| // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors |
| // Licensed under the MIT License: |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| |
| #pragma once |
| |
| #include <initializer_list> |
| #include "array.h" |
| #include <string.h> |
| |
| KJ_BEGIN_HEADER |
| |
| namespace kj { |
| class StringPtr; |
| class String; |
| |
| class StringTree; // string-tree.h |
| } |
| |
| constexpr kj::StringPtr operator "" _kj(const char* str, size_t n); |
| // You can append _kj to a string literal to make its type be StringPtr. There are a few cases |
| // where you must do this for correctness: |
| // - When you want to declare a constexpr StringPtr. Without _kj, this is a compile error. |
| // - When you want to initialize a static/global StringPtr from a string literal without forcing |
| // global constructor code to run at dynamic initialization time. |
| // - When you have a string literal that contains NUL characters. Without _kj, the string will |
| // be considered to end at the first NUL. |
| // - When you want to initialize an ArrayPtr<const char> from a string literal, without including |
| // the NUL terminator in the data. (Initializing an ArrayPtr from a regular string literal is |
| // a compile error specifically due to this ambiguity.) |
| // |
| // In other cases, there should be no difference between initializing a StringPtr from a regular |
| // string literal vs. one with _kj (assuming the compiler is able to optimize away strlen() on a |
| // string literal). |
| |
| namespace kj { |
| |
| // Our STL string SFINAE trick does not work with GCC 4.7, but it works with Clang and GCC 4.8, so |
| // we'll just preprocess it out if not supported. |
| #if __clang__ || __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) || _MSC_VER |
| #define KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP 1 |
| #endif |
| |
| // ======================================================================================= |
| // StringPtr -- A NUL-terminated ArrayPtr<const char> containing UTF-8 text. |
| // |
| // NUL bytes are allowed to appear before the end of the string. The only requirement is that |
| // a NUL byte appear immediately after the last byte of the content. This terminator byte is not |
| // counted in the string's size. |
| |
| class StringPtr { |
| public: |
| inline StringPtr(): content("", 1) {} |
| inline StringPtr(decltype(nullptr)): content("", 1) {} |
| inline StringPtr(const char* value KJ_LIFETIMEBOUND): content(value, strlen(value) + 1) {} |
| inline StringPtr(const char* value KJ_LIFETIMEBOUND, size_t size): content(value, size + 1) { |
| KJ_IREQUIRE(value[size] == '\0', "StringPtr must be NUL-terminated."); |
| } |
| inline StringPtr(const char* begin KJ_LIFETIMEBOUND, const char* end KJ_LIFETIMEBOUND): StringPtr(begin, end - begin) {} |
| inline StringPtr(String&& value KJ_LIFETIMEBOUND) : StringPtr(value) {} |
| inline StringPtr(const String& value KJ_LIFETIMEBOUND); |
| StringPtr& operator=(String&& value) = delete; |
| inline StringPtr& operator=(decltype(nullptr)) { |
| content = ArrayPtr<const char>("", 1); |
| return *this; |
| } |
| |
| #if __cpp_char8_t |
| inline StringPtr(const char8_t* value KJ_LIFETIMEBOUND): StringPtr(reinterpret_cast<const char*>(value)) {} |
| inline StringPtr(const char8_t* value KJ_LIFETIMEBOUND, size_t size) |
| : StringPtr(reinterpret_cast<const char*>(value), size) {} |
| inline StringPtr(const char8_t* begin KJ_LIFETIMEBOUND, const char8_t* end KJ_LIFETIMEBOUND) |
| : StringPtr(reinterpret_cast<const char*>(begin), reinterpret_cast<const char*>(end)) {} |
| // KJ strings are and always have been UTF-8, so screw this C++20 char8_t stuff. |
| #endif |
| |
| #if KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP |
| template <typename T, typename = decltype(instance<T>().c_str())> |
| inline StringPtr(const T& t KJ_LIFETIMEBOUND): StringPtr(t.c_str()) {} |
| // Allow implicit conversion from any class that has a c_str() method (namely, std::string). |
