlyDisposer<T>(); |
| |
| class NullDisposer: public Disposer { |
| // A disposer that does nothing. |
| |
| public: |
| static const NullDisposer instance; |
| |
| void disposeImpl(void* pointer) const override {} |
| }; |
| |
| // ======================================================================================= |
| // Own<T> -- An owned pointer. |
| |
| template <typename T> |
| class Own { |
| // A transferrable title to a T. When an Own<T> goes out of scope, the object's Disposer is |
| // called to dispose of it. An Own<T> can be efficiently passed by move, without relocating the |
| // underlying object; this transfers ownership. |
| // |
| // This is much like std::unique_ptr, except: |
| // - You cannot release(). An owned object is not necessarily allocated with new (see next |
| // point), so it would be hard to use release() correctly. |
| // - The deleter is made polymorphic by virtual call rather than by template. This is much |
| // more powerful -- it allows the use of custom allocators, freelists, etc. This could |
| // _almost_ be accomplished with unique_ptr by forcing everyone to use something like |
| // std::unique_ptr<T, kj::Deleter>, except that things get hairy in the presence of multiple |
| // inheritance and upcasting, and anyway if you force everyone to use a custom deleter |
| // then you've lost any benefit to interoperating with the "standard" unique_ptr. |
| |
| public: |
| KJ_DISALLOW_COPY(Own); |
| inline Own(): disposer(nullptr), ptr(nullptr) {} |
| inline Own(Own&& other) noexcept |
| : disposer(other.disposer), ptr(other.ptr) { other.ptr = nullptr; } |
| inline Own(Own<RemoveConstOrDisable<T>>&& other) noexcept |
| : disposer(other.disposer), ptr(other.ptr) { other.ptr = nullptr; } |
| template <typename U, typename = EnableIf<canConvert<U*, T*>()>> |
| inline Own(Own<U>&& other) noexcept |
| : disposer(other.disposer), ptr(cast(other.ptr)) { |
| other.ptr = nullptr; |
| } |
| inline Own(T* ptr, const Disposer& disposer) noexcept: disposer(&disposer), ptr(ptr) {} |
| |
| ~Own() noexcept(false) { dispose(); } |
| |
| inline Own& operator=(Own&& other) { |
| // Move-assignnment operator. |
| |
| // Careful, this might own `other`. Therefore we have to transfer the pointers first, then |
| // dispose. |
| const Disposer* disposerCopy = disposer; |
| T* ptrCopy = ptr; |
| disposer = other.disposer; |
| ptr = other.ptr; |
| other.ptr = nullptr; |
| if (ptrCopy != nullptr) { |
| disposerCopy->dispose(const_cast<RemoveConst<T>*>(ptrCopy)); |
| } |
| return *this; |
| } |
| |
| inline Own& operator=(decltype(nullptr)) { |
| dispose(); |
| return *this; |
| } |
| |
| template <typename... Attachments> |
| Own<T> attach(Attachments&&... attachments) KJ_WARN_UNUSED_RESULT; |
| // Returns an Own<T> which points to the same object but which also ensures that all values |
| // passed to `attachments` remain alive until after this object is destroyed. Normally |
| // `attachments` are other Own<?>s pointing to objects that this one depends on. |
| // |
| // Note that attachments will eventually be destroyed in the order they are listed. Hence, |
| // foo.attach(bar, baz) is equivalent to (but more efficient than) foo.attach(bar).attach(baz). |
| |
| template <typename U> |
| Own<U> downcast() { |
| // Downcast the pointer to Own<U>, destroying the original pointer. If this pointer does not |
| // actually point at an instance of U, the results are undefined (throws an exception in debug |
| // mode if RTTI is enabled, otherwise you're on your own). |
| |
| Own<U> result; |
| if (ptr != nullptr) { |
| result.ptr = &kj::downcast<U>(*ptr); |
| result.disposer = disposer; |
| ptr = nullptr; |
| } |
| return result; |
| } |
| |
| #define NULLCHECK KJ_IREQUIRE(ptr != nullptr, "null Own<> dereference") |
| inline T* operator->() { NULLCHECK; return ptr; } |
| inline const T* operator->() const { NULLCHECK; return ptr; } |
| inline _::RefOrVoid<T> operator*() { NULLCHECK; return *ptr; } |
