blob: 7af8409ff8cbceb5624a0d8f3f24ebdde59cdd64 [file] [log] [blame]
// Copyright (c) 2018 Kenton Varda and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
#include "common.h"
#include "tuple.h"
#include "vector.h"
#include "function.h"
#if _MSC_VER
// Need _ReadWriteBarrier
#if _MSC_VER < 1910
#include <intrin.h>
#else
#include <intrin0.h>
#endif
#endif
#if KJ_DEBUG_TABLE_IMPL
#include "debug.h"
#define KJ_TABLE_IREQUIRE KJ_REQUIRE
#define KJ_TABLE_IASSERT KJ_ASSERT
#else
#define KJ_TABLE_IREQUIRE KJ_IREQUIRE
#define KJ_TABLE_IASSERT KJ_IASSERT
#endif
KJ_BEGIN_HEADER
namespace kj {
class String;
namespace _ { // private
template <typename Row>
class TableMapping;
template <typename Row, typename Inner>
using TableIterable = MappedIterable<Inner, TableMapping<Row>>;
template <typename Row, typename Inner>
using TableIterator = MappedIterator<Inner, TableMapping<Row>>;
} // namespace _ (private)
template <typename Row, typename... Indexes>
class Table {
// A table with one or more indexes. This is the KJ alternative to map, set, unordered_map, and
// unordered_set.
//
// Unlike a traditional map, which explicitly stores key/value pairs, a Table simply stores
// "rows" of arbitrary type, and then lets the application specify how these should be indexed.
// Rows could be indexed on a specific struct field, or they could be indexed based on a computed
// property. An index could be hash-based or tree-based. Multiple indexes are supported, making
// it easy to construct a "bimap".
//
// The table has deterministic iteration order based on the sequence of insertions and deletions.
// In the case of only insertions, the iteration order is the order of insertion. If deletions
// occur, then the current last row is moved to occupy the deleted slot. This determinism is
// intended to be reliable for the purpose of testing, etc.
//
// Each index is a class that looks like:
//
// class Index {
// public:
// void reserve(size_t size);
// // Called when Table::reserve() is called.
//
// SearchParam& keyForRow(const Row& row) const;
// // Given a row, return a value appropriate to pass as SearchParams to the other functions.
//
// // In all function calls below, `SearchPrams` refers to whatever parameters the index
// // supports for looking up a row in the table.
//
// template <typename... SearchParams>
// kj::Maybe<size_t> insert(kj::ArrayPtr<const Row> table, size_t pos, SearchParams&&...);
// // Called to indicate that we're about to insert a new row which will match the given
// // search parameters, and will be located at the given position. If this index disallows
// // duplicates and some other matching row already exists, then insert() returns the index
// // of that row without modifying the index. If the row does not exist, then insert()
// // updates the index to note that the new row is located at `pos`. Note that `table[pos]`
// // may not be valid yet at the time of this call; the index must go on the search params
// // alone.
// //
// // Insert may throw an exception, in which case the table will roll back insertion.
//
// template <typename... SearchParams>
// void erase(kj::ArrayPtr<const Row> table, size_t pos, SearchParams&&...);
// // Called to indicate that the index must remove references to row number `pos`. The
// // index must not attempt to access table[pos] directly -- in fact, `pos` may be equal to
// // `table.size()`, i.e., may be out-of-bounds (this happens when rolling back a failed
// // insertion). Instead, the index can use the search params to search for the row -- they
// // will either be the same as the params passed to insert(), or will be a single value of
// // type `Row&`.
// //
// // erase() called immediately after a successful insert() must not throw an exception, as
// // it may be called during unwind.
//
// template <typename... SearchParams>
// void move(kj::ArrayPtr<const Row> table, size_t oldPos, size_t newPos, SearchParams&&...);
// // Called when a row is about to be moved from `oldPos` to `newPos` in the table. The
// // index should update it to the new location. Neither `table[oldPos]` nor `table[newPos]`
// // is valid during the call -- use the search params to find the row. Before this call
// // `oldPos` is indexed and `newPos` is not -- after the call, the opposite is true.
// //
// // This should never throw; if it does the table may be corrupted.
//
// class Iterator; // Behaves like a C++ iterator over size_t values.
// class Iterable; // Has begin() and end() methods returning iterators.
//
// template <typename... SearchParams>
// Maybe<size_t> find(kj::ArrayPtr<const Row> table, SearchParams&&...) const;
// // Optional. Implements Table::find<Index>(...).
//
// template <typename... SearchParams>
// Iterator seek(kj::ArrayPtr<const Row> table, SearchParams&&...) const;
// // Optional. Implements Table::seek<Index>() and Table::range<Index>(...).
//
// Iterator begin() const;
// Iterator end() const;
// // Optional. Implements Table::ordered<Index>().
// };
public:
Table();
Table(Indexes&&... indexes);
void reserve(size_t size);
// Pre-allocates space for a table of the given size. Normally a Table grows by re-allocating
// its backing array whenever more space is needed. Reserving in advance avoids redundantly
// re-allocating as the table grows.
size_t size() const;
size_t capacity() const;
void clear();
Row* begin();
Row* end();
const Row* begin() const;
const Row* end() const;
Row& insert(Row&& row);
Row& insert(const Row& row);
// Inserts a new row. Throws an exception if this would violate the uniqueness constraints of any
// of the indexes.
template <typename Collection>
void insertAll(Collection&& collection);
template <typename Collection>
void insertAll(Collection& collection);
// Given an iterable collection of Rows, inserts all of them into this table. If the input is
// an rvalue, the rows will be moved rather than copied.
//
// If an insertion throws (e.g. because it violates a uniqueness constraint of some index),
// subsequent insertions do not occur, but previous insertions remain inserted.
template <typename UpdateFunc>
Row& upsert(Row&& row, UpdateFunc&& update);
template <typename UpdateFunc>
Row& upsert(const Row& row, UpdateFunc&& update);
// Tries to insert a new row. However, if a duplicate already exists (according to some index),
// then update(Row& existingRow, Row&& newRow) is called to modify the existing row.
template <typename Index, typename... Params>
kj::Maybe<Row&> find(Params&&... params);
template <typename Index, typename... Params>
kj::Maybe<const Row&> find(Params&&... params) const;
// Using the given index, search for a matching row. What parameters are accepted depends on the
// index. Not all indexes support this method -- "multimap" indexes may support only range().
template <typename Index, typename... Params, typename Func>
Row& findOrCreate(Params&&... params, Func&& createFunc);
// Like find(), but if the row doesn't exist, call a function to create it. createFunc() must
// return `Row` or something that implicitly converts to `Row`.
