blob: 193442aad06760b3ad3ba7956ff65079f25e00a4 [file] [log] [blame]
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
#include <initializer_list>
#include "array.h"
#include <string.h>
KJ_BEGIN_HEADER
namespace kj {
class StringPtr;
class String;
class StringTree; // string-tree.h
}
constexpr kj::StringPtr operator "" _kj(const char* str, size_t n);
// You can append _kj to a string literal to make its type be StringPtr. There are a few cases
// where you must do this for correctness:
// - When you want to declare a constexpr StringPtr. Without _kj, this is a compile error.
// - When you want to initialize a static/global StringPtr from a string literal without forcing
// global constructor code to run at dynamic initialization time.
// - When you have a string literal that contains NUL characters. Without _kj, the string will
// be considered to end at the first NUL.
// - When you want to initialize an ArrayPtr<const char> from a string literal, without including
// the NUL terminator in the data. (Initializing an ArrayPtr from a regular string literal is
// a compile error specifically due to this ambiguity.)
//
// In other cases, there should be no difference between initializing a StringPtr from a regular
// string literal vs. one with _kj (assuming the compiler is able to optimize away strlen() on a
// string literal).
namespace kj {
// Our STL string SFINAE trick does not work with GCC 4.7, but it works with Clang and GCC 4.8, so
// we'll just preprocess it out if not supported.
#if __clang__ || __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) || _MSC_VER
#define KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP 1
#endif
// =======================================================================================
// StringPtr -- A NUL-terminated ArrayPtr<const char> containing UTF-8 text.
//
// NUL bytes are allowed to appear before the end of the string. The only requirement is that
// a NUL byte appear immediately after the last byte of the content. This terminator byte is not
// counted in the string's size.
class StringPtr {
public:
inline StringPtr(): content("", 1) {}
inline StringPtr(decltype(nullptr)): content("", 1) {}
inline StringPtr(const char* value KJ_LIFETIMEBOUND): content(value, strlen(value) + 1) {}
inline StringPtr(const char* value KJ_LIFETIMEBOUND, size_t size): content(value, size + 1) {
KJ_IREQUIRE(value[size] == '\0', "StringPtr must be NUL-terminated.");
}
inline StringPtr(const char* begin KJ_LIFETIMEBOUND, const char* end KJ_LIFETIMEBOUND): StringPtr(begin, end - begin) {}
inline StringPtr(String&& value KJ_LIFETIMEBOUND) : StringPtr(value) {}
inline StringPtr(const String& value KJ_LIFETIMEBOUND);
StringPtr& operator=(String&& value) = delete;
inline StringPtr& operator=(decltype(nullptr)) {
content = ArrayPtr<const char>("", 1);
return *this;
}
#if __cpp_char8_t
inline StringPtr(const char8_t* value KJ_LIFETIMEBOUND): StringPtr(reinterpret_cast<const char*>(value)) {}
inline StringPtr(const char8_t* value KJ_LIFETIMEBOUND, size_t size)
: StringPtr(reinterpret_cast<const char*>(value), size) {}
inline StringPtr(const char8_t* begin KJ_LIFETIMEBOUND, const char8_t* end KJ_LIFETIMEBOUND)
: StringPtr(reinterpret_cast<const char*>(begin), reinterpret_cast<const char*>(end)) {}
// KJ strings are and always have been UTF-8, so screw this C++20 char8_t stuff.
#endif
#if KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP
template <typename T, typename = decltype(instance<T>().c_str())>
inline StringPtr(const T& t KJ_LIFETIMEBOUND): StringPtr(t.c_str()) {}
// Allow implicit conversion from any class that has a c_str() method (namely, std::string).
// We use a template trick to detect std::string in order to avoid including the header for
// those who don't want it.
template <typename T, typename = decltype(instance<T>().c_str())>
inline operator T() const { return cStr(); }
// Allow implicit conversion to any class that has a c_str() method (namely, std::string).
// We use a template trick to detect std::string in order to avoid including the header for
// those who don't want it.