| inline _::RefOrVoid<const T> operator*() const { NULLCHECK; return *ptr; } |
| #undef NULLCHECK |
| inline T* get() { return ptr; } |
| inline const T* get() const { return ptr; } |
| inline operator T*() { return ptr; } |
| inline operator const T*() const { return ptr; } |
| |
| private: |
| const Disposer* disposer; // Only valid if ptr != nullptr. |
| T* ptr; |
| |
| inline explicit Own(decltype(nullptr)): disposer(nullptr), ptr(nullptr) {} |
| |
| inline bool operator==(decltype(nullptr)) { return ptr == nullptr; } |
| inline bool operator!=(decltype(nullptr)) { return ptr != nullptr; } |
| // Only called by Maybe<Own<T>>. |
| |
| inline void dispose() { |
| // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly |
| // dispose again. |
| T* ptrCopy = ptr; |
| if (ptrCopy != nullptr) { |
| ptr = nullptr; |
| disposer->dispose(const_cast<RemoveConst<T>*>(ptrCopy)); |
| } |
| } |
| |
| template <typename U> |
| static inline T* cast(U* ptr) { |
| static_assert(_kj_internal_isPolymorphic((T*)nullptr), |
| "Casting owned pointers requires that the target type is polymorphic."); |
| return ptr; |
| } |
| |
| template <typename U> |
| friend class Own; |
| friend class Maybe<Own<T>>; |
| }; |
| |
| template <> |
| template <typename U> |
| inline void* Own<void>::cast(U* ptr) { |
| return _::castToVoid(ptr); |
| } |
| |
| template <> |
| template <typename U> |
| inline const void* Own<const void>::cast(U* ptr) { |
| return _::castToConstVoid(ptr); |
| } |
| |
| namespace _ { // private |
| |
| template <typename T> |
| class OwnOwn { |
| public: |
| inline OwnOwn(Own<T>&& value) noexcept: value(kj::mv(value)) {} |
| |
| inline Own<T>& operator*() & { return value; } |
| inline const Own<T>& operator*() const & { return value; } |
| inline Own<T>&& operator*() && { return kj::mv(value); } |
| inline const Own<T>&& operator*() const && { return kj::mv(value); } |
| inline Own<T>* operator->() { return &value; } |
| inline const Own<T>* operator->() const { return &value; } |
| inline operator Own<T>*() { return value ? &value : nullptr; } |
| inline operator const Own<T>*() const { return value ? &value : nullptr; } |
| |
| private: |
| Own<T> value; |
| }; |
| |
| template <typename T> |
| OwnOwn<T> readMaybe(Maybe<Own<T>>&& maybe) { return OwnOwn<T>(kj::mv(maybe.ptr)); } |
| template <typename T> |
| Own<T>* readMaybe(Maybe<Own<T>>& maybe) { return maybe.ptr ? &maybe.ptr : nullptr; } |
| template <typename T> |
| const Own<T>* readMaybe(const Maybe<Own<T>>& maybe) { return maybe.ptr ? &maybe.ptr : nullptr; } |
| |
| } // namespace _ (private) |
| |
| template <typename T> |
| class Maybe<Own<T>> { |
| public: |
| inline Maybe(): ptr(nullptr) {} |
| inline Maybe(Own<T>&& t) noexcept: ptr(kj::mv(t)) {} |
| inline Maybe(Maybe&& other) noexcept: ptr(kj::mv(other.ptr)) {} |
| |
| template <typename U> |
| inline Maybe(Maybe<Own<U>>&& other): ptr(mv(other.ptr)) {} |
| template <typename U> |
| inline Maybe(Own<U>&& other): ptr(mv(other)) {} |
| |
| inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {} |
| |
| inline Own<T>& emplace(Own<T> value) { |
| // Assign the Maybe to the given value and return the content. This avoids the need to do a |
| // KJ_ASSERT_NONNULL() immediately after setting the Maybe just to read it back again. |
| ptr = kj::mv(value); |
| return ptr; |
| } |
| |
| inline operator Maybe<T&>() { return ptr.get(); } |
| inline operator Maybe<const T&>() const { return ptr.get(); } |
| |
| inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; } |
| |
| inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; } |
| inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; } |
| |
| Own<T>& orDefault(Own<T>& defaultValue) { |
| if (ptr == nullptr) { |
| return defaultValue; |
| } else { |
| return ptr; |
| } |
| } |
| const Own<T>& orDefault(const Own<T>& defaultValue) const { |
| if (ptr == nullptr) { |
| return defaultValue; |
| } else { |
| return ptr; |
| } |