//
// NOTE: C++ doesn't actually properly support inferring types of a parameter pack at the
// beginning of an argument list, but we define a hack to support it below. Don't worry about
// it.
template <typename Index, typename BeginKey, typename EndKey>
auto range(BeginKey&& begin, EndKey&& end);
template <typename Index, typename BeginKey, typename EndKey>
auto range(BeginKey&& begin, EndKey&& end) const;
// Using the given index, look up a range of values, returning an iterable. What parameters are
// accepted depends on the index. Not all indexes support this method (in particular, unordered
// indexes normally don't).
template <typename Index>
_::TableIterable<Row, Index&> ordered();
template <typename Index>
_::TableIterable<const Row, const Index&> ordered() const;
// Returns an iterable over the whole table ordered using the given index. Not all indexes
// support this method.
template <typename Index, typename... Params>
auto seek(Params&&... params);
template <typename Index, typename... Params>
auto seek(Params&&... params) const;
// Takes same parameters as find(), but returns an iterator at the position where the search
// key should go. That is, this returns an iterator that points to the matching entry or, if
// there is no matching entry, points at the next entry after the key, in order. Or, if there
// is no such entry, the returned iterator is the same as ordered().end().
//
// seek() is only supported by indexes that support ordered(). It returns the same kind of
// iterator that ordered() uses.
template <typename Index, typename... Params>
bool eraseMatch(Params&&... params);
// Erase the row that would be matched by `find<Index>(params)`. Returns true if there was a
// match.
template <typename Index, typename BeginKey, typename EndKey>
size_t eraseRange(BeginKey&& begin, EndKey&& end);
// Erase the row that would be matched by `range<Index>(params)`. Returns the number of
// elements erased.
void erase(Row& row);
// Erase the given row.
//
// WARNING: This invalidates all iterators, so you can't iterate over rows and erase them this
// way. Use `eraseAll()` for that.
Row release(Row& row);
// Remove the given row from the table and return it in one operation.
//
// WARNING: This invalidates all iterators, so you can't iterate over rows and release them this
// way.
template <typename Predicate, typename = decltype(instance<Predicate>()(instance<Row&>()))>
size_t eraseAll(Predicate&& predicate);
// Erase all rows for which predicate(row) returns true. This scans over the entire table.
template <typename Collection, typename = decltype(instance<Collection>().begin()), bool = true>
size_t eraseAll(Collection&& collection);
// Erase all rows in the given iterable collection of rows. This carefully marks rows for
// deletion in a first pass then deletes them in a second.
template <size_t index = 0, typename... Params>
kj::Maybe<Row&> find(Params&&... params);
template <size_t index = 0, typename... Params>
kj::Maybe<const Row&> find(Params&&... params) const;
template <size_t index = 0, typename... Params, typename Func>
Row& findOrCreate(Params&&... params, Func&& createFunc);
template <size_t index = 0, typename BeginKey, typename EndKey>
auto range(BeginKey&& begin, EndKey&& end);
template <size_t index = 0, typename BeginKey, typename EndKey>
auto range(BeginKey&& begin, EndKey&& end) const;
template <size_t index = 0>
_::TableIterable<Row, TypeOfIndex<index, Tuple<Indexes...>>&> ordered();
template <size_t index = 0>
_::TableIterable<const Row, const TypeOfIndex<index, Tuple<Indexes...>>&> ordered() const;
template <size_t index = 0, typename... Params>
auto seek(Params&&... params);
template <size_t index = 0, typename... Params>
auto seek(Params&&... params) const;
template <size_t index = 0, typename... Params>
bool eraseMatch(Params&&... params);
template <size_t index = 0, typename BeginKey, typename EndKey>
size_t eraseRange(BeginKey&& begin, EndKey&& end);
// Methods which take an index type as a template parameter can also take an index number. This
// is useful particularly when you have multiple indexes of the same type but different runtime
// properties. Additionally, you can omit the template parameter altogether to use the first
// index.
template <size_t index = 0>
void verify();
// Checks the integrity of indexes, throwing an exception if there are any problems. This is
// intended to be called within the unit test for an index.
template <typename Index, typename First, typename... Rest>
Row& findOrCreate(First&& first, Rest&&... rest);
template <size_t index = 0, typename First, typename... Rest>
Row& findOrCreate(First&& first, Rest&&... rest);
// HACK: A parameter pack can only be inferred if it lives at the end of the argument list, so
// the findOrCreate() definitions from earlier won't actually work. These ones will, but we
// have to do some annoying things inside to regroup the arguments.
private:
Vector<Row> rows;
Tuple<Indexes...> indexes;
template <size_t index = 0, bool final = (index >= sizeof...(Indexes))>
class Impl;
template <typename Func, typename... Params>
class FindOrCreateImpl;
template <typename ParamsTuple, typename... Params>
struct FindOrCreateHack;
void eraseImpl(size_t pos);
template <typename Collection>
size_t eraseAllImpl(Collection&& collection);
};
template <typename Callbacks>
class HashIndex;
// A Table index based on a hash table.
//
// This implementation:
// * Is based on linear probing, not chaining. It is important to use a high-quality hash function.
// Use the KJ hashing library if possible.
// * Is limited to tables of 2^30 rows or less, mainly to allow for tighter packing with 32-bit
// integers instead of 64-bit.
// * Caches hash codes so that each table row need only be hashed once, and never checks equality
// unless hash codes have already been determined to be equal.
//
// The `Callbacks` type defines how to compute hash codes and equality. It should be defined like:
//
// class Callbacks {
// public:
// // In this interface, `SearchParams...` means whatever parameters you want to support in
// // a call to table.find(...). By overloading the calls to support various inputs, you can
// // affect what table.find(...) accepts.
//
// SearchParam& keyForRow(const Row& row);
// // Given a row of the table, return the SearchParams that might be passed to the other
// // methods to match this row.
//
// bool matches(const Row&, SearchParams&&...) const;
// // Returns true if the row on the left matches the search params on the right.
//
// uint hashCode(SearchParams&&...) const;
// // Computes the hash code of the given search params. Matching rows (as determined by
// // matches()) must have the same hash code. Non-matching rows should have different hash
// // codes, to the maximum extent possible. Non-matching rows with the same hash code hurt
// // performance.
// };
//
// If your `Callbacks` type has dynamic state, you may pass its constructor parameters as the
// constructor parameters to `HashIndex`.
template <typename Callbacks>
class TreeIndex;
// A Table index based on a B-tree.
//
// This allows sorted iteration over rows.
//
// The `Callbacks` type defines how to compare rows. It should be defined like:
//
// class Callbacks {
// public:
// // In this interface, `SearchParams...` means whatever parameters you want to support in
// // a call to table.find(...). By overloading the calls to support various inputs, you can
// // affect what table.find(...) accepts.
//
// SearchParam& keyForRow(const Row& row);
// // Given a row of the table, return the SearchParams that might be passed to the other
// // methods to match this row.
//
// bool isBefore(const Row&, SearchParams&&...) const;
// // Returns true if the row on the left comes before the search params on the right.
//
// bool matches(const Row&, SearchParams&&...) const;
// // Returns true if the row "matches" the search params.
