blob: 1229b5c3ecfcd75de2380197b202d156de8cffd8 [file] [log] [blame]
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
#include "common.h"
KJ_BEGIN_HEADER
namespace kj {
template <typename T>
inline constexpr bool _kj_internal_isPolymorphic(T*) {
// If you get a compiler error here complaining that T is incomplete, it's because you are trying
// to use kj::Own<T> with a type that has only been forward-declared. Since KJ doesn't know if
// the type might be involved in inheritance (especially multiple inheritance), it doesn't know
// how to correctly call the disposer to destroy the type, since the object's true memory address
// may differ from the address used to point to a superclass.
//
// However, if you know for sure that T is NOT polymorphic (i.e. it doesn't have a vtable and
// isn't involved in inheritance), then you can use KJ_DECLARE_NON_POLYMORPHIC(T) to declare this
// to KJ without actually completing the type. Place this macro invocation either in the global
// scope, or in the same namespace as T is defined.
return __is_polymorphic(T);
}
#define KJ_DECLARE_NON_POLYMORPHIC(...) \
inline constexpr bool _kj_internal_isPolymorphic(__VA_ARGS__*) { \
return false; \
}
// If you want to use kj::Own<T> for an incomplete type T that you know is not polymorphic, then
// write `KJ_DECLARE_NON_POLYMORPHIC(T)` either at the global scope or in the same namespace as
// T is declared.
//
// This also works for templates, e.g.:
//
// template <typename X, typename Y>
// struct MyType;
// template <typename X, typename Y>
// KJ_DECLARE_NON_POLYMORPHIC(MyType<X, Y>)
namespace _ { // private
template <typename T> struct RefOrVoid_ { typedef T& Type; };
template <> struct RefOrVoid_<void> { typedef void Type; };
template <> struct RefOrVoid_<const void> { typedef void Type; };
template <typename T>
using RefOrVoid = typename RefOrVoid_<T>::Type;
// Evaluates to T&, unless T is `void`, in which case evaluates to `void`.
//
// This is a hack needed to avoid defining Own<void> as a totally separate class.
template <typename T, bool isPolymorphic = _kj_internal_isPolymorphic((T*)nullptr)>
struct CastToVoid_;
template <typename T>
struct CastToVoid_<T, false> {
static void* apply(T* ptr) {
return static_cast<void*>(ptr);
}
static const void* applyConst(T* ptr) {
const T* cptr = ptr;
return static_cast<const void*>(cptr);
}
};
template <typename T>
struct CastToVoid_<T, true> {
static void* apply(T* ptr) {
return dynamic_cast<void*>(ptr);
}
static const void* applyConst(T* ptr) {
const T* cptr = ptr;
return dynamic_cast<const void*>(cptr);
}
};
template <typename T>
void* castToVoid(T* ptr) {
return CastToVoid_<T>::apply(ptr);
}
template <typename T>
const void* castToConstVoid(T* ptr) {
return CastToVoid_<T>::applyConst(ptr);
}
} // namespace _ (private)
// =======================================================================================
// Disposer -- Implementation details.
class Disposer {
// Abstract interface for a thing that "disposes" of objects, where "disposing" usually means
// calling the destructor followed by freeing the underlying memory. `Own<T>` encapsulates an
// object pointer with corresponding Disposer.
//
// Few developers will ever touch this interface. It is primarily useful for those implementing
// custom memory allocators.
protected:
// Do not declare a destructor, as doing so will force a global initializer for each HeapDisposer
// instance. Eww!
virtual void disposeImpl(void* pointer) const = 0;
// Disposes of the object, given a pointer to the beginning of the object. If the object is
// polymorphic, this pointer is determined by dynamic_cast<void*>(). For non-polymorphic types,
// Own<T> does not allow any casting, so the pointer exactly matches the original one given to
// Own<T>.
public:
template <typename T>
void dispose(T* object) const;
// Helper wrapper around disposeImpl().