#endif
inline constexpr operator ArrayPtr<const char>() const;
inline constexpr ArrayPtr<const char> asArray() const;
inline ArrayPtr<const byte> asBytes() const { return asArray().asBytes(); }
// Result does not include NUL terminator.
inline const char* cStr() const { return content.begin(); }
// Returns NUL-terminated string.
inline size_t size() const { return content.size() - 1; }
// Result does not include NUL terminator.
inline char operator[](size_t index) const { return content[index]; }
inline constexpr const char* begin() const { return content.begin(); }
inline constexpr const char* end() const { return content.end() - 1; }
inline constexpr bool operator==(decltype(nullptr)) const { return content.size() <= 1; }
inline constexpr bool operator!=(decltype(nullptr)) const { return content.size() > 1; }
inline bool operator==(const StringPtr& other) const;
inline bool operator!=(const StringPtr& other) const { return !(*this == other); }
inline bool operator< (const StringPtr& other) const;
inline bool operator> (const StringPtr& other) const { return other < *this; }
inline bool operator<=(const StringPtr& other) const { return !(other < *this); }
inline bool operator>=(const StringPtr& other) const { return !(*this < other); }
inline StringPtr slice(size_t start) const;
inline ArrayPtr<const char> slice(size_t start, size_t end) const;
// A string slice is only NUL-terminated if it is a suffix, so slice() has a one-parameter
// version that assumes end = size().
inline bool startsWith(const StringPtr& other) const;
inline bool endsWith(const StringPtr& other) const;
inline Maybe<size_t> findFirst(char c) const;
inline Maybe<size_t> findLast(char c) const;
template <typename T>
T parseAs() const;
// Parse string as template number type.
// Integer numbers prefixed by "0x" and "0X" are parsed in base 16 (like strtoi with base 0).
// Integer numbers prefixed by "0" are parsed in base 10 (unlike strtoi with base 0).
// Overflowed integer numbers throw exception.
// Overflowed floating numbers return inf.
private:
inline explicit constexpr StringPtr(ArrayPtr<const char> content): content(content) {}
ArrayPtr<const char> content;
friend constexpr kj::StringPtr (::operator "" _kj)(const char* str, size_t n);
friend class SourceLocation;
};
#if !__cpp_impl_three_way_comparison
inline bool operator==(const char* a, const StringPtr& b) { return b == a; }
inline bool operator!=(const char* a, const StringPtr& b) { return b != a; }
#endif
template <> char StringPtr::parseAs<char>() const;
template <> signed char StringPtr::parseAs<signed char>() const;
template <> unsigned char StringPtr::parseAs<unsigned char>() const;
template <> short StringPtr::parseAs<short>() const;
template <> unsigned short StringPtr::parseAs<unsigned short>() const;
template <> int StringPtr::parseAs<int>() const;
template <> unsigned StringPtr::parseAs<unsigned>() const;
template <> long StringPtr::parseAs<long>() const;
template <> unsigned long StringPtr::parseAs<unsigned long>() const;
template <> long long StringPtr::parseAs<long long>() const;
template <> unsigned long long StringPtr::parseAs<unsigned long long>() const;
template <> float StringPtr::parseAs<float>() const;
template <> double StringPtr::parseAs<double>() const;
// =======================================================================================
// String -- A NUL-terminated Array<char> containing UTF-8 text.
//
// NUL bytes are allowed to appear before the end of the string. The only requirement is that
// a NUL byte appear immediately after the last byte of the content. This terminator byte is not
// counted in the string's size.
//
// To allocate a String, you must call kj::heapString(). We do not implement implicit copying to
// the heap because this hides potential inefficiency from the developer.
class String {
public:
String() = default;
inline String(decltype(nullptr)): content(nullptr) {}
inline String(char* value, size_t size, const ArrayDisposer& disposer);
// Does not copy. `size` does not include NUL terminator, but `value` must be NUL-terminated.
inline explicit String(Array<char> buffer);
// Does not copy. Requires `buffer` ends with `\0`.
inline operator ArrayPtr<char>() KJ_LIFETIMEBOUND;
inline operator ArrayPtr<const char>() const KJ_LIFETIMEBOUND;
inline ArrayPtr<char> asArray() KJ_LIFETIMEBOUND;
inline ArrayPtr<const char> asArray() const KJ_LIFETIMEBOUND;
inline ArrayPtr<byte> asBytes() KJ_LIFETIMEBOUND { return asArray().asBytes(); }
inline ArrayPtr<const byte> asBytes() const KJ_LIFETIMEBOUND { return asArray().asBytes(); }
// Result does not include NUL terminator.