// };
// =======================================================================================
// inline implementation details
namespace _ { // private
KJ_NORETURN(void throwDuplicateTableRow());
template <typename Dst, typename Src, typename = decltype(instance<Src>().size())>
inline void tryReserveSize(Dst& dst, Src&& src) { dst.reserve(dst.size() + src.size()); }
template <typename... Params>
inline void tryReserveSize(Params&&...) {}
// If `src` has a `.size()` method, call dst.reserve(dst.size() + src.size()).
// Otherwise, do nothing.
template <typename Row>
class TableMapping {
public:
TableMapping(Row* table): table(table) {}
Row& map(size_t i) const { return table[i]; }
private:
Row* table;
};
template <typename Row>
class TableUnmapping {
public:
TableUnmapping(Row* table): table(table) {}
size_t map(Row& row) const { return &row - table; }
size_t map(Row* row) const { return row - table; }
private:
Row* table;
};
template <typename Iterator>
class IterRange {
public:
inline IterRange(Iterator b, Iterator e): b(b), e(e) {}
inline Iterator begin() const { return b; }
inline Iterator end() const { return e; }
private:
Iterator b;
Iterator e;
};
template <typename Iterator>
inline IterRange<Decay<Iterator>> iterRange(Iterator b, Iterator e) {
return { b, e };
}
} // namespace _ (private)
template <typename Row, typename... Indexes>
template <size_t index>
class Table<Row, Indexes...>::Impl<index, false> {
public:
static void reserve(Table<Row, Indexes...>& table, size_t size) {
get<index>(table.indexes).reserve(size);
Impl<index + 1>::reserve(table, size);
}
static void clear(Table<Row, Indexes...>& table) {
get<index>(table.indexes).clear();
Impl<index + 1>::clear(table);
}
static kj::Maybe<size_t> insert(Table<Row, Indexes...>& table, size_t pos, Row& row, uint skip) {
if (skip == index) {
return Impl<index + 1>::insert(table, pos, row, skip);
}
auto& indexObj = get<index>(table.indexes);
KJ_IF_MAYBE(existing, indexObj.insert(table.rows.asPtr(), pos, indexObj.keyForRow(row))) {
return *existing;
}
bool success = false;
KJ_DEFER(if (!success) {
indexObj.erase(table.rows.asPtr(), pos, indexObj.keyForRow(row));
});
auto result = Impl<index + 1>::insert(table, pos, row, skip);
success = result == nullptr;
return result;
}
static void erase(Table<Row, Indexes...>& table, size_t pos, Row& row) {
auto& indexObj = get<index>(table.indexes);
indexObj.erase(table.rows.asPtr(), pos, indexObj.keyForRow(row));
Impl<index + 1>::erase(table, pos, row);
}
static void move(Table<Row, Indexes...>& table, size_t oldPos, size_t newPos, Row& row) {
auto& indexObj = get<index>(table.indexes);
indexObj.move(table.rows.asPtr(), oldPos, newPos, indexObj.keyForRow(row));
Impl<index + 1>::move(table, oldPos, newPos, row);
}
};
template <typename Row, typename... Indexes>
template <size_t index>
class Table<Row, Indexes...>::Impl<index, true> {
public:
static void reserve(Table<Row, Indexes...>& table, size_t size) {}
static void clear(Table<Row, Indexes...>& table) {}
static kj::Maybe<size_t> insert(Table<Row, Indexes...>& table, size_t pos, Row& row, uint skip) {
return nullptr;
}
static void erase(Table<Row, Indexes...>& table, size_t pos, Row& row) {}
static void move(Table<Row, Indexes...>& table, size_t oldPos, size_t newPos, Row& row) {}
};
template <typename Row, typename... Indexes>
Table<Row, Indexes...>::Table() {}
template <typename Row, typename... Indexes>
Table<Row, Indexes...>::Table(Indexes&&... indexes)
: indexes(tuple(kj::fwd<Indexes&&>(indexes)...)) {}
template <typename Row, typename... Indexes>
void Table<Row, Indexes...>::reserve(size_t size) {
rows.reserve(size);
Impl<>::reserve(*this, size);
}
template <typename Row, typename... Indexes>
size_t Table<Row, Indexes...>::size() const {
return rows.size();
}
template <typename Row, typename... Indexes>
void Table<Row, Indexes...>::clear() {
Impl<>::clear(*this);
rows.clear();
}
template <typename Row, typename... Indexes>
size_t Table<Row, Indexes...>::capacity() const {
return rows.capacity();
}
template <typename Row, typename... Indexes>
Row* Table<Row, Indexes...>::begin() {
return rows.begin();
}
template <typename Row, typename... Indexes>
Row* Table<Row, Indexes...>::end() {
return rows.end();
}
template <typename Row, typename... Indexes>
const Row* Table<Row, Indexes...>::begin() const {
return rows.begin();
}
template <typename Row, typename... Indexes>
const Row* Table<Row, Indexes...>::end() const {
return rows.end();
}
template <typename Row, typename... Indexes>
Row& Table<Row, Indexes...>::insert(Row&& row) {
KJ_IF_MAYBE(existing, Impl<>::insert(*this, rows.size(), row, kj::maxValue)) {
_::throwDuplicateTableRow();
} else {
return rows.add(kj::mv(row));
}
}
template <typename Row, typename... Indexes>
Row& Table<Row, Indexes...>::insert(const Row& row) {
return insert(kj::cp(row));
}
template <typename Row, typename... Indexes>
template <typename Collection>
void Table<Row, Indexes...>::insertAll(Collection&& collection) {
_::tryReserveSize(*this, collection);
for (auto& row: collection) {
insert(kj::mv(row));
}
}
template <typename Row, typename... Indexes>
template <typename Collection>
void Table<Row, Indexes...>::insertAll(Collection& collection) {
_::tryReserveSize(*this, collection);
for (auto& row: collection) {
insert(row);
}
}
template <typename Row, typename... Indexes>
template <typename UpdateFunc>
Row& Table<Row, Indexes...>::upsert(Row&& row, UpdateFunc&& update) {
KJ_IF_MAYBE(existing, Impl<>::insert(*this, rows.size(), row, kj::maxValue)) {
update(rows[*existing], kj::mv(row));
return rows[*existing];
} else {
return rows.add(kj::mv(row));
}
}
template <typename Row, typename... Indexes>
template <typename UpdateFunc>
Row& Table<Row, Indexes...>::upsert(const Row& row, UpdateFunc&& update) {
return upsert(kj::cp(row), kj::fwd<UpdateFunc>(update));
}
template <typename Row, typename... Indexes>
template <typename Index, typename... Params>
kj::Maybe<Row&> Table<Row, Indexes...>::find(Params&&... params) {
return find<indexOfType<Index, Tuple<Indexes...>>()>(kj::fwd<Params>(params)...);
}