//
// If T is polymorphic, calls `disposeImpl(dynamic_cast<void*>(object))`, otherwise calls
// `disposeImpl(implicitCast<void*>(object))`.
//
// Callers must not call dispose() on the same pointer twice, even if the first call throws
// an exception.
private:
template <typename T, bool polymorphic = _kj_internal_isPolymorphic((T*)nullptr)>
struct Dispose_;
};
template <typename T>
class DestructorOnlyDisposer: public Disposer {
// A disposer that merely calls the type's destructor and nothing else.
public:
static const DestructorOnlyDisposer instance;
void disposeImpl(void* pointer) const override {
reinterpret_cast<T*>(pointer)->~T();
}
};
template <typename T>
const DestructorOnlyDisposer<T> DestructorOnlyDisposer<T>::instance = DestructorOnlyDisposer<T>();
class NullDisposer: public Disposer {
// A disposer that does nothing.
public:
static const NullDisposer instance;
void disposeImpl(void* pointer) const override {}
};
// =======================================================================================
// Own<T> -- An owned pointer.
template <typename T>
class Own {
// A transferrable title to a T. When an Own<T> goes out of scope, the object's Disposer is
// called to dispose of it. An Own<T> can be efficiently passed by move, without relocating the
// underlying object; this transfers ownership.
//
// This is much like std::unique_ptr, except:
// - You cannot release(). An owned object is not necessarily allocated with new (see next
// point), so it would be hard to use release() correctly.
// - The deleter is made polymorphic by virtual call rather than by template. This is much
// more powerful -- it allows the use of custom allocators, freelists, etc. This could
// _almost_ be accomplished with unique_ptr by forcing everyone to use something like
// std::unique_ptr<T, kj::Deleter>, except that things get hairy in the presence of multiple
// inheritance and upcasting, and anyway if you force everyone to use a custom deleter
// then you've lost any benefit to interoperating with the "standard" unique_ptr.
public:
KJ_DISALLOW_COPY(Own);
inline Own(): disposer(nullptr), ptr(nullptr) {}
inline Own(Own&& other) noexcept
: disposer(other.disposer), ptr(other.ptr) { other.ptr = nullptr; }
inline Own(Own<RemoveConstOrDisable<T>>&& other) noexcept
: disposer(other.disposer), ptr(other.ptr) { other.ptr = nullptr; }
template <typename U, typename = EnableIf<canConvert<U*, T*>()>>
inline Own(Own<U>&& other) noexcept
: disposer(other.disposer), ptr(cast(other.ptr)) {
other.ptr = nullptr;
}
inline Own(T* ptr, const Disposer& disposer) noexcept: disposer(&disposer), ptr(ptr) {}
~Own() noexcept(false) { dispose(); }
inline Own& operator=(Own&& other) {
// Move-assignnment operator.
// Careful, this might own `other`. Therefore we have to transfer the pointers first, then
// dispose.
const Disposer* disposerCopy = disposer;
T* ptrCopy = ptr;
disposer = other.disposer;
ptr = other.ptr;
other.ptr = nullptr;
if (ptrCopy != nullptr) {
disposerCopy->dispose(const_cast<RemoveConst<T>*>(ptrCopy));
}
return *this;
}
inline Own& operator=(decltype(nullptr)) {
dispose();
return *this;
}
template <typename... Attachments>
Own<T> attach(Attachments&&... attachments) KJ_WARN_UNUSED_RESULT;
// Returns an Own<T> which points to the same object but which also ensures that all values
// passed to `attachments` remain alive until after this object is destroyed. Normally
// `attachments` are other Own<?>s pointing to objects that this one depends on.
//
// Note that attachments will eventually be destroyed in the order they are listed. Hence,
// foo.attach(bar, baz) is equivalent to (but more efficient than) foo.attach(bar).attach(baz).
template <typename U>
Own<U> downcast() {
// Downcast the pointer to Own<U>, destroying the original pointer. If this pointer does not
// actually point at an instance of U, the results are undefined (throws an exception in debug
// mode if RTTI is enabled, otherwise you're on your own).