inline StringPtr asPtr() const KJ_LIFETIMEBOUND {
// Convenience operator to return a StringPtr.
return StringPtr{*this};
}
inline Array<char> releaseArray() { return kj::mv(content); }
// Disowns the backing array (which includes the NUL terminator) and returns it. The String value
// is clobbered (as if moved away).
inline const char* cStr() const KJ_LIFETIMEBOUND;
inline size_t size() const;
// Result does not include NUL terminator.
inline char operator[](size_t index) const;
inline char& operator[](size_t index) KJ_LIFETIMEBOUND;
inline char* begin() KJ_LIFETIMEBOUND;
inline char* end() KJ_LIFETIMEBOUND;
inline const char* begin() const KJ_LIFETIMEBOUND;
inline const char* end() const KJ_LIFETIMEBOUND;
inline bool operator==(decltype(nullptr)) const { return content.size() <= 1; }
inline bool operator!=(decltype(nullptr)) const { return content.size() > 1; }
inline bool operator==(const StringPtr& other) const { return StringPtr(*this) == other; }
inline bool operator!=(const StringPtr& other) const { return StringPtr(*this) != other; }
inline bool operator< (const StringPtr& other) const { return StringPtr(*this) < other; }
inline bool operator> (const StringPtr& other) const { return StringPtr(*this) > other; }
inline bool operator<=(const StringPtr& other) const { return StringPtr(*this) <= other; }
inline bool operator>=(const StringPtr& other) const { return StringPtr(*this) >= other; }
inline bool operator==(const String& other) const { return StringPtr(*this) == StringPtr(other); }
inline bool operator!=(const String& other) const { return StringPtr(*this) != StringPtr(other); }
inline bool operator< (const String& other) const { return StringPtr(*this) < StringPtr(other); }
inline bool operator> (const String& other) const { return StringPtr(*this) > StringPtr(other); }
inline bool operator<=(const String& other) const { return StringPtr(*this) <= StringPtr(other); }
inline bool operator>=(const String& other) const { return StringPtr(*this) >= StringPtr(other); }
// Note that if we don't overload for `const String&` specifically, then C++20 will decide that
// comparisons between two strings are ambiguous. (Clang turns this into a warning,
// -Wambiguous-reversed-operator, due to the stupidity...)
inline bool startsWith(const StringPtr& other) const { return StringPtr(*this).startsWith(other);}
inline bool endsWith(const StringPtr& other) const { return StringPtr(*this).endsWith(other); }
inline StringPtr slice(size_t start) const KJ_LIFETIMEBOUND {
return StringPtr(*this).slice(start);
}
inline ArrayPtr<const char> slice(size_t start, size_t end) const KJ_LIFETIMEBOUND {
return StringPtr(*this).slice(start, end);
}
inline Maybe<size_t> findFirst(char c) const { return StringPtr(*this).findFirst(c); }
inline Maybe<size_t> findLast(char c) const { return StringPtr(*this).findLast(c); }
template <typename T>
T parseAs() const { return StringPtr(*this).parseAs<T>(); }
// Parse as number
private:
Array<char> content;
};
#if !__cpp_impl_three_way_comparison
inline bool operator==(const char* a, const String& b) { return b == a; }
inline bool operator!=(const char* a, const String& b) { return b != a; }
#endif
String heapString(size_t size);
// Allocate a String of the given size on the heap, not including NUL terminator. The NUL
// terminator will be initialized automatically but the rest of the content is not initialized.
String heapString(const char* value);
String heapString(const char* value, size_t size);
String heapString(StringPtr value);
String heapString(const String& value);
String heapString(ArrayPtr<const char> value);
// Allocates a copy of the given value on the heap.
// =======================================================================================
// Magic str() function which transforms parameters to text and concatenates them into one big
// String.
namespace _ { // private
inline size_t sum(std::initializer_list<size_t> nums) {
size_t result = 0;
for (auto num: nums) {
result += num;
}
return result;
}
inline char* fill(char* ptr) { return ptr; }
inline char* fillLimited(char* ptr, char* limit) { return ptr; }
template <typename... Rest>
char* fill(char* __restrict__ target, const StringTree& first, Rest&&... rest);
template <typename... Rest>
char* fillLimited(char* __restrict__ target, char* limit, const StringTree& first, Rest&&... rest);
// Make str() work with stringifiers that return StringTree by patching fill().