template <typename Row, typename... Indexes>
template <size_t index, typename... Params>
kj::Maybe<Row&> Table<Row, Indexes...>::find(Params&&... params) {
KJ_IF_MAYBE(pos, get<index>(indexes).find(rows.asPtr(), kj::fwd<Params>(params)...)) {
return rows[*pos];
} else {
return nullptr;
}
}
template <typename Row, typename... Indexes>
template <typename Index, typename... Params>
kj::Maybe<const Row&> Table<Row, Indexes...>::find(Params&&... params) const {
return find<indexOfType<Index, Tuple<Indexes...>>()>(kj::fwd<Params>(params)...);
}
template <typename Row, typename... Indexes>
template <size_t index, typename... Params>
kj::Maybe<const Row&> Table<Row, Indexes...>::find(Params&&... params) const {
KJ_IF_MAYBE(pos, get<index>(indexes).find(rows.asPtr(), kj::fwd<Params>(params)...)) {
return rows[*pos];
} else {
return nullptr;
}
}
template <typename Row, typename... Indexes>
template <typename Func, typename... Params>
class Table<Row, Indexes...>::FindOrCreateImpl {
public:
template <size_t index>
static Row& apply(Table<Row, Indexes...>& table, Params&&... params, Func&& createFunc) {
auto pos = table.rows.size();
KJ_IF_MAYBE(existing, get<index>(table.indexes).insert(table.rows.asPtr(), pos, params...)) {
return table.rows[*existing];
} else {
bool success = false;
KJ_DEFER({
if (!success) {
get<index>(table.indexes).erase(table.rows.asPtr(), pos, params...);
}
});
auto& newRow = table.rows.add(createFunc());
KJ_DEFER({
if (!success) {
table.rows.removeLast();
}
});
if (Table<Row, Indexes...>::template Impl<>::insert(table, pos, newRow, index) == nullptr) {
success = true;
} else {
_::throwDuplicateTableRow();
}
return newRow;
}
}
};
template <typename Row, typename... Indexes>
template <typename... T, typename U, typename V, typename... W>
struct Table<Row, Indexes...>::FindOrCreateHack<_::Tuple<T...>, U, V, W...>
: public FindOrCreateHack<_::Tuple<T..., U>, V, W...> {};
template <typename Row, typename... Indexes>
template <typename... T, typename U>
struct Table<Row, Indexes...>::FindOrCreateHack<_::Tuple<T...>, U>
: public FindOrCreateImpl<U, T...> {};
// This awful hack works around C++'s lack of support for parameter packs anywhere other than at
// the end of an argument list. We accumulate all of the types except for the last one into a
// Tuple, then forward to FindOrCreateImpl with the last parameter as the Func.
template <typename Row, typename... Indexes>
template <typename Index, typename First, typename... Rest>
Row& Table<Row, Indexes...>::findOrCreate(First&& first, Rest&&... rest) {
return findOrCreate<indexOfType<Index, Tuple<Indexes...>>()>(
kj::fwd<First>(first), kj::fwd<Rest>(rest)...);
}
template <typename Row, typename... Indexes>
template <size_t index, typename First, typename... Rest>
Row& Table<Row, Indexes...>::findOrCreate(First&& first, Rest&&... rest) {
return FindOrCreateHack<_::Tuple<>, First, Rest...>::template apply<index>(
*this, kj::fwd<First>(first), kj::fwd<Rest>(rest)...);
}
template <typename Row, typename... Indexes>
template <typename Index, typename BeginKey, typename EndKey>
auto Table<Row, Indexes...>::range(BeginKey&& begin, EndKey&& end) {
return range<indexOfType<Index, Tuple<Indexes...>>()>(
kj::fwd<BeginKey>(begin), kj::fwd<EndKey>(end));
}
template <typename Row, typename... Indexes>
template <size_t index, typename BeginKey, typename EndKey>
auto Table<Row, Indexes...>::range(BeginKey&& begin, EndKey&& end) {
auto inner = _::iterRange(get<index>(indexes).seek(rows.asPtr(), kj::fwd<BeginKey>(begin)),
get<index>(indexes).seek(rows.asPtr(), kj::fwd<EndKey>(end)));
return _::TableIterable<Row, decltype(inner)>(kj::mv(inner), rows.begin());
}
template <typename Row, typename... Indexes>
template <typename Index, typename BeginKey, typename EndKey>
auto Table<Row, Indexes...>::range(BeginKey&& begin, EndKey&& end) const {
return range<indexOfType<Index, Tuple<Indexes...>>()>(
kj::fwd<BeginKey>(begin), kj::fwd<EndKey>(end));
}
template <typename Row, typename... Indexes>
template <size_t index, typename BeginKey, typename EndKey>
auto Table<Row, Indexes...>::range(BeginKey&& begin, EndKey&& end) const {
auto inner = _::iterRange(get<index>(indexes).seek(rows.asPtr(), kj::fwd<BeginKey>(begin)),
get<index>(indexes).seek(rows.asPtr(), kj::fwd<EndKey>(end)));
return _::TableIterable<const Row, decltype(inner)>(kj::mv(inner), rows.begin());
}
template <typename Row, typename... Indexes>
template <typename Index>
_::TableIterable<Row, Index&> Table<Row, Indexes...>::ordered() {
return ordered<indexOfType<Index, Tuple<Indexes...>>()>();
}
template <typename Row, typename... Indexes>
template <size_t index>
_::TableIterable<Row, TypeOfIndex<index, Tuple<Indexes...>>&> Table<Row, Indexes...>::ordered() {
return { get<index>(indexes), rows.begin() };
}
template <typename Row, typename... Indexes>
template <typename Index>
_::TableIterable<const Row, const Index&> Table<Row, Indexes...>::ordered() const {
return ordered<indexOfType<Index, Tuple<Indexes...>>()>();
}
template <typename Row, typename... Indexes>
template <size_t index>
_::TableIterable<const Row, const TypeOfIndex<index, Tuple<Indexes...>>&>
Table<Row, Indexes...>::ordered() const {
return { get<index>(indexes), rows.begin() };
}
template <typename Row, typename... Indexes>
template <typename Index, typename... Params>
auto Table<Row, Indexes...>::seek(Params&&... params) {
return seek<indexOfType<Index, Tuple<Indexes...>>()>(kj::fwd<Params>(params)...);
}
template <typename Row, typename... Indexes>
template <size_t index, typename... Params>
auto Table<Row, Indexes...>::seek(Params&&... params) {
auto inner = get<index>(indexes).seek(rows.asPtr(), kj::fwd<Params>(params)...);
return _::TableIterator<Row, decltype(inner)>(kj::mv(inner), rows.begin());
}
template <typename Row, typename... Indexes>
template <typename Index, typename... Params>
auto Table<Row, Indexes...>::seek(Params&&... params) const {
return seek<indexOfType<Index, Tuple<Indexes...>>()>(kj::fwd<Params>(params)...);
}
template <typename Row, typename... Indexes>
template <size_t index, typename... Params>