Own<U> result;
if (ptr != nullptr) {
result.ptr = &kj::downcast<U>(*ptr);
result.disposer = disposer;
ptr = nullptr;
}
return result;
}
#define NULLCHECK KJ_IREQUIRE(ptr != nullptr, "null Own<> dereference")
inline T* operator->() { NULLCHECK; return ptr; }
inline const T* operator->() const { NULLCHECK; return ptr; }
inline _::RefOrVoid<T> operator*() { NULLCHECK; return *ptr; }
inline _::RefOrVoid<const T> operator*() const { NULLCHECK; return *ptr; }
#undef NULLCHECK
inline T* get() { return ptr; }
inline const T* get() const { return ptr; }
inline operator T*() { return ptr; }
inline operator const T*() const { return ptr; }
private:
const Disposer* disposer; // Only valid if ptr != nullptr.
T* ptr;
inline explicit Own(decltype(nullptr)): disposer(nullptr), ptr(nullptr) {}
inline bool operator==(decltype(nullptr)) { return ptr == nullptr; }
inline bool operator!=(decltype(nullptr)) { return ptr != nullptr; }
// Only called by Maybe<Own<T>>.
inline void dispose() {
// Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
// dispose again.
T* ptrCopy = ptr;
if (ptrCopy != nullptr) {
ptr = nullptr;
disposer->dispose(const_cast<RemoveConst<T>*>(ptrCopy));
}
}
template <typename U>
static inline T* cast(U* ptr) {
static_assert(_kj_internal_isPolymorphic((T*)nullptr),
"Casting owned pointers requires that the target type is polymorphic.");
return ptr;
}
template <typename U>
friend class Own;
friend class Maybe<Own<T>>;
};
template <>
template <typename U>
inline void* Own<void>::cast(U* ptr) {
return _::castToVoid(ptr);
}
template <>
template <typename U>
inline const void* Own<const void>::cast(U* ptr) {
return _::castToConstVoid(ptr);
}
namespace _ { // private
template <typename T>
class OwnOwn {
public:
inline OwnOwn(Own<T>&& value) noexcept: value(kj::mv(value)) {}
inline Own<T>& operator*() & { return value; }
inline const Own<T>& operator*() const & { return value; }
inline Own<T>&& operator*() && { return kj::mv(value); }
inline const Own<T>&& operator*() const && { return kj::mv(value); }
inline Own<T>* operator->() { return &value; }
inline const Own<T>* operator->() const { return &value; }
inline operator Own<T>*() { return value ? &value : nullptr; }
inline operator const Own<T>*() const { return value ? &value : nullptr; }
private:
Own<T> value;
};
template <typename T>
OwnOwn<T> readMaybe(Maybe<Own<T>>&& maybe) { return OwnOwn<T>(kj::mv(maybe.ptr)); }
template <typename T>
Own<T>* readMaybe(Maybe<Own<T>>& maybe) { return maybe.ptr ? &maybe.ptr : nullptr; }
template <typename T>
const Own<T>* readMaybe(const Maybe<Own<T>>& maybe) { return maybe.ptr ? &maybe.ptr : nullptr; }
} // namespace _ (private)
template <typename T>
class Maybe<Own<T>> {
public:
inline Maybe(): ptr(nullptr) {}
inline Maybe(Own<T>&& t) noexcept: ptr(kj::mv(t)) {}
inline Maybe(Maybe&& other) noexcept: ptr(kj::mv(other.ptr)) {}
template <typename U>
inline Maybe(Maybe<Own<U>>&& other): ptr(mv(other.ptr)) {}
template <typename U>
inline Maybe(Own<U>&& other): ptr(mv(other)) {}
inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
inline Own<T>& emplace(Own<T> value) {
// Assign the Maybe to the given value and return the content. This avoids the need to do a
// KJ_ASSERT_NONNULL() immediately after setting the Maybe just to read it back again.