| // We use a template trick to detect std::string in order to avoid including the header for |
| // those who don't want it. |
| |
| template <typename T, typename = decltype(instance<T>().c_str())> |
| inline operator T() const { return cStr(); } |
| // Allow implicit conversion to any class that has a c_str() method (namely, std::string). |
| // We use a template trick to detect std::string in order to avoid including the header for |
| // those who don't want it. |
| #endif |
| |
| inline constexpr operator ArrayPtr<const char>() const; |
| inline constexpr ArrayPtr<const char> asArray() const; |
| inline ArrayPtr<const byte> asBytes() const { return asArray().asBytes(); } |
| // Result does not include NUL terminator. |
| |
| inline const char* cStr() const { return content.begin(); } |
| // Returns NUL-terminated string. |
| |
| inline size_t size() const { return content.size() - 1; } |
| // Result does not include NUL terminator. |
| |
| inline char operator[](size_t index) const { return content[index]; } |
| |
| inline constexpr const char* begin() const { return content.begin(); } |
| inline constexpr const char* end() const { return content.end() - 1; } |
| |
| inline constexpr bool operator==(decltype(nullptr)) const { return content.size() <= 1; } |
| inline constexpr bool operator!=(decltype(nullptr)) const { return content.size() > 1; } |
| |
| inline bool operator==(const StringPtr& other) const; |
| inline bool operator!=(const StringPtr& other) const { return !(*this == other); } |
| inline bool operator< (const StringPtr& other) const; |
| inline bool operator> (const StringPtr& other) const { return other < *this; } |
| inline bool operator<=(const StringPtr& other) const { return !(other < *this); } |
| inline bool operator>=(const StringPtr& other) const { return !(*this < other); } |
| |
| inline StringPtr slice(size_t start) const; |
| inline ArrayPtr<const char> slice(size_t start, size_t end) const; |
| // A string slice is only NUL-terminated if it is a suffix, so slice() has a one-parameter |
| // version that assumes end = size(). |
| |
| inline bool startsWith(const StringPtr& other) const; |
| inline bool endsWith(const StringPtr& other) const; |
| |
| inline Maybe<size_t> findFirst(char c) const; |
| inline Maybe<size_t> findLast(char c) const; |
| |
| template <typename T> |
| T parseAs() const; |
| // Parse string as template number type. |
| // Integer numbers prefixed by "0x" and "0X" are parsed in base 16 (like strtoi with base 0). |
| // Integer numbers prefixed by "0" are parsed in base 10 (unlike strtoi with base 0). |
| // Overflowed integer numbers throw exception. |
| // Overflowed floating numbers return inf. |
| |
| private: |
| inline explicit constexpr StringPtr(ArrayPtr<const char> content): content(content) {} |
| |
| ArrayPtr<const char> content; |
| |
| friend constexpr kj::StringPtr (::operator "" _kj)(const char* str, size_t n); |
| friend class SourceLocation; |
| }; |
| |
| #if !__cpp_impl_three_way_comparison |
| inline bool operator==(const char* a, const StringPtr& b) { return b == a; } |
| inline bool operator!=(const char* a, const StringPtr& b) { return b != a; } |
| #endif |
| |
| template <> char StringPtr::parseAs<char>() const; |
| template <> signed char StringPtr::parseAs<signed char>() const; |
| template <> unsigned char StringPtr::parseAs<unsigned char>() const; |
| template <> short StringPtr::parseAs<short>() const; |
| template <> unsigned short StringPtr::parseAs<unsigned short>() const; |
| template <> int StringPtr::parseAs<int>() const; |
| template <> unsigned StringPtr::parseAs<unsigned>() const; |
| template <> long StringPtr::parseAs<long>() const; |
| template <> unsigned long StringPtr::parseAs<unsigned long>() const; |
| template <> long long StringPtr::parseAs<long long>() const; |
| template <> unsigned long long StringPtr::parseAs<unsigned long long>() const; |
| template <> float StringPtr::parseAs<float>() const; |
| template <> double StringPtr::parseAs<double>() const; |
| |