auto Table<Row, Indexes...>::seek(Params&&... params) const {
auto inner = get<index>(indexes).seek(rows.asPtr(), kj::fwd<Params>(params)...);
return _::TableIterator<Row, decltype(inner)>(kj::mv(inner), rows.begin());
}
template <typename Row, typename... Indexes>
template <typename Index, typename... Params>
bool Table<Row, Indexes...>::eraseMatch(Params&&... params) {
return eraseMatch<indexOfType<Index, Tuple<Indexes...>>()>(kj::fwd<Params>(params)...);
}
template <typename Row, typename... Indexes>
template <size_t index, typename... Params>
bool Table<Row, Indexes...>::eraseMatch(Params&&... params) {
KJ_IF_MAYBE(pos, get<index>(indexes).find(rows.asPtr(), kj::fwd<Params>(params)...)) {
eraseImpl(*pos);
return true;
} else {
return false;
}
}
template <typename Row, typename... Indexes>
template <typename Index, typename BeginKey, typename EndKey>
size_t Table<Row, Indexes...>::eraseRange(BeginKey&& begin, EndKey&& end) {
return eraseRange<indexOfType<Index, Tuple<Indexes...>>()>(
kj::fwd<BeginKey>(begin), kj::fwd<EndKey>(end));
}
template <typename Row, typename... Indexes>
template <size_t index, typename BeginKey, typename EndKey>
size_t Table<Row, Indexes...>::eraseRange(BeginKey&& begin, EndKey&& end) {
auto inner = _::iterRange(get<index>(indexes).seek(rows.asPtr(), kj::fwd<BeginKey>(begin)),
get<index>(indexes).seek(rows.asPtr(), kj::fwd<EndKey>(end)));
return eraseAllImpl(inner);
}
template <typename Row, typename... Indexes>
template <size_t index>
void Table<Row, Indexes...>::verify() {
get<index>(indexes).verify(rows.asPtr());
}
template <typename Row, typename... Indexes>
void Table<Row, Indexes...>::erase(Row& row) {
KJ_TABLE_IREQUIRE(&row >= rows.begin() && &row < rows.end(), "row is not a member of this table");
eraseImpl(&row - rows.begin());
}
template <typename Row, typename... Indexes>
void Table<Row, Indexes...>::eraseImpl(size_t pos) {
Impl<>::erase(*this, pos, rows[pos]);
size_t back = rows.size() - 1;
if (pos != back) {
Impl<>::move(*this, back, pos, rows[back]);
rows[pos] = kj::mv(rows[back]);
}
rows.removeLast();
}
template <typename Row, typename... Indexes>
Row Table<Row, Indexes...>::release(Row& row) {
KJ_TABLE_IREQUIRE(&row >= rows.begin() && &row < rows.end(), "row is not a member of this table");
size_t pos = &row - rows.begin();
Impl<>::erase(*this, pos, row);
Row result = kj::mv(row);
size_t back = rows.size() - 1;
if (pos != back) {
Impl<>::move(*this, back, pos, rows[back]);
row = kj::mv(rows[back]);
}
rows.removeLast();
return result;
}
template <typename Row, typename... Indexes>
template <typename Predicate, typename>
size_t Table<Row, Indexes...>::eraseAll(Predicate&& predicate) {
size_t count = 0;
for (size_t i = 0; i < rows.size();) {
if (predicate(rows[i])) {
eraseImpl(i);
++count;
// eraseImpl() replaces the erased row with the last row, so don't increment i here; repeat
// with the same i.
} else {
++i;
}
}
return count;
}
template <typename Row, typename... Indexes>
template <typename Collection, typename, bool>
size_t Table<Row, Indexes...>::eraseAll(Collection&& collection) {
return eraseAllImpl(MappedIterable<Collection&, _::TableUnmapping<Row>>(
collection, rows.begin()));
}
template <typename Row, typename... Indexes>
template <typename Collection>
size_t Table<Row, Indexes...>::eraseAllImpl(Collection&& collection) {
// We need to transform the collection of row numbers into a sequence of erasures, accounting
// for the fact that each erasure re-positions the last row into its slot.
Vector<size_t> erased;
_::tryReserveSize(erased, collection);
for (size_t pos: collection) {
while (pos >= rows.size() - erased.size()) {
// Oops, the next item to be erased is already scheduled to be moved to a different location
// due to a previous erasure. Figure out where it will be at this point.
size_t erasureNumber = rows.size() - pos - 1;
pos = erased[erasureNumber];
}
erased.add(pos);
}
// Now we can execute the sequence of erasures.
for (size_t pos: erased) {
eraseImpl(pos);
}
return erased.size();
}
// -----------------------------------------------------------------------------
// Hash table index
namespace _ { // private
void logHashTableInconsistency();
struct HashBucket {
uint hash;
uint value;
HashBucket() = default;
HashBucket(uint hash, uint pos)
: hash(hash), value(pos + 2) {}
inline bool isEmpty() const { return value == 0; }
inline bool isErased() const { return value == 1; }
inline bool isOccupied() const { return value >= 2; }
template <typename Row>
inline Row& getRow(ArrayPtr<Row> table) const { return table[getPos()]; }
template <typename Row>
inline const Row& getRow(ArrayPtr<const Row> table) const { return table[getPos()]; }
inline bool isPos(uint pos) const { return pos + 2 == value; }
inline uint getPos() const {
KJ_TABLE_IASSERT(value >= 2);
return value - 2;
}
inline void setEmpty() { value = 0; }
inline void setErased() { value = 1; }
inline void setPos(uint pos) { value = pos + 2; }
};
inline size_t probeHash(const kj::Array<HashBucket>& buckets, size_t i) {
// TODO(perf): Is linear probing OK or should we do something fancier?
if (++i == buckets.size()) {
return 0;
} else {
return i;
}
}
kj::Array<HashBucket> rehash(kj::ArrayPtr<const HashBucket> oldBuckets, size_t targetSize);
uint chooseBucket(uint hash, uint count);
} // namespace _ (private)
template <typename Callbacks>
class HashIndex {
public:
HashIndex() = default;
template <typename... Params>
HashIndex(Params&&... params): cb(kj::fwd<Params>(params)...) {}
size_t capacity() {
// This method is for testing.
return buckets.size();
}
void reserve(size_t size) {
if (buckets.size() < size * 2) {
rehash(size);
}
}
void clear() {
erasedCount = 0;
memset(buckets.begin(), 0, buckets.asBytes().size());
}
template <typename Row>
decltype(auto) keyForRow(Row&& row) const {
return cb.keyForRow(kj::fwd<Row>(row));
}
template <typename Row, typename... Params>
kj::Maybe<size_t> insert(kj::ArrayPtr<Row> table, size_t pos, Params&&... params) {
if (buckets.size() * 2 < (table.size() + 1 + erasedCount) * 3) {
// Load factor is more than 2/3, let's rehash so that it's 1/3, i.e. double the buckets.