//
// Defined in string-tree.h.
template <typename First, typename... Rest>
char* fill(char* __restrict__ target, const First& first, Rest&&... rest) {
auto i = first.begin();
auto end = first.end();
while (i != end) {
*target++ = *i++;
}
return fill(target, kj::fwd<Rest>(rest)...);
}
template <typename... Params>
String concat(Params&&... params) {
// Concatenate a bunch of containers into a single Array. The containers can be anything that
// is iterable and whose elements can be converted to `char`.
String result = heapString(sum({params.size()...}));
fill(result.begin(), kj::fwd<Params>(params)...);
return result;
}
inline String concat(String&& arr) {
return kj::mv(arr);
}
template <typename First, typename... Rest>
char* fillLimited(char* __restrict__ target, char* limit, const First& first, Rest&&... rest) {
auto i = first.begin();
auto end = first.end();
while (i != end) {
if (target == limit) return target;
*target++ = *i++;
}
return fillLimited(target, limit, kj::fwd<Rest>(rest)...);
}
template <typename T>
class Delimited;
// Delimits a sequence of type T with a string delimiter. Implements kj::delimited().
template <typename T, typename... Rest>
char* fill(char* __restrict__ target, Delimited<T>&& first, Rest&&... rest);
template <typename T, typename... Rest>
char* fillLimited(char* __restrict__ target, char* limit, Delimited<T>&& first,Rest&&... rest);
template <typename T, typename... Rest>
char* fill(char* __restrict__ target, Delimited<T>& first, Rest&&... rest);
template <typename T, typename... Rest>
char* fillLimited(char* __restrict__ target, char* limit, Delimited<T>& first,Rest&&... rest);
// As with StringTree, we special-case Delimited<T>.
struct Stringifier {
// This is a dummy type with only one instance: STR (below). To make an arbitrary type
// stringifiable, define `operator*(Stringifier, T)` to return an iterable container of `char`.
// The container type must have a `size()` method. Be sure to declare the operator in the same
// namespace as `T` **or** in the global scope.
//
// A more usual way to accomplish what we're doing here would be to require that you define
// a function like `toString(T)` and then rely on argument-dependent lookup. However, this has
// the problem that it pollutes other people's namespaces and even the global namespace. For
// example, some other project may already have functions called `toString` which do something
// different. Declaring `operator*` with `Stringifier` as the left operand cannot conflict with
// anything.
inline ArrayPtr<const char> operator*(ArrayPtr<const char> s) const { return s; }
inline ArrayPtr<const char> operator*(ArrayPtr<char> s) const { return s; }
inline ArrayPtr<const char> operator*(const Array<const char>& s) const KJ_LIFETIMEBOUND {
return s;
}
inline ArrayPtr<const char> operator*(const Array<char>& s) const KJ_LIFETIMEBOUND { return s; }
template<size_t n>
inline ArrayPtr<const char> operator*(const CappedArray<char, n>& s) const KJ_LIFETIMEBOUND {
return s;
}
template<size_t n>
inline ArrayPtr<const char> operator*(const FixedArray<char, n>& s) const KJ_LIFETIMEBOUND {
return s;
}
inline ArrayPtr<const char> operator*(const char* s) const KJ_LIFETIMEBOUND {
return arrayPtr(s, strlen(s));
}
#if __cpp_char8_t
inline ArrayPtr<const char> operator*(const char8_t* s) const KJ_LIFETIMEBOUND {
return operator*(reinterpret_cast<const char*>(s));
}
#endif
inline ArrayPtr<const char> operator*(const String& s) const KJ_LIFETIMEBOUND {
return s.asArray();
}
inline ArrayPtr<const char> operator*(const StringPtr& s) const { return s.asArray(); }
inline Range<char> operator*(const Range<char>& r) const { return r; }
inline Repeat<char> operator*(const Repeat<char>& r) const { return r; }
inline FixedArray<char, 1> operator*(char c) const {
FixedArray<char, 1> result;
result[0] = c;
return result;
}
StringPtr operator*(decltype(nullptr)) const;
StringPtr operator*(bool b) const;
CappedArray<char, 5> operator*(signed char i) const;
CappedArray<char, 5> operator*(unsigned char i) const;
CappedArray<char, sizeof(short) * 3 + 2> operator*(short i) const;
CappedArray<char, sizeof(unsigned short) * 3 + 2> operator*(unsigned short i) const;
CappedArray<char, sizeof(int) * 3 + 2> operator*(int i) const;
CappedArray<char, sizeof(unsigned int) * 3 + 2> operator*(unsigned int i) const;
CappedArray<char, sizeof(long) * 3 + 2> operator*(long i) const;
CappedArray<char, sizeof(unsigned long) * 3 + 2> operator*(unsigned long i) const;
CappedArray<char, sizeof(long long) * 3 + 2> operator*(long long i) const;
CappedArray<char, sizeof(unsigned long long) * 3 + 2> operator*(unsigned long long i) const;
CappedArray<char, 24> operator*(float f) const;
CappedArray<char, 32> operator*(double f) const;
CappedArray<char, sizeof(const void*) * 2 + 1> operator*(const void* s) const;
#if KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP // supports expression SFINAE?