| // ======================================================================================= |
| // String -- A NUL-terminated Array<char> containing UTF-8 text. |
| // |
| // NUL bytes are allowed to appear before the end of the string. The only requirement is that |
| // a NUL byte appear immediately after the last byte of the content. This terminator byte is not |
| // counted in the string's size. |
| // |
| // To allocate a String, you must call kj::heapString(). We do not implement implicit copying to |
| // the heap because this hides potential inefficiency from the developer. |
| |
| class String { |
| public: |
| String() = default; |
| inline String(decltype(nullptr)): content(nullptr) {} |
| inline String(char* value, size_t size, const ArrayDisposer& disposer); |
| // Does not copy. `size` does not include NUL terminator, but `value` must be NUL-terminated. |
| inline explicit String(Array<char> buffer); |
| // Does not copy. Requires `buffer` ends with `\0`. |
| |
| inline operator ArrayPtr<char>() KJ_LIFETIMEBOUND; |
| inline operator ArrayPtr<const char>() const KJ_LIFETIMEBOUND; |
| inline ArrayPtr<char> asArray() KJ_LIFETIMEBOUND; |
| inline ArrayPtr<const char> asArray() const KJ_LIFETIMEBOUND; |
| inline ArrayPtr<byte> asBytes() KJ_LIFETIMEBOUND { return asArray().asBytes(); } |
| inline ArrayPtr<const byte> asBytes() const KJ_LIFETIMEBOUND { return asArray().asBytes(); } |
| // Result does not include NUL terminator. |
| |
| inline StringPtr asPtr() const KJ_LIFETIMEBOUND { |
| // Convenience operator to return a StringPtr. |
| return StringPtr{*this}; |
| } |
| |
| inline Array<char> releaseArray() { return kj::mv(content); } |
| // Disowns the backing array (which includes the NUL terminator) and returns it. The String value |
| // is clobbered (as if moved away). |
| |
| inline const char* cStr() const KJ_LIFETIMEBOUND; |
| |
| inline size_t size() const; |
| // Result does not include NUL terminator. |
| |
| inline char operator[](size_t index) const; |
| inline char& operator[](size_t index) KJ_LIFETIMEBOUND; |
| |
| inline char* begin() KJ_LIFETIMEBOUND; |
| inline char* end() KJ_LIFETIMEBOUND; |
| inline const char* begin() const KJ_LIFETIMEBOUND; |
| inline const char* end() const KJ_LIFETIMEBOUND; |
| |
| inline bool operator==(decltype(nullptr)) const { return content.size() <= 1; } |
| inline bool operator!=(decltype(nullptr)) const { return content.size() > 1; } |
| |
| inline bool operator==(const StringPtr& other) const { return StringPtr(*this) == other; } |
| inline bool operator!=(const StringPtr& other) const { return StringPtr(*this) != other; } |
| inline bool operator< (const StringPtr& other) const { return StringPtr(*this) < other; } |
| inline bool operator> (const StringPtr& other) const { return StringPtr(*this) > other; } |
| inline bool operator<=(const StringPtr& other) const { return StringPtr(*this) <= other; } |
| inline bool operator>=(const StringPtr& other) const { return StringPtr(*this) >= other; } |
| |
| inline bool operator==(const String& other) const { return StringPtr(*this) == StringPtr(other); } |
| inline bool operator!=(const String& other) const { return StringPtr(*this) != StringPtr(other); } |
| inline bool operator< (const String& other) const { return StringPtr(*this) < StringPtr(other); } |
| inline bool operator> (const String& other) const { return StringPtr(*this) > StringPtr(other); } |
| inline bool operator<=(const String& other) const { return StringPtr(*this) <= StringPtr(other); } |
| inline bool operator>=(const String& other) const { return StringPtr(*this) >= StringPtr(other); } |
| // Note that if we don't overload for `const String&` specifically, then C++20 will decide that |
| // comparisons between two strings are ambiguous. (Clang turns this into a warning, |
| // -Wambiguous-reversed-operator, due to the stupidity...) |
| |
| inline bool startsWith(const StringPtr& other) const { return StringPtr(*this).startsWith(other);} |
| inline bool endsWith(const StringPtr& other) const { return StringPtr(*this).endsWith(other); } |