// Note that rehashing also cleans up erased entries, so we may not actually be doubling if
// there are a lot of erasures. Nevertheless, this gives us amortized constant time -- it
// would take at least O(table.size()) more insertions (whether or not erasures occur)
// before another rehash is needed.
rehash((table.size() + 1) * 3);
}
uint hashCode = cb.hashCode(params...);
Maybe<_::HashBucket&> erasedSlot;
for (uint i = _::chooseBucket(hashCode, buckets.size());; i = _::probeHash(buckets, i)) {
auto& bucket = buckets[i];
if (bucket.isEmpty()) {
// no duplicates found
KJ_IF_MAYBE(s, erasedSlot) {
--erasedCount;
*s = { hashCode, uint(pos) };
} else {
bucket = { hashCode, uint(pos) };
}
return nullptr;
} else if (bucket.isErased()) {
// We can fill in the erased slot. However, we have to keep searching to make sure there
// are no duplicates before we do that.
if (erasedSlot == nullptr) {
erasedSlot = bucket;
}
} else if (bucket.hash == hashCode &&
cb.matches(bucket.getRow(table), params...)) {
// duplicate row
return size_t(bucket.getPos());
}
}
}
template <typename Row, typename... Params>
void erase(kj::ArrayPtr<Row> table, size_t pos, Params&&... params) {
uint hashCode = cb.hashCode(params...);
for (uint i = _::chooseBucket(hashCode, buckets.size());; i = _::probeHash(buckets, i)) {
auto& bucket = buckets[i];
if (bucket.isPos(pos)) {
// found it
++erasedCount;
bucket.setErased();
return;
} else if (bucket.isEmpty()) {
// can't find the bucket, something is very wrong
_::logHashTableInconsistency();
return;
}
}
}
template <typename Row, typename... Params>
void move(kj::ArrayPtr<Row> table, size_t oldPos, size_t newPos, Params&&... params) {
uint hashCode = cb.hashCode(params...);
for (uint i = _::chooseBucket(hashCode, buckets.size());; i = _::probeHash(buckets, i)) {
auto& bucket = buckets[i];
if (bucket.isPos(oldPos)) {
// found it
bucket.setPos(newPos);
return;
} else if (bucket.isEmpty()) {
// can't find the bucket, something is very wrong
_::logHashTableInconsistency();
return;
}
}
}
template <typename Row, typename... Params>
Maybe<size_t> find(kj::ArrayPtr<Row> table, Params&&... params) const {
if (buckets.size() == 0) return nullptr;
uint hashCode = cb.hashCode(params...);
for (uint i = _::chooseBucket(hashCode, buckets.size());; i = _::probeHash(buckets, i)) {
auto& bucket = buckets[i];
if (bucket.isEmpty()) {
// not found.
return nullptr;
} else if (bucket.isErased()) {
// skip, keep searching
} else if (bucket.hash == hashCode &&
cb.matches(bucket.getRow(table), params...)) {
// found
return size_t(bucket.getPos());
}
}
}
// No begin() nor end() because hash tables are not usefully ordered.
private:
Callbacks cb;
size_t erasedCount = 0;
Array<_::HashBucket> buckets;
void rehash(size_t targetSize) {
buckets = _::rehash(buckets, targetSize);
erasedCount = 0;
}
};
// -----------------------------------------------------------------------------
// BTree index
namespace _ { // private
KJ_ALWAYS_INLINE(void compilerBarrier());
void compilerBarrier() {
// Make sure that reads occurring before this call cannot be re-ordered to happen after
// writes that occur after this call. We need this in a couple places below to prevent C++
// strict aliasing rules from breaking things.
#if _MSC_VER
_ReadWriteBarrier();
#else
__asm__ __volatile__("": : :"memory");
#endif
}
template <typename T>
inline void acopy(T* to, T* from, size_t size) { memcpy(to, from, size * sizeof(T)); }
template <typename T>
inline void amove(T* to, T* from, size_t size) { memmove(to, from, size * sizeof(T)); }
template <typename T>
inline void azero(T* ptr, size_t size) { memset(ptr, 0, size * sizeof(T)); }
// memcpy/memmove/memset variants that count size in elements, not bytes.
//
// TODO(cleanup): These are generally useful, put them somewhere.
class BTreeImpl {
public:
class Iterator;
class MaybeUint;
struct NodeUnion;
struct Leaf;
struct Parent;
struct Freelisted;
class SearchKey {
// Passed to methods that need to search the tree. This class allows most of the B-tree
// implementation to be kept out of templates, avoiding code bloat, at the cost of some
// performance trade-off. In order to lessen the performance cost of virtual calls, we design
// this interface so that it only needs to be called once per tree node, rather than once per
// comparison.
public:
virtual uint search(const Parent& parent) const = 0;
virtual uint search(const Leaf& leaf) const = 0;
// Binary search for the first key/row in the parent/leaf that is equal to or comes after the
// search key.
virtual bool isAfter(uint rowIndex) const = 0;
// Returns true if the key comes after the value in the given row.
};
BTreeImpl();
~BTreeImpl() noexcept(false);
KJ_DISALLOW_COPY(BTreeImpl);
BTreeImpl(BTreeImpl&& other);
BTreeImpl& operator=(BTreeImpl&& other);
void logInconsistency() const;
void reserve(size_t size);
void clear();
Iterator begin() const;
Iterator end() const;
Iterator search(const SearchKey& searchKey) const;
// Find the "first" row (in sorted order) for which searchKey.isAfter(rowNumber) returns true.
Iterator insert(const SearchKey& searchKey);
// Like search() but ensures that there is room in the leaf node to insert a new row.
void erase(uint row, const SearchKey& searchKey);
// Erase the given row number from the tree. searchKey.isAfter() returns true for the given row
// and all rows after it.
void renumber(uint oldRow, uint newRow, const SearchKey& searchKey);
// Renumber the given row from oldRow to newRow. searchKey.isAfter() returns true for oldRow and
// all rows after it. (It will not be called on newRow.)
