blob: 51fd6dc79b869ccd7c3617d9fc1872ded2e7bf47 [file] [log] [blame]
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
#include "memory.h"
#if _MSC_VER
#if _MSC_VER < 1910
#include <intrin.h>
#else
#include <intrin0.h>
#endif
#endif
KJ_BEGIN_HEADER
namespace kj {
// =======================================================================================
// Non-atomic (thread-unsafe) refcounting
class Refcounted: private Disposer {
// Subclass this to create a class that contains a reference count. Then, use
// `kj::refcounted<T>()` to allocate a new refcounted pointer.
//
// Do NOT use this lightly. Refcounting is a crutch. Good designs should strive to make object
// ownership clear, so that refcounting is not necessary. All that said, reference counting can
// sometimes simplify code that would otherwise become convoluted with explicit ownership, even
// when ownership relationships are clear at an abstract level.
//
// NOT THREADSAFE: This refcounting implementation assumes that an object's references are
// manipulated only in one thread, because atomic (thread-safe) refcounting is surprisingly slow.
//
// In general, abstract classes should _not_ subclass this. The concrete class at the bottom
// of the hierarchy should be the one to decide how it implements refcounting. Interfaces should
// expose only an `addRef()` method that returns `Own<InterfaceType>`. There are two reasons for
// this rule:
// 1. Interfaces would need to virtually inherit Refcounted, otherwise two refcounted interfaces
// could not be inherited by the same subclass. Virtual inheritance is awkward and
// inefficient.
// 2. An implementation may decide that it would rather return a copy than a refcount, or use
// some other strategy.
//
// TODO(cleanup): Rethink above. Virtual inheritance is not necessarily that bad. OTOH, a
// virtual function call for every refcount is sad in its own way. A Ref<T> type to replace
// Own<T> could also be nice.
public:
Refcounted() = default;
virtual ~Refcounted() noexcept(false);
KJ_DISALLOW_COPY(Refcounted);
inline bool isShared() const { return refcount > 1; }
// Check if there are multiple references to this object. This is sometimes useful for deciding
// whether it's safe to modify the object vs. make a copy.
private:
mutable uint refcount = 0;
// "mutable" because disposeImpl() is const. Bleh.
void disposeImpl(void* pointer) const override;
template <typename T>
static Own<T> addRefInternal(T* object);
template <typename T>
friend Own<T> addRef(T& object);
template <typename T, typename... Params>
friend Own<T> refcounted(Params&&... params);
};
template <typename T, typename... Params>
inline Own<T> refcounted(Params&&... params) {
// Allocate a new refcounted instance of T, passing `params` to its constructor. Returns an
// initial reference to the object. More references can be created with `kj::addRef()`.
return Refcounted::addRefInternal(new T(kj::fwd<Params>(params)...));
}
template <typename T>
Own<T> addRef(T& object) {
// Return a new reference to `object`, which must subclass Refcounted and have been allocated
// using `kj::refcounted<>()`. It is suggested that subclasses implement a non-static addRef()
// method which wraps this and returns the appropriate type.
KJ_IREQUIRE(object.Refcounted::refcount > 0, "Object not allocated with kj::refcounted().");
return Refcounted::addRefInternal(&object);
}
template <typename T>
Own<T> Refcounted::addRefInternal(T* object) {
Refcounted* refcounted = object;
++refcounted->refcount;
return Own<T>(object, *refcounted);
}
// =======================================================================================
// Atomic (thread-safe) refcounting
//
// Warning: Atomic ops are SLOW.
#if _MSC_VER && !defined(__clang__)
#if _M_ARM
#define KJ_MSVC_INTERLOCKED(OP, MEM) _Interlocked##OP##_##MEM
#else
#define KJ_MSVC_INTERLOCKED(OP, MEM) _Interlocked##OP
#endif
#endif
class AtomicRefcounted: private kj::Disposer {
public:
AtomicRefcounted() = default;
virtual ~AtomicRefcounted() noexcept(false);
KJ_DISALLOW_COPY(AtomicRefcounted);
inline bool isShared() const {
#if _MSC_VER && !defined(__clang__)
return KJ_MSVC_INTERLOCKED(Or, acq)(&refcount, 0) > 1;
#else
return __atomic_load_n(&refcount, __ATOMIC_ACQUIRE) > 1;
#endif
}
private:
#if _MSC_VER && !defined(__clang__)
mutable volatile long refcount = 0;
#else
mutable volatile uint refcount = 0;
#endif
bool addRefWeakInternal() const;
void disposeImpl(void* pointer) const override;
template <typename T>
static kj::Own<T> addRefInternal(T* object);
template <typename T>
static kj::Own<const T> addRefInternal(const T* object);
template <typename T>
friend kj::Own<T> atomicAddRef(T& object);
template <typename T>
friend kj::Own<const T> atomicAddRef(const T& object);
template <typename T>
friend kj::Maybe<kj::Own<const T>> atomicAddRefWeak(const T& object);
template <typename T, typename... Params>
friend kj::Own<T> atomicRefcounted(Params&&... params);
};
template <typename T, typename... Params>
inline kj::Own<T> atomicRefcounted(Params&&... params) {
return AtomicRefcounted::addRefInternal(new T(kj::fwd<Params>(params)...));
}
template <typename T>
kj::Own<T> atomicAddRef(T& object) {
KJ_IREQUIRE(object.AtomicRefcounted::refcount > 0,
"Object not allocated with kj::atomicRefcounted().");
return AtomicRefcounted::addRefInternal(&object);
}
template <typename T>
kj::Own<const T> atomicAddRef(const T& object) {
KJ_IREQUIRE(object.AtomicRefcounted::refcount > 0,
"Object not allocated with kj::atomicRefcounted().");
return AtomicRefcounted::addRefInternal(&object);
}
template <typename T>
kj::Maybe<kj::Own<const T>> atomicAddRefWeak(const T& object) {
// Try to addref an object whose refcount could have already reached zero in another thread, and
// whose destructor could therefore already have started executing. The destructor must contain
// some synchronization that guarantees that said destructor has not yet completed when
// attomicAddRefWeak() is called (so that the object is still valid). Since the destructor cannot
// be canceled once it has started, in the case that it has already started, this function
// returns nullptr.
const AtomicRefcounted* refcounted = &object;
if (refcounted->addRefWeakInternal()) {
return kj::Own<const T>(&object, *refcounted);
} else {
return nullptr;
}
}
template <typename T>
kj::Own<T> AtomicRefcounted::addRefInternal(T* object) {
AtomicRefcounted* refcounted = object;
#if _MSC_VER && !defined(__clang__)
KJ_MSVC_INTERLOCKED(Increment, nf)(&refcounted->refcount);
#else
__atomic_add_fetch(&refcounted->refcount, 1, __ATOMIC_RELAXED);
#endif
return kj::Own<T>(object, *refcounted);
}
template <typename T>
kj::Own<const T> AtomicRefcounted::addRefInternal(const T* object) {
const AtomicRefcounted* refcounted = object;
#if _MSC_VER && !defined(__clang__)
KJ_MSVC_INTERLOCKED(Increment, nf)(&refcounted->refcount);
#else
__atomic_add_fetch(&refcounted->refcount, 1, __ATOMIC_RELAXED);
#endif
return kj::Own<const T>(object, *refcounted);
}
} // namespace kj
KJ_END_HEADER