| |
| inline StringPtr slice(size_t start) const KJ_LIFETIMEBOUND { |
| return StringPtr(*this).slice(start); |
| } |
| inline ArrayPtr<const char> slice(size_t start, size_t end) const KJ_LIFETIMEBOUND { |
| return StringPtr(*this).slice(start, end); |
| } |
| |
| inline Maybe<size_t> findFirst(char c) const { return StringPtr(*this).findFirst(c); } |
| inline Maybe<size_t> findLast(char c) const { return StringPtr(*this).findLast(c); } |
| |
| template <typename T> |
| T parseAs() const { return StringPtr(*this).parseAs<T>(); } |
| // Parse as number |
| |
| private: |
| Array<char> content; |
| }; |
| |
| #if !__cpp_impl_three_way_comparison |
| inline bool operator==(const char* a, const String& b) { return b == a; } |
| inline bool operator!=(const char* a, const String& b) { return b != a; } |
| #endif |
| |
| String heapString(size_t size); |
| // Allocate a String of the given size on the heap, not including NUL terminator. The NUL |
| // terminator will be initialized automatically but the rest of the content is not initialized. |
| |
| String heapString(const char* value); |
| String heapString(const char* value, size_t size); |
| String heapString(StringPtr value); |
| String heapString(const String& value); |
| String heapString(ArrayPtr<const char> value); |
| // Allocates a copy of the given value on the heap. |
| |
| // ======================================================================================= |
| // Magic str() function which transforms parameters to text and concatenates them into one big |
| // String. |
| |
| namespace _ { // private |
| |
| inline size_t sum(std::initializer_list<size_t> nums) { |
| size_t result = 0; |
| for (auto num: nums) { |
| result += num; |
| } |
| return result; |
| } |
| |
| inline char* fill(char* ptr) { return ptr; } |
| inline char* fillLimited(char* ptr, char* limit) { return ptr; } |
| |
| template <typename... Rest> |
| char* fill(char* __restrict__ target, const StringTree& first, Rest&&... rest); |
| template <typename... Rest> |
| char* fillLimited(char* __restrict__ target, char* limit, const StringTree& first, Rest&&... rest); |
| // Make str() work with stringifiers that return StringTree by patching fill(). |
| // |
| // Defined in string-tree.h. |
| |
| template <typename First, typename... Rest> |
| char* fill(char* __restrict__ target, const First& first, Rest&&... rest) { |
| auto i = first.begin(); |
| auto end = first.end(); |
| while (i != end) { |
| *target++ = *i++; |
| } |
| return fill(target, kj::fwd<Rest>(rest)...); |
| } |
| |
| template <typename... Params> |
| String concat(Params&&... params) { |
| // Concatenate a bunch of containers into a single Array. The containers can be anything that |
| // is iterable and whose elements can be converted to `char`. |
| |
| String result = heapString(sum({params.size()...})); |
| fill(result.begin(), kj::fwd<Params>(params)...); |
| return result; |
| } |
| |
| inline String concat(String&& arr) { |
| return kj::mv(arr); |
| } |
| |
| template <typename First, typename... Rest> |
| char* fillLimited(char* __restrict__ target, char* limit, const First& first, Rest&&... rest) { |
| auto i = first.begin(); |
| auto end = first.end(); |
| while (i != end) { |
| if (target == limit) return target; |
| *target++ = *i++; |
| } |
| return fillLimited(target, limit, kj::fwd<Rest>(rest)...); |
| } |
| |
| template <typename T> |
| class Delimited; |
| // Delimits a sequence of type T with a string delimiter. Implements kj::delimited(). |
| |
| template <typename T, typename... Rest> |
| char* fill(char* __restrict__ target, Delimited<T>&& first, Rest&&... rest); |
| template <typename T, typename... Rest> |
| char* fillLimited(char* __restrict__ target, char* limit, Delimited<T>&& first,Rest&&... rest); |
| template <typename T, typename... Rest> |
| char* fill(char* __restrict__ target, Delimited<T>& first, Rest&&... rest); |
| template <typename T, typename... Rest> |
| char* fillLimited(char* __restrict__ target, char* limit, Delimited<T>& first,Rest&&... rest); |