| } |
| |
| template <typename Func> |
| auto map(Func&& f) & -> Maybe<decltype(f(instance<Own<T>&>()))> { |
| if (ptr == nullptr) { |
| return nullptr; |
| } else { |
| return f(ptr); |
| } |
| } |
| |
| template <typename Func> |
| auto map(Func&& f) const & -> Maybe<decltype(f(instance<const Own<T>&>()))> { |
| if (ptr == nullptr) { |
| return nullptr; |
| } else { |
| return f(ptr); |
| } |
| } |
| |
| template <typename Func> |
| auto map(Func&& f) && -> Maybe<decltype(f(instance<Own<T>&&>()))> { |
| if (ptr == nullptr) { |
| return nullptr; |
| } else { |
| return f(kj::mv(ptr)); |
| } |
| } |
| |
| template <typename Func> |
| auto map(Func&& f) const && -> Maybe<decltype(f(instance<const Own<T>&&>()))> { |
| if (ptr == nullptr) { |
| return nullptr; |
| } else { |
| return f(kj::mv(ptr)); |
| } |
| } |
| |
| private: |
| Own<T> ptr; |
| |
| template <typename U> |
| friend class Maybe; |
| template <typename U> |
| friend _::OwnOwn<U> _::readMaybe(Maybe<Own<U>>&& maybe); |
| template <typename U> |
| friend Own<U>* _::readMaybe(Maybe<Own<U>>& maybe); |
| template <typename U> |
| friend const Own<U>* _::readMaybe(const Maybe<Own<U>>& maybe); |
| }; |
| |
| namespace _ { // private |
| |
| template <typename T> |
| class HeapDisposer final: public Disposer { |
| public: |
| virtual void disposeImpl(void* pointer) const override { delete reinterpret_cast<T*>(pointer); } |
| |
| static const HeapDisposer instance; |
| }; |
| |
| #if _MSC_VER && _MSC_VER < 1920 && !defined(__clang__) |
| template <typename T> |
| __declspec(selectany) const HeapDisposer<T> HeapDisposer<T>::instance = HeapDisposer<T>(); |
| // On MSVC 2017 we suddenly started seeing a linker error on one specific specialization of |
| // `HeapDisposer::instance` when seemingly-unrelated code was modified. Explicitly specifying |
| // `__declspec(selectany)` seems to fix it. But why? Shouldn't template members have `selectany` |
| // behavior by default? We don't know. It works and we're moving on. |
| #else |
| template <typename T> |
| const HeapDisposer<T> HeapDisposer<T>::instance = HeapDisposer<T>(); |
| #endif |
| |
| } // namespace _ (private) |
| |
| template <typename T, typename... Params> |
| Own<T> heap(Params&&... params) { |
| // heap<T>(...) allocates a T on the heap, forwarding the parameters to its constructor. The |
| // exact heap implementation is unspecified -- for now it is operator new, but you should not |
| // assume this. (Since we know the object size at delete time, we could actually implement an |
| // allocator that is more efficient than operator new.) |
| |
| return Own<T>(new T(kj::fwd<Params>(params)...), _::HeapDisposer<T>::instance); |
| } |
| |
| template <typename T> |
| Own<Decay<T>> heap(T&& orig) { |
| // Allocate a copy (or move) of the argument on the heap. |
| // |
| // The purpose of this overload is to allow you to omit the template parameter as there is only |
| // one argument and the purpose is to copy it. |
| |
| typedef Decay<T> T2; |
| return Own<T2>(new T2(kj::fwd<T>(orig)), _::HeapDisposer<T2>::instance); |
| } |
| |
| template <typename T, typename... Attachments> |
| Own<Decay<T>> attachVal(T&& value, Attachments&&... attachments); |
| // Returns an Own<T> that takes ownership of `value` and `attachments`, and points to `value`. |
| // |
| // This is equivalent to heap(value).attach(attachments), but only does one allocation rather than |
| // two. |
| |
| template <typename T, typename... Attachments> |
| Own<T> attachRef(T& value, Attachments&&... attachments); |
| // Like attach() but `value` is not moved; the resulting Own<T> points to its existing location. |
| // This is preferred if `value` is already owned by one of `attachments`. |
| // |
| // This is equivalent to Own<T>(&value, kj::NullDisposer::instance).attach(attachments), but |
| // is easier to write and allocates slightly less memory. |
| |
| // ======================================================================================= |