ptr = kj::mv(value);
return ptr;
}
inline operator Maybe<T&>() { return ptr.get(); }
inline operator Maybe<const T&>() const { return ptr.get(); }
inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; }
inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
Own<T>& orDefault(Own<T>& defaultValue) {
if (ptr == nullptr) {
return defaultValue;
} else {
return ptr;
}
}
const Own<T>& orDefault(const Own<T>& defaultValue) const {
if (ptr == nullptr) {
return defaultValue;
} else {
return ptr;
}
}
template <typename Func>
auto map(Func&& f) & -> Maybe<decltype(f(instance<Own<T>&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
return f(ptr);
}
}
template <typename Func>
auto map(Func&& f) const & -> Maybe<decltype(f(instance<const Own<T>&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
return f(ptr);
}
}
template <typename Func>
auto map(Func&& f) && -> Maybe<decltype(f(instance<Own<T>&&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
return f(kj::mv(ptr));
}
}
template <typename Func>
auto map(Func&& f) const && -> Maybe<decltype(f(instance<const Own<T>&&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
return f(kj::mv(ptr));
}
}
private:
Own<T> ptr;
template <typename U>
friend class Maybe;
template <typename U>
friend _::OwnOwn<U> _::readMaybe(Maybe<Own<U>>&& maybe);
template <typename U>
friend Own<U>* _::readMaybe(Maybe<Own<U>>& maybe);
template <typename U>
friend const Own<U>* _::readMaybe(const Maybe<Own<U>>& maybe);
};
namespace _ { // private
template <typename T>
class HeapDisposer final: public Disposer {
public:
virtual void disposeImpl(void* pointer) const override { delete reinterpret_cast<T*>(pointer); }
static const HeapDisposer instance;
};
#if _MSC_VER && _MSC_VER < 1920 && !defined(__clang__)
template <typename T>
__declspec(selectany) const HeapDisposer<T> HeapDisposer<T>::instance = HeapDisposer<T>();
// On MSVC 2017 we suddenly started seeing a linker error on one specific specialization of
// `HeapDisposer::instance` when seemingly-unrelated code was modified. Explicitly specifying
// `__declspec(selectany)` seems to fix it. But why? Shouldn't template members have `selectany`
// behavior by default? We don't know. It works and we're moving on.
#else
template <typename T>
const HeapDisposer<T> HeapDisposer<T>::instance = HeapDisposer<T>();
#endif
} // namespace _ (private)
template <typename T, typename... Params>
Own<T> heap(Params&&... params) {
// heap<T>(...) allocates a T on the heap, forwarding the parameters to its constructor. The
// exact heap implementation is unspecified -- for now it is operator new, but you should not
// assume this. (Since we know the object size at delete time, we could actually implement an
// allocator that is more efficient than operator new.)
return Own<T>(new T(kj::fwd<Params>(params)...), _::HeapDisposer<T>::instance);
}
template <typename T>
Own<Decay<T>> heap(T&& orig) {
// Allocate a copy (or move) of the argument on the heap.
//
// The purpose of this overload is to allow you to omit the template parameter as there is only
// one argument and the purpose is to copy it.
typedef Decay<T> T2;
return Own<T2>(new T2(kj::fwd<T>(orig)), _::HeapDisposer<T2>::instance);
}
template <typename T, typename... Attachments>
Own<Decay<T>> attachVal(T&& value, Attachments&&... attachments);
// Returns an Own<T> that takes ownership of `value` and `attachments`, and points to `value`.
//
// This is equivalent to heap(value).attach(attachments), but only does one allocation rather than
// two.
template <typename T, typename... Attachments>
Own<T> attachRef(T& value, Attachments&&... attachments);
// Like attach() but `value` is not moved; the resulting Own<T> points to its existing location.
// This is preferred if `value` is already owned by one of `attachments`.