| // As with StringTree, we special-case Delimited<T>. |
| |
| struct Stringifier { |
| // This is a dummy type with only one instance: STR (below). To make an arbitrary type |
| // stringifiable, define `operator*(Stringifier, T)` to return an iterable container of `char`. |
| // The container type must have a `size()` method. Be sure to declare the operator in the same |
| // namespace as `T` **or** in the global scope. |
| // |
| // A more usual way to accomplish what we're doing here would be to require that you define |
| // a function like `toString(T)` and then rely on argument-dependent lookup. However, this has |
| // the problem that it pollutes other people's namespaces and even the global namespace. For |
| // example, some other project may already have functions called `toString` which do something |
| // different. Declaring `operator*` with `Stringifier` as the left operand cannot conflict with |
| // anything. |
| |
| inline ArrayPtr<const char> operator*(ArrayPtr<const char> s) const { return s; } |
| inline ArrayPtr<const char> operator*(ArrayPtr<char> s) const { return s; } |
| inline ArrayPtr<const char> operator*(const Array<const char>& s) const KJ_LIFETIMEBOUND { |
| return s; |
| } |
| inline ArrayPtr<const char> operator*(const Array<char>& s) const KJ_LIFETIMEBOUND { return s; } |
| template<size_t n> |
| inline ArrayPtr<const char> operator*(const CappedArray<char, n>& s) const KJ_LIFETIMEBOUND { |
| return s; |
| } |
| template<size_t n> |
| inline ArrayPtr<const char> operator*(const FixedArray<char, n>& s) const KJ_LIFETIMEBOUND { |
| return s; |
| } |
| inline ArrayPtr<const char> operator*(const char* s) const KJ_LIFETIMEBOUND { |
| return arrayPtr(s, strlen(s)); |
| } |
| #if __cpp_char8_t |
| inline ArrayPtr<const char> operator*(const char8_t* s) const KJ_LIFETIMEBOUND { |
| return operator*(reinterpret_cast<const char*>(s)); |
| } |
| #endif |
| inline ArrayPtr<const char> operator*(const String& s) const KJ_LIFETIMEBOUND { |
| return s.asArray(); |
| } |
| inline ArrayPtr<const char> operator*(const StringPtr& s) const { return s.asArray(); } |
| |
| inline Range<char> operator*(const Range<char>& r) const { return r; } |
| inline Repeat<char> operator*(const Repeat<char>& r) const { return r; } |
| |
| inline FixedArray<char, 1> operator*(char c) const { |
| FixedArray<char, 1> result; |
| result[0] = c; |
| return result; |
| } |
| |
| StringPtr operator*(decltype(nullptr)) const; |
| StringPtr operator*(bool b) const; |
| |
| CappedArray<char, 5> operator*(signed char i) const; |
| CappedArray<char, 5> operator*(unsigned char i) const; |
| CappedArray<char, sizeof(short) * 3 + 2> operator*(short i) const; |
| CappedArray<char, sizeof(unsigned short) * 3 + 2> operator*(unsigned short i) const; |
| CappedArray<char, sizeof(int) * 3 + 2> operator*(int i) const; |
| CappedArray<char, sizeof(unsigned int) * 3 + 2> operator*(unsigned int i) const; |
| CappedArray<char, sizeof(long) * 3 + 2> operator*(long i) const; |
| CappedArray<char, sizeof(unsigned long) * 3 + 2> operator*(unsigned long i) const; |
| CappedArray<char, sizeof(long long) * 3 + 2> operator*(long long i) const; |
| CappedArray<char, sizeof(unsigned long long) * 3 + 2> operator*(unsigned long long i) const; |
| CappedArray<char, 24> operator*(float f) const; |
| CappedArray<char, 32> operator*(double f) const; |
| CappedArray<char, sizeof(const void*) * 2 + 1> operator*(const void* s) const; |
| |
| #if KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP // supports expression SFINAE? |
| template <typename T, typename Result = decltype(instance<T>().toString())> |
| inline Result operator*(T&& value) const { return kj::fwd<T>(value).toString(); } |
| #endif |
| }; |
| static KJ_CONSTEXPR(const) Stringifier STR = Stringifier(); |
| |
| } // namespace _ (private) |
| |
| template <typename T> |
| auto toCharSequence(T&& value) -> decltype(_::STR * kj::fwd<T>(value)) { |
| // Returns an iterable of chars that represent a textual representation of the value, suitable |