void verify(size_t size, FunctionParam<bool(uint, uint)>);
private:
NodeUnion* tree; // allocated with aligned_alloc aligned to cache lines
uint treeCapacity;
uint height; // height of *parent* tree -- does not include the leaf level
uint freelistHead;
uint freelistSize;
uint beginLeaf;
uint endLeaf;
void growTree(uint minCapacity = 0);
template <typename T>
struct AllocResult;
template <typename T>
inline AllocResult<T> alloc();
inline void free(uint pos);
inline uint split(Parent& src, uint srcPos, Parent& dst, uint dstPos);
inline uint split(Leaf& dst, uint dstPos, Leaf& src, uint srcPos);
inline void merge(Parent& dst, uint dstPos, uint pivot, Parent& src);
inline void merge(Leaf& dst, uint dstPos, uint pivot, Leaf& src);
inline void move(Parent& dst, uint dstPos, Parent& src);
inline void move(Leaf& dst, uint dstPos, Leaf& src);
inline void rotateLeft(
Parent& left, Parent& right, Parent& parent, uint indexInParent, MaybeUint*& fixup);
inline void rotateLeft(
Leaf& left, Leaf& right, Parent& parent, uint indexInParent, MaybeUint*& fixup);
inline void rotateRight(Parent& left, Parent& right, Parent& parent, uint indexInParent);
inline void rotateRight(Leaf& left, Leaf& right, Parent& parent, uint indexInParent);
template <typename Node>
inline Node& insertHelper(const SearchKey& searchKey,
Node& node, Parent* parent, uint indexInParent, uint pos);
template <typename Node>
inline Node& eraseHelper(
Node& node, Parent* parent, uint indexInParent, uint pos, MaybeUint*& fixup);
size_t verifyNode(size_t size, FunctionParam<bool(uint, uint)>&,
uint pos, uint height, MaybeUint maxRow);
static const NodeUnion EMPTY_NODE;
};
class BTreeImpl::MaybeUint {
// A nullable uint, using the value zero to mean null and shifting all other values up by 1.
public:
MaybeUint() = default;
inline MaybeUint(uint i): i(i - 1) {}
inline MaybeUint(decltype(nullptr)): i(0) {}
inline bool operator==(decltype(nullptr)) const { return i == 0; }
inline bool operator==(uint j) const { return i == j + 1; }
inline bool operator==(const MaybeUint& other) const { return i == other.i; }
inline bool operator!=(decltype(nullptr)) const { return i != 0; }
inline bool operator!=(uint j) const { return i != j + 1; }
inline bool operator!=(const MaybeUint& other) const { return i != other.i; }
inline MaybeUint& operator=(decltype(nullptr)) { i = 0; return *this; }
inline MaybeUint& operator=(uint j) { i = j + 1; return *this; }
inline uint operator*() const { KJ_TABLE_IREQUIRE(i != 0); return i - 1; }
template <typename Func>
inline bool check(Func& func) const { return i != 0 && func(i - 1); }
// Equivalent to *this != nullptr && func(**this)
kj::String toString() const;
private:
uint i;
};
struct BTreeImpl::Leaf {
uint next;
uint prev;
// Pointers to next and previous nodes at the same level, used for fast iteration.
static constexpr size_t NROWS = 14;
MaybeUint rows[NROWS];
// Pointers to table rows, offset by 1 so that 0 is an empty value.
inline bool isFull() const;
inline bool isMostlyFull() const;
inline bool isHalfFull() const;
inline void insert(uint i, uint newRow) {
KJ_TABLE_IREQUIRE(rows[Leaf::NROWS - 1] == nullptr); // check not full
amove(rows + i + 1, rows + i, Leaf::NROWS - (i + 1));
rows[i] = newRow;
}
inline void erase(uint i) {
KJ_TABLE_IREQUIRE(rows[0] != nullptr); // check not empty
amove(rows + i, rows + i + 1, Leaf::NROWS - (i + 1));
rows[Leaf::NROWS - 1] = nullptr;
}
inline uint size() const {
static_assert(Leaf::NROWS == 14, "logic here needs updating");
// Binary search for first empty element in `rows`, or return 14 if no empty elements. We do
// this in a branch-free manner. Since there are 15 possible results (0 through 14, inclusive),
// this isn't a perfectly balanced binary search. We carefully choose the split points so that
// there's no way we'll try to dereference row[14] or later (which would be a buffer overflow).
uint i = (rows[6] != nullptr) * 7;
i += (rows[i + 3] != nullptr) * 4;
i += (rows[i + 1] != nullptr) * 2;
i += (rows[i ] != nullptr);
return i;
}
template <typename Func>
inline uint binarySearch(Func& predicate) const {
// Binary search to find first row for which predicate(row) is false.
static_assert(Leaf::NROWS == 14, "logic here needs updating");
// See comments in size().
uint i = (rows[6].check(predicate)) * 7;
i += (rows[i + 3].check(predicate)) * 4;
i += (rows[i + 1].check(predicate)) * 2;
if (i != 6) { // don't redundantly check row 6
i += (rows[i ].check(predicate));
}
return i;
}
};
struct BTreeImpl::Parent {
uint unused;
// Not used. May be arbitrarily non-zero due to overlap with Freelisted::nextOffset.
static constexpr size_t NKEYS = 7;
MaybeUint keys[NKEYS];
// Pointers to table rows, offset by 1 so that 0 is an empty value.
//
// Each keys[i] specifies the table row which is the "last" row found under children[i].
//
// Note that `keys` has size 7 but `children` has size 8. `children[8]`'s "last row" is not
// recorded here, because the Parent's Parent records it instead. (Or maybe the Parent's Parent's
// Parent, if this Parent is `children[8]` of its own Parent. And so on.)
static constexpr size_t NCHILDREN = NKEYS + 1;
uint children[NCHILDREN];
// Pointers to children. Not offset because the root is always at position 0, and a pointer
// to the root would be nonsensical.
inline bool isFull() const;
inline bool isMostlyFull() const;
inline bool isHalfFull() const;
inline void initRoot(uint key, uint leftChild, uint rightChild);
inline void insertAfter(uint i, uint splitKey, uint child);
inline void eraseAfter(uint i);
inline uint keyCount() const {
static_assert(Parent::NKEYS == 7, "logic here needs updating");
// Binary search for first empty element in `keys`, or return 7 if no empty elements. We do
// this in a branch-free manner. Since there are 8 possible results (0 through 7, inclusive),
// this is a perfectly balanced binary search.
uint i = (keys[3] != nullptr) * 4;
i += (keys[i + 1] != nullptr) * 2;
i += (keys[i ] != nullptr);
return i;
}
template <typename Func>
inline uint binarySearch(Func& predicate) const {
// Binary search to find first key for which predicate(key) is false.
static_assert(Parent::NKEYS == 7, "logic here needs updating");
// See comments in size().
uint i = (keys[3].check(predicate)) * 4;
i += (keys[i + 1].check(predicate)) * 2;
i += (keys[i ].check(predicate));
return i;
}
};
struct BTreeImpl::Freelisted {
int nextOffset;
// The next node in the freelist is at: this + 1 + nextOffset
//
// Hence, newly-allocated space can initialize this to zero.
uint zero[15];
// Freelisted entries are always zero'd.
};
struct BTreeImpl::NodeUnion {
union {
Freelisted freelist;
// If this node is in the freelist.
Leaf leaf;
// If this node is a leaf.
Parent parent;
// If this node is not a leaf.