//
// This is equivalent to Own<T>(&value, kj::NullDisposer::instance).attach(attachments), but
// is easier to write and allocates slightly less memory.
// =======================================================================================
// SpaceFor<T> -- assists in manual allocation
template <typename T>
class SpaceFor {
// A class which has the same size and alignment as T but does not call its constructor or
// destructor automatically. Instead, call construct() to construct a T in the space, which
// returns an Own<T> which will take care of calling T's destructor later.
public:
inline SpaceFor() {}
inline ~SpaceFor() {}
template <typename... Params>
Own<T> construct(Params&&... params) {
ctor(value, kj::fwd<Params>(params)...);
return Own<T>(&value, DestructorOnlyDisposer<T>::instance);
}
private:
union {
T value;
};
};
// =======================================================================================
// Inline implementation details
template <typename T>
struct Disposer::Dispose_<T, true> {
static void dispose(T* object, const Disposer& disposer) {
// Note that dynamic_cast<void*> does not require RTTI to be enabled, because the offset to
// the top of the object is in the vtable -- as it obviously needs to be to correctly implement
// operator delete.
disposer.disposeImpl(dynamic_cast<void*>(object));
}
};
template <typename T>
struct Disposer::Dispose_<T, false> {
static void dispose(T* object, const Disposer& disposer) {
disposer.disposeImpl(static_cast<void*>(object));
}
};
template <typename T>
void Disposer::dispose(T* object) const {
Dispose_<T>::dispose(object, *this);
}
namespace _ { // private
template <typename... T>
struct OwnedBundle;
template <>
struct OwnedBundle<> {};
template <typename First, typename... Rest>
struct OwnedBundle<First, Rest...>: public OwnedBundle<Rest...> {
OwnedBundle(First&& first, Rest&&... rest)
: OwnedBundle<Rest...>(kj::fwd<Rest>(rest)...), first(kj::fwd<First>(first)) {}
// Note that it's intentional that `first` is destroyed before `rest`. This way, doing
// ptr.attach(foo, bar, baz) is equivalent to ptr.attach(foo).attach(bar).attach(baz) in terms
// of destruction order (although the former does fewer allocations).
Decay<First> first;
};
template <typename... T>
struct DisposableOwnedBundle final: public Disposer, public OwnedBundle<T...> {
DisposableOwnedBundle(T&&... values): OwnedBundle<T...>(kj::fwd<T>(values)...) {}
void disposeImpl(void* pointer) const override { delete this; }
};
} // namespace _ (private)
template <typename T>
template <typename... Attachments>
Own<T> Own<T>::attach(Attachments&&... attachments) {
T* ptrCopy = ptr;
KJ_IREQUIRE(ptrCopy != nullptr, "cannot attach to null pointer");
// HACK: If someone accidentally calls .attach() on a null pointer in opt mode, try our best to
// accomplish reasonable behavior: We turn the pointer non-null but still invalid, so that the
// disposer will still be called when the pointer goes out of scope.
if (ptrCopy == nullptr) ptrCopy = reinterpret_cast<T*>(1);
auto bundle = new _::DisposableOwnedBundle<Own<T>, Attachments...>(
kj::mv(*this), kj::fwd<Attachments>(attachments)...);
return Own<T>(ptrCopy, *bundle);
}
template <typename T, typename... Attachments>
Own<T> attachRef(T& value, Attachments&&... attachments) {
auto bundle = new _::DisposableOwnedBundle<Attachments...>(kj::fwd<Attachments>(attachments)...);
return Own<T>(&value, *bundle);
}
template <typename T, typename... Attachments>
Own<Decay<T>> attachVal(T&& value, Attachments&&... attachments) {
auto bundle = new _::DisposableOwnedBundle<T, Attachments...>(
kj::fwd<T>(value), kj::fwd<Attachments>(attachments)...);
return Own<Decay<T>>(&bundle->first, *bundle);
}
} // namespace kj
KJ_END_HEADER