| // for debugging. |
| // |
| // Most users should use str() instead, but toCharSequence() may occasionally be useful to avoid |
| // heap allocation overhead that str() implies. |
| // |
| // To specialize this function for your type, see KJ_STRINGIFY. |
| |
| return _::STR * kj::fwd<T>(value); |
| } |
| |
| CappedArray<char, sizeof(unsigned char) * 2 + 1> hex(unsigned char i); |
| CappedArray<char, sizeof(unsigned short) * 2 + 1> hex(unsigned short i); |
| CappedArray<char, sizeof(unsigned int) * 2 + 1> hex(unsigned int i); |
| CappedArray<char, sizeof(unsigned long) * 2 + 1> hex(unsigned long i); |
| CappedArray<char, sizeof(unsigned long long) * 2 + 1> hex(unsigned long long i); |
| |
| template <typename... Params> |
| String str(Params&&... params) { |
| // Magic function which builds a string from a bunch of arbitrary values. Example: |
| // str(1, " / ", 2, " = ", 0.5) |
| // returns: |
| // "1 / 2 = 0.5" |
| // To teach `str` how to stringify a type, see `Stringifier`. |
| |
| return _::concat(toCharSequence(kj::fwd<Params>(params))...); |
| } |
| |
| inline String str(String&& s) { return mv(s); } |
| // Overload to prevent redundant allocation. |
| |
| template <typename T> |
| _::Delimited<T> delimited(T&& arr, kj::StringPtr delim); |
| // Use to stringify an array. |
| |
| template <typename T> |
| String strArray(T&& arr, const char* delim) { |
| size_t delimLen = strlen(delim); |
| KJ_STACK_ARRAY(decltype(_::STR * arr[0]), pieces, kj::size(arr), 8, 32); |
| size_t size = 0; |
| for (size_t i = 0; i < kj::size(arr); i++) { |
| if (i > 0) size += delimLen; |
| pieces[i] = _::STR * arr[i]; |
| size += pieces[i].size(); |
| } |
| |
| String result = heapString(size); |
| char* pos = result.begin(); |
| for (size_t i = 0; i < kj::size(arr); i++) { |
| if (i > 0) { |
| memcpy(pos, delim, delimLen); |
| pos += delimLen; |
| } |
| pos = _::fill(pos, pieces[i]); |
| } |
| return result; |
| } |
| |
| template <typename... Params> |
| StringPtr strPreallocated(ArrayPtr<char> buffer, Params&&... params) { |
| // Like str() but writes into a preallocated buffer. If the buffer is not long enough, the result |
| // is truncated (but still NUL-terminated). |
| // |
| // This can be used like: |
| // |
| // char buffer[256]; |
| // StringPtr text = strPreallocated(buffer, params...); |
| // |
| // This is useful for optimization. It can also potentially be used safely in async signal |
| // handlers. HOWEVER, to use in an async signal handler, all of the stringifiers for the inputs |
| // must also be signal-safe. KJ guarantees signal safety when stringifying any built-in integer |
| // type (but NOT floating-points), basic char/byte sequences (ArrayPtr<byte>, String, etc.), as |
| // well as Array<T> as long as T can also be stringified safely. To safely stringify a delimited |
| // array, you must use kj::delimited(arr, delim) rather than the deprecated |
| // kj::strArray(arr, delim). |
| |
| char* end = _::fillLimited(buffer.begin(), buffer.end() - 1, |
| toCharSequence(kj::fwd<Params>(params))...); |
| *end = '\0'; |
| return StringPtr(buffer.begin(), end); |
| } |
| |
| template <typename T, typename = decltype(toCharSequence(kj::instance<T&>()))> |
| inline _::Delimited<ArrayPtr<T>> operator*(const _::Stringifier&, ArrayPtr<T> arr) { |
| return _::Delimited<ArrayPtr<T>>(arr, ", "); |
| } |
| |
| template <typename T, typename = decltype(toCharSequence(kj::instance<const T&>()))> |
| inline _::Delimited<ArrayPtr<const T>> operator*(const _::Stringifier&, const Array<T>& arr) { |
| return _::Delimited<ArrayPtr<const T>>(arr, ", "); |
| } |
| |
| #define KJ_STRINGIFY(...) operator*(::kj::_::Stringifier, __VA_ARGS__) |
| // Defines a stringifier for a custom type. Example: |
| // |
| // class Foo {...}; |
| // inline StringPtr KJ_STRINGIFY(const Foo& foo) { return foo.name(); } |
| // // or perhaps |
| // inline String KJ_STRINGIFY(const Foo& foo) { return kj::str(foo.fld1(), ",", foo.fld2()); } |
| // |
| // This allows Foo to be passed to str(). |