template <typename T, typename Result = decltype(instance<T>().toString())>
inline Result operator*(T&& value) const { return kj::fwd<T>(value).toString(); }
#endif
};
static KJ_CONSTEXPR(const) Stringifier STR = Stringifier();
} // namespace _ (private)
template <typename T>
auto toCharSequence(T&& value) -> decltype(_::STR * kj::fwd<T>(value)) {
// Returns an iterable of chars that represent a textual representation of the value, suitable
// for debugging.
//
// Most users should use str() instead, but toCharSequence() may occasionally be useful to avoid
// heap allocation overhead that str() implies.
//
// To specialize this function for your type, see KJ_STRINGIFY.
return _::STR * kj::fwd<T>(value);
}
CappedArray<char, sizeof(unsigned char) * 2 + 1> hex(unsigned char i);
CappedArray<char, sizeof(unsigned short) * 2 + 1> hex(unsigned short i);
CappedArray<char, sizeof(unsigned int) * 2 + 1> hex(unsigned int i);
CappedArray<char, sizeof(unsigned long) * 2 + 1> hex(unsigned long i);
CappedArray<char, sizeof(unsigned long long) * 2 + 1> hex(unsigned long long i);
template <typename... Params>
String str(Params&&... params) {
// Magic function which builds a string from a bunch of arbitrary values. Example:
// str(1, " / ", 2, " = ", 0.5)
// returns:
// "1 / 2 = 0.5"
// To teach `str` how to stringify a type, see `Stringifier`.
return _::concat(toCharSequence(kj::fwd<Params>(params))...);
}
inline String str(String&& s) { return mv(s); }
// Overload to prevent redundant allocation.
template <typename T>
_::Delimited<T> delimited(T&& arr, kj::StringPtr delim);
// Use to stringify an array.
template <typename T>
String strArray(T&& arr, const char* delim) {
size_t delimLen = strlen(delim);
KJ_STACK_ARRAY(decltype(_::STR * arr[0]), pieces, kj::size(arr), 8, 32);
size_t size = 0;
for (size_t i = 0; i < kj::size(arr); i++) {
if (i > 0) size += delimLen;
pieces[i] = _::STR * arr[i];
size += pieces[i].size();
}
String result = heapString(size);
char* pos = result.begin();
for (size_t i = 0; i < kj::size(arr); i++) {
if (i > 0) {
memcpy(pos, delim, delimLen);
pos += delimLen;
}
pos = _::fill(pos, pieces[i]);
}
return result;
}
template <typename... Params>
StringPtr strPreallocated(ArrayPtr<char> buffer, Params&&... params) {
// Like str() but writes into a preallocated buffer. If the buffer is not long enough, the result
// is truncated (but still NUL-terminated).
//
// This can be used like:
//
// char buffer[256];
// StringPtr text = strPreallocated(buffer, params...);
//
// This is useful for optimization. It can also potentially be used safely in async signal
// handlers. HOWEVER, to use in an async signal handler, all of the stringifiers for the inputs
// must also be signal-safe. KJ guarantees signal safety when stringifying any built-in integer
// type (but NOT floating-points), basic char/byte sequences (ArrayPtr<byte>, String, etc.), as
// well as Array<T> as long as T can also be stringified safely. To safely stringify a delimited
// array, you must use kj::delimited(arr, delim) rather than the deprecated
// kj::strArray(arr, delim).