};
inline operator Leaf&() { return leaf; }
inline operator Parent&() { return parent; }
inline operator const Leaf&() const { return leaf; }
inline operator const Parent&() const { return parent; }
};
static_assert(sizeof(BTreeImpl::Parent) == 64,
"BTreeImpl::Parent should be optimized to fit a cache line");
static_assert(sizeof(BTreeImpl::Leaf) == 64,
"BTreeImpl::Leaf should be optimized to fit a cache line");
static_assert(sizeof(BTreeImpl::Freelisted) == 64,
"BTreeImpl::Freelisted should be optimized to fit a cache line");
static_assert(sizeof(BTreeImpl::NodeUnion) == 64,
"BTreeImpl::NodeUnion should be optimized to fit a cache line");
bool BTreeImpl::Leaf::isFull() const {
return rows[Leaf::NROWS - 1] != nullptr;
}
bool BTreeImpl::Leaf::isMostlyFull() const {
return rows[Leaf::NROWS / 2] != nullptr;
}
bool BTreeImpl::Leaf::isHalfFull() const {
KJ_TABLE_IASSERT(rows[Leaf::NROWS / 2 - 1] != nullptr);
return rows[Leaf::NROWS / 2] == nullptr;
}
bool BTreeImpl::Parent::isFull() const {
return keys[Parent::NKEYS - 1] != nullptr;
}
bool BTreeImpl::Parent::isMostlyFull() const {
return keys[Parent::NKEYS / 2] != nullptr;
}
bool BTreeImpl::Parent::isHalfFull() const {
KJ_TABLE_IASSERT(keys[Parent::NKEYS / 2 - 1] != nullptr);
return keys[Parent::NKEYS / 2] == nullptr;
}
class BTreeImpl::Iterator {
public:
Iterator(const NodeUnion* tree, const Leaf* leaf, uint row)
: tree(tree), leaf(leaf), row(row) {}
size_t operator*() const {
KJ_TABLE_IREQUIRE(row < Leaf::NROWS && leaf->rows[row] != nullptr,
"tried to dereference end() iterator");
return *leaf->rows[row];
}
inline Iterator& operator++() {
KJ_TABLE_IREQUIRE(leaf->rows[row] != nullptr, "B-tree iterator overflow");
++row;
if (row >= Leaf::NROWS || leaf->rows[row] == nullptr) {
if (leaf->next == 0) {
// at end; stay on current leaf
} else {
leaf = &tree[leaf->next].leaf;
row = 0;
}
}
return *this;
}
inline Iterator operator++(int) {
Iterator other = *this;
++*this;
return other;
}
inline Iterator& operator--() {
if (row == 0) {
KJ_TABLE_IREQUIRE(leaf->prev != 0, "B-tree iterator underflow");
leaf = &tree[leaf->prev].leaf;
row = leaf->size() - 1;
} else {
--row;
}
return *this;
}
inline Iterator operator--(int) {
Iterator other = *this;
--*this;
return other;
}
inline bool operator==(const Iterator& other) const {
return leaf == other.leaf && row == other.row;
}
inline bool operator!=(const Iterator& other) const {
return leaf != other.leaf || row != other.row;
}
bool isEnd() {
return row == Leaf::NROWS || leaf->rows[row] == nullptr;
}
void insert(BTreeImpl& impl, uint newRow) {
KJ_TABLE_IASSERT(impl.tree == tree);
const_cast<Leaf*>(leaf)->insert(row, newRow);
}
void erase(BTreeImpl& impl) {
KJ_TABLE_IASSERT(impl.tree == tree);
const_cast<Leaf*>(leaf)->erase(row);
}
void replace(BTreeImpl& impl, uint newRow) {
KJ_TABLE_IASSERT(impl.tree == tree);
const_cast<Leaf*>(leaf)->rows[row] = newRow;
}
private:
const NodeUnion* tree;
const Leaf* leaf;
uint row;
};
inline BTreeImpl::Iterator BTreeImpl::begin() const {
return { tree, &tree[beginLeaf].leaf, 0 };
}
inline BTreeImpl::Iterator BTreeImpl::end() const {
auto& leaf = tree[endLeaf].leaf;
return { tree, &leaf, leaf.size() };
}
} // namespace _ (private)
template <typename Callbacks>
class TreeIndex {
public:
TreeIndex() = default;
template <typename... Params>
TreeIndex(Params&&... params): cb(kj::fwd<Params>(params)...) {}
template <typename Row>
void verify(kj::ArrayPtr<Row> table) {
impl.verify(table.size(), [&](uint i, uint j) {
return cb.isBefore(table[i], table[j]);
});
}
inline void reserve(size_t size) { impl.reserve(size); }
inline void clear() { impl.clear(); }
inline auto begin() const { return impl.begin(); }
inline auto end() const { return impl.end(); }
template <typename Row>
decltype(auto) keyForRow(Row&& row) const {
return cb.keyForRow(kj::fwd<Row>(row));
}
template <typename Row, typename... Params>
kj::Maybe<size_t> insert(kj::ArrayPtr<Row> table, size_t pos, Params&&... params) {
auto iter = impl.insert(searchKey(table, params...));
if (!iter.isEnd() && cb.matches(table[*iter], params...)) {
return *iter;
} else {
iter.insert(impl, pos);
return nullptr;
}
}
template <typename Row, typename... Params>
void erase(kj::ArrayPtr<Row> table, size_t pos, Params&&... params) {
impl.erase(pos, searchKey(table, params...));
}
template <typename Row, typename... Params>
void move(kj::ArrayPtr<Row> table, size_t oldPos, size_t newPos, Params&&... params) {
impl.renumber(oldPos, newPos, searchKey(table, params...));
}
template <typename Row, typename... Params>
Maybe<size_t> find(kj::ArrayPtr<Row> table, Params&&... params) const {
auto iter = impl.search(searchKey(table, params...));
if (!iter.isEnd() && cb.matches(table[*iter], params...)) {
return size_t(*iter);
} else {
return nullptr;
}
}
template <typename Row, typename... Params>
_::BTreeImpl::Iterator seek(kj::ArrayPtr<Row> table, Params&&... params) const {
return impl.search(searchKey(table, params...));
}
private:
Callbacks cb;
_::BTreeImpl impl;
template <typename Predicate>
class SearchKeyImpl: public _::BTreeImpl::SearchKey {
public:
SearchKeyImpl(Predicate&& predicate)
: predicate(kj::mv(predicate)) {}
uint search(const _::BTreeImpl::Parent& parent) const override {
return parent.binarySearch(predicate);
}
uint search(const _::BTreeImpl::Leaf& leaf) const override {
return leaf.binarySearch(predicate);
}
bool isAfter(uint rowIndex) const override {
return predicate(rowIndex);
}
private:
Predicate predicate;
};
template <typename Row, typename... Params>
inline auto searchKey(kj::ArrayPtr<Row>& table, Params&... params) const {
auto predicate = [&](uint i) { return cb.isBefore(table[i], params...); };
return SearchKeyImpl<decltype(predicate)>(kj::mv(predicate));
}
};
// -----------------------------------------------------------------------------
// Insertion order index
class