| // |
| // The function should be declared either in the same namespace as the target type or in the global |
| // namespace. It can return any type which is an iterable container of chars. |
| |
| // ======================================================================================= |
| // Inline implementation details. |
| |
| inline StringPtr::StringPtr(const String& value): content(value.cStr(), value.size() + 1) {} |
| |
| inline constexpr StringPtr::operator ArrayPtr<const char>() const { |
| return ArrayPtr<const char>(content.begin(), content.size() - 1); |
| } |
| |
| inline constexpr ArrayPtr<const char> StringPtr::asArray() const { |
| return ArrayPtr<const char>(content.begin(), content.size() - 1); |
| } |
| |
| inline bool StringPtr::operator==(const StringPtr& other) const { |
| return content.size() == other.content.size() && |
| memcmp(content.begin(), other.content.begin(), content.size() - 1) == 0; |
| } |
| |
| inline bool StringPtr::operator<(const StringPtr& other) const { |
| bool shorter = content.size() < other.content.size(); |
| int cmp = memcmp(content.begin(), other.content.begin(), |
| shorter ? content.size() : other.content.size()); |
| return cmp < 0 || (cmp == 0 && shorter); |
| } |
| |
| inline StringPtr StringPtr::slice(size_t start) const { |
| return StringPtr(content.slice(start, content.size())); |
| } |
| inline ArrayPtr<const char> StringPtr::slice(size_t start, size_t end) const { |
| return content.slice(start, end); |
| } |
| |
| inline bool StringPtr::startsWith(const StringPtr& other) const { |
| return other.content.size() <= content.size() && |
| memcmp(content.begin(), other.content.begin(), other.size()) == 0; |
| } |
| inline bool StringPtr::endsWith(const StringPtr& other) const { |
| return other.content.size() <= content.size() && |
| memcmp(end() - other.size(), other.content.begin(), other.size()) == 0; |
| } |
| |
| inline Maybe<size_t> StringPtr::findFirst(char c) const { |
| const char* pos = reinterpret_cast<const char*>(memchr(content.begin(), c, size())); |
| if (pos == nullptr) { |
| return nullptr; |
| } else { |
| return pos - content.begin(); |
| } |
| } |
| |
| inline Maybe<size_t> StringPtr::findLast(char c) const { |
| for (size_t i = size(); i > 0; --i) { |
| if (content[i-1] == c) { |
| return i-1; |
| } |
| } |
| return nullptr; |
| } |
| |
| inline String::operator ArrayPtr<char>() { |
| return content == nullptr ? ArrayPtr<char>(nullptr) : content.slice(0, content.size() - 1); |
| } |
| inline String::operator ArrayPtr<const char>() const { |
| return content == nullptr ? ArrayPtr<const char>(nullptr) : content.slice(0, content.size() - 1); |
| } |
| |
| inline ArrayPtr<char> String::asArray() { |
| return content == nullptr ? ArrayPtr<char>(nullptr) : content.slice(0, content.size() - 1); |
| } |
| inline ArrayPtr<const char> String::asArray() const { |
| return content == nullptr ? ArrayPtr<const char>(nullptr) : content.slice(0, content.size() - 1); |
| } |
| |
| inline const char* String::cStr() const { return content == nullptr ? "" : content.begin(); } |
| |
| inline size_t String::size() const { return content == nullptr ? 0 : content.size() - 1; } |
| |
| inline char String::operator[](size_t index) const { return content[index]; } |
| inline char& String::operator[](size_t index) { return content[index]; } |
| |
| inline char* String::begin() { return content == nullptr ? nullptr : content.begin(); } |
| inline char* String::end() { return content == nullptr ? nullptr : content.end() - 1; } |
| inline const char* String::begin() const { return content == nullptr ? nullptr : content.begin(); } |
| inline const char* String::end() const { return content == nullptr ? nullptr : content.end() - 1; } |
| |
| inline String::String(char* value, size_t size, const ArrayDisposer& disposer) |
| : content(value, size + 1, disposer) { |
| KJ_IREQUIRE(value[size] == '\0', "String must be NUL-terminated."); |
| } |
| |
| inline String::String(Array<char> buffer): content(kj::mv(buffer)) { |