char* end = _::fillLimited(buffer.begin(), buffer.end() - 1,
toCharSequence(kj::fwd<Params>(params))...);
*end = '\0';
return StringPtr(buffer.begin(), end);
}
template <typename T, typename = decltype(toCharSequence(kj::instance<T&>()))>
inline _::Delimited<ArrayPtr<T>> operator*(const _::Stringifier&, ArrayPtr<T> arr) {
return _::Delimited<ArrayPtr<T>>(arr, ", ");
}
template <typename T, typename = decltype(toCharSequence(kj::instance<const T&>()))>
inline _::Delimited<ArrayPtr<const T>> operator*(const _::Stringifier&, const Array<T>& arr) {
return _::Delimited<ArrayPtr<const T>>(arr, ", ");
}
#define KJ_STRINGIFY(...) operator*(::kj::_::Stringifier, __VA_ARGS__)
// Defines a stringifier for a custom type. Example:
//
// class Foo {...};
// inline StringPtr KJ_STRINGIFY(const Foo& foo) { return foo.name(); }
// // or perhaps
// inline String KJ_STRINGIFY(const Foo& foo) { return kj::str(foo.fld1(), ",", foo.fld2()); }
//
// This allows Foo to be passed to str().
//
// The function should be declared either in the same namespace as the target type or in the global
// namespace. It can return any type which is an iterable container of chars.
// =======================================================================================
// Inline implementation details.
inline StringPtr::StringPtr(const String& value): content(value.cStr(), value.size() + 1) {}
inline constexpr StringPtr::operator ArrayPtr<const char>() const {
return ArrayPtr<const char>(content.begin(), content.size() - 1);
}
inline constexpr ArrayPtr<const char> StringPtr::asArray() const {
return ArrayPtr<const char>(content.begin(), content.size() - 1);
}
inline bool StringPtr::operator==(const StringPtr& other) const {
return content.size() == other.content.size() &&
memcmp(content.begin(), other.content.begin(), content.size() - 1) == 0;
}
inline bool StringPtr::operator<(const StringPtr& other) const {
bool shorter = content.size() < other.content.size();
int cmp = memcmp(content.begin(), other.content.begin(),
shorter ? content.size() : other.content.size());
return cmp < 0 || (cmp == 0 && shorter);
}
inline StringPtr StringPtr::slice(size_t start) const {
return StringPtr(content.slice(start, content.size()));
}
inline ArrayPtr<const char> StringPtr::slice(size_t start, size_t end) const {
return content.slice(start, end);
}
inline bool StringPtr::startsWith(const StringPtr& other) const {
return other.content.size() <= content.size() &&
memcmp(content.begin(), other.content.begin(), other.size()) == 0;
}
inline bool StringPtr::endsWith(const StringPtr& other) const {
return other.content.size() <= content.size() &&
memcmp(end() - other.size(), other.content.begin(), other.size()) == 0;
}
inline Maybe<size_t> StringPtr::findFirst(char c) const {
const char* pos = reinterpret_cast<const char*>(memchr(content.begin(), c, size()));
if (pos == nullptr) {
return nullptr;
} else {
return pos - content.begin();
}
}
inline Maybe<size_t> StringPtr::findLast(char c) const {
for (size_t i = size(); i > 0; --i) {
if (content[i-1] == c) {
return i-1;
}
}
return nullptr;
}
inline String::operator ArrayPtr<char>() {
return content == nullptr ? ArrayPtr<char>(nullptr) : content.slice(0, content.size() - 1);
}
inline String::operator ArrayPtr<const char>() const {
return content == nullptr ? ArrayPtr<const char>(nullptr) : content.slice(0, content.size() - 1);
}
inline ArrayPtr<char> String::asArray() {
return content == nullptr ? ArrayPtr<char>(nullptr) : content.slice(0, content.size() - 1);
}
inline ArrayPtr<const char> String::asArray() const {
return content == nullptr ? ArrayPtr<const char>(nullptr) : content.slice(0, content.size() - 1);
}
inline const char* String::cStr() const { return content == nullptr ? "" : content.begin(); }
inline size_t String::size() const { return content == nullptr ? 0 : content.size() - 1; }
inline char String::operator[](size_t index) const { return content[index]; }
inline char& String::operator[](size_t index) { return content[index]; }
inline char* String::begin() { return content == nullptr ? nullptr : content.begin(); }
inline char* String::end() { return content == nullptr ? nullptr : content.end() - 1; }
inline const char* String::begin() const { return content == nullptr ? nullptr : content.begin(); }
inline const char* String::end() const { return content == nullptr ? nullptr : content.end() - 1; }
inline String::String(char* value, size_t size, const ArrayDisposer& disposer)
: content(value, size + 1, disposer) {
KJ_IREQUIRE(value[size] == '\0', "String must be NUL-terminated.");
}
inline String::String(Array<char> buffer): content(kj::mv(buffer)) {
KJ_IREQUIRE(content.size() > 0 && content.back() == '\0', "String must be NUL-terminated.");
}
inline String heapString(const char* value) {
return heapString(value, strlen(value));
}
inline String heapString(StringPtr value) {
return heapString(value.begin(), value.size());
}
inline String heapString(const String& value) {
return heapString(value.begin(), value.size());
}
inline String heapString(ArrayPtr<const char> value) {
return heapString(value.begin(), value.size());
}
namespace _ { // private
template <typename T>
class Delimited {
public:
Delimited(T array, kj::StringPtr delimiter)
: array(kj::fwd<T>(array)), delimiter(delimiter) {}
// TODO(someday): In theory we should support iteration as a character sequence, but the iterator
// will be pretty complicated.