| // SpaceFor<T> -- assists in manual allocation |
| |
| template <typename T> |
| class SpaceFor { |
| // A class which has the same size and alignment as T but does not call its constructor or |
| // destructor automatically. Instead, call construct() to construct a T in the space, which |
| // returns an Own<T> which will take care of calling T's destructor later. |
| |
| public: |
| inline SpaceFor() {} |
| inline ~SpaceFor() {} |
| |
| template <typename... Params> |
| Own<T> construct(Params&&... params) { |
| ctor(value, kj::fwd<Params>(params)...); |
| return Own<T>(&value, DestructorOnlyDisposer<T>::instance); |
| } |
| |
| private: |
| union { |
| T value; |
| }; |
| }; |
| |
| // ======================================================================================= |
| // Inline implementation details |
| |
| template <typename T> |
| struct Disposer::Dispose_<T, true> { |
| static void dispose(T* object, const Disposer& disposer) { |
| // Note that dynamic_cast<void*> does not require RTTI to be enabled, because the offset to |
| // the top of the object is in the vtable -- as it obviously needs to be to correctly implement |
| // operator delete. |
| disposer.disposeImpl(dynamic_cast<void*>(object)); |
| } |
| }; |
| template <typename T> |
| struct Disposer::Dispose_<T, false> { |
| static void dispose(T* object, const Disposer& disposer) { |
| disposer.disposeImpl(static_cast<void*>(object)); |
| } |
| }; |
| |
| template <typename T> |
| void Disposer::dispose(T* object) const { |
| Dispose_<T>::dispose(object, *this); |
| } |
| |
| namespace _ { // private |
| |
| template <typename... T> |
| struct OwnedBundle; |
| |
| template <> |
| struct OwnedBundle<> {}; |
| |
| template <typename First, typename... Rest> |
| struct OwnedBundle<First, Rest...>: public OwnedBundle<Rest...> { |
| OwnedBundle(First&& first, Rest&&... rest) |
| : OwnedBundle<Rest...>(kj::fwd<Rest>(rest)...), first(kj::fwd<First>(first)) {} |
| |
| // Note that it's intentional that `first` is destroyed before `rest`. This way, doing |
| // ptr.attach(foo, bar, baz) is equivalent to ptr.attach(foo).attach(bar).attach(baz) in terms |
| // of destruction order (although the former does fewer allocations). |
| Decay<First> first; |
| }; |
| |
| template <typename... T> |
| struct DisposableOwnedBundle final: public Disposer, public OwnedBundle<T...> { |
| DisposableOwnedBundle(T&&... values): OwnedBundle<T...>(kj::fwd<T>(values)...) {} |
| void disposeImpl(void* pointer) const override { delete this; } |
| }; |
| |
| } // namespace _ (private) |
| |
| template <typename T> |
| template <typename... Attachments> |
| Own<T> Own<T>::attach(Attachments&&... attachments) { |
| T* ptrCopy = ptr; |
| |
| KJ_IREQUIRE(ptrCopy != nullptr, "cannot attach to null pointer"); |
| |
| // HACK: If someone accidentally calls .attach() on a null pointer in opt mode, try our best to |
| // accomplish reasonable behavior: We turn the pointer non-null but still invalid, so that the |
| // disposer will still be called when the pointer goes out of scope. |
| if (ptrCopy == nullptr) ptrCopy = reinterpret_cast<T*>(1); |
| |
| auto bundle = new _::DisposableOwnedBundle<Own<T>, Attachments...>( |
| kj::mv(*this), kj::fwd<Attachments>(attachments)...); |
| return Own<T>(ptrCopy, *bundle); |
| } |
| |
| template <typename T, typename... Attachments> |
| Own<T> attachRef(T& value, Attachments&&... attachments) { |
| auto bundle = new _::DisposableOwnedBundle<Attachments...>(kj::fwd<Attachments>(attachments)...); |
| return Own<T>(&value, *bundle); |
| } |
| |
| template <typename T, typename... Attachments> |
| Own<Decay<T>> attachVal(T&& value, Attachments&&... attachments) { |
| auto bundle = new _::DisposableOwnedBundle<T, Attachments...>( |
| kj::fwd<T>(value), kj::fwd<Attachments>(attachments)...); |
| return Own<Decay<T>>(&bundle->first, *bundle); |
| } |
| |
| } // namespace kj |
| |
| KJ_END_HEADER |