| KJ_IREQUIRE(content.size() > 0 && content.back() == '\0', "String must be NUL-terminated."); |
| } |
| |
| inline String heapString(const char* value) { |
| return heapString(value, strlen(value)); |
| } |
| inline String heapString(StringPtr value) { |
| return heapString(value.begin(), value.size()); |
| } |
| inline String heapString(const String& value) { |
| return heapString(value.begin(), value.size()); |
| } |
| inline String heapString(ArrayPtr<const char> value) { |
| return heapString(value.begin(), value.size()); |
| } |
| |
| namespace _ { // private |
| |
| template <typename T> |
| class Delimited { |
| public: |
| Delimited(T array, kj::StringPtr delimiter) |
| : array(kj::fwd<T>(array)), delimiter(delimiter) {} |
| |
| // TODO(someday): In theory we should support iteration as a character sequence, but the iterator |
| // will be pretty complicated. |
| |
| size_t size() { |
| ensureStringifiedInitialized(); |
| |
| size_t result = 0; |
| bool first = true; |
| for (auto& e: stringified) { |
| if (first) { |
| first = false; |
| } else { |
| result += delimiter.size(); |
| } |
| result += e.size(); |
| } |
| return result; |
| } |
| |
| char* flattenTo(char* __restrict__ target) { |
| ensureStringifiedInitialized(); |
| |
| bool first = true; |
| for (auto& elem: stringified) { |
| if (first) { |
| first = false; |
| } else { |
| target = fill(target, delimiter); |
| } |
| target = fill(target, elem); |
| } |
| return target; |
| } |
| |
| char* flattenTo(char* __restrict__ target, char* limit) { |
| // This is called in the strPreallocated(). We want to avoid allocation. size() will not have |
| // been called in this case, so hopefully `stringified` is still uninitialized. We will |
| // stringify each item and immediately use it. |
| bool first = true; |
| for (auto&& elem: array) { |
| if (target == limit) return target; |
| if (first) { |
| first = false; |
| } else { |
| target = fillLimited(target, limit, delimiter); |
| } |
| target = fillLimited(target, limit, kj::toCharSequence(elem)); |
| } |
| return target; |
| } |
| |
| private: |
| typedef decltype(toCharSequence(*instance<T>().begin())) StringifiedItem; |
| T array; |
| kj::StringPtr delimiter; |
| Array<StringifiedItem> stringified; |
| |
| void ensureStringifiedInitialized() { |
| if (array.size() > 0 && stringified.size() == 0) { |
| stringified = KJ_MAP(e, array) { return toCharSequence(e); }; |
| } |
| } |
| }; |
| |
| template <typename T, typename... Rest> |
| char* fill(char* __restrict__ target, Delimited<T>&& first, Rest&&... rest) { |
| target = first.flattenTo(target); |
| return fill(target, kj::fwd<Rest>(rest)...); |
| } |
| template <typename T, typename... Rest> |
| char* fillLimited(char* __restrict__ target, char* limit, Delimited<T>&& first, Rest&&... rest) { |
| target = first.flattenTo(target, limit); |
| return fillLimited(target, limit, kj::fwd<Rest>(rest)...); |
| } |
| template <typename T, typename... Rest> |
| char* fill(char* __restrict__ target, Delimited<T>& first, Rest&&... rest) { |
| target = first.flattenTo(target); |
| return fill(target, kj::fwd<Rest>(rest)...); |
| } |
| template <typename T, typename... Rest> |
| char* fillLimited(char* __restrict__ target, char* limit, Delimited<T>& first, Rest&&... rest) { |
| target = first.flattenTo(target, limit); |
| return fillLimited(target, limit, kj::fwd<Rest>(rest)...); |
| } |
| |
| template <typename T> |
| inline Delimited<T>&& KJ_STRINGIFY(Delimited<T>&& delimited) { return kj::mv(delimited); } |
| template <typename T> |
| inline const Delimited<T>& KJ_STRINGIFY(const Delimited<T>& delimited) { return delimited; } |
| |
| } // namespace _ (private) |
| |
| template <typename T> |
| _::Delimited<T> delimited(T&& arr, kj::StringPtr delim) { |
| return _::Delimited<T>(kj::fwd<T>(arr), delim); |
| } |
| |
| } // namespace kj |
| |
| constexpr kj::StringPtr operator "" _kj(const char* str, size_t n) { |
| return kj::StringPtr(kj::ArrayPtr<const char>(str, n + 1)); |
| }; |
| |
| KJ_END_HEADER |