size_t size() {
ensureStringifiedInitialized();
size_t result = 0;
bool first = true;
for (auto& e: stringified) {
if (first) {
first = false;
} else {
result += delimiter.size();
}
result += e.size();
}
return result;
}
char* flattenTo(char* __restrict__ target) {
ensureStringifiedInitialized();
bool first = true;
for (auto& elem: stringified) {
if (first) {
first = false;
} else {
target = fill(target, delimiter);
}
target = fill(target, elem);
}
return target;
}
char* flattenTo(char* __restrict__ target, char* limit) {
// This is called in the strPreallocated(). We want to avoid allocation. size() will not have
// been called in this case, so hopefully `stringified` is still uninitialized. We will
// stringify each item and immediately use it.
bool first = true;
for (auto&& elem: array) {
if (target == limit) return target;
if (first) {
first = false;
} else {
target = fillLimited(target, limit, delimiter);
}
target = fillLimited(target, limit, kj::toCharSequence(elem));
}
return target;
}
private:
typedef decltype(toCharSequence(*instance<T>().begin())) StringifiedItem;
T array;
kj::StringPtr delimiter;
Array<StringifiedItem> stringified;
void ensureStringifiedInitialized() {
if (array.size() > 0 && stringified.size() == 0) {
stringified = KJ_MAP(e, array) { return toCharSequence(e); };
}
}
};
template <typename T, typename... Rest>
char* fill(char* __restrict__ target, Delimited<T>&& first, Rest&&... rest) {
target = first.flattenTo(target);
return fill(target, kj::fwd<Rest>(rest)...);
}
template <typename T, typename... Rest>
char* fillLimited(char* __restrict__ target, char* limit, Delimited<T>&& first, Rest&&... rest) {
target = first.flattenTo(target, limit);
return fillLimited(target, limit, kj::fwd<Rest>(rest)...);
}
template <typename T, typename... Rest>
char* fill(char* __restrict__ target, Delimited<T>& first, Rest&&... rest) {
target = first.flattenTo(target);
return fill(target, kj::fwd<Rest>(rest)...);
}
template <typename T, typename... Rest>
char* fillLimited(char* __restrict__ target, char* limit, Delimited<T>& first, Rest&&... rest) {
target = first.flattenTo(target, limit);
return fillLimited(target, limit, kj::fwd<Rest>(rest)...);
}
template <typename T>
inline Delimited<T>&& KJ_STRINGIFY(Delimited<T>&& delimited) { return kj::mv(delimited); }
template <typename T>
inline const Delimited<T>& KJ_STRINGIFY(const Delimited<T>& delimited) { return delimited; }
} // namespace _ (private)
template <typename T>
_::Delimited<T> delimited(T&& arr, kj::StringPtr delim) {
return _::Delimited<T>(kj::fwd<T>(arr), delim);
}
} // namespace kj
constexpr kj::StringPtr operator "" _kj(const char* str, size_t n) {
return kj::StringPtr(kj::ArrayPtr<const char>(str, n + 1));
};
KJ_END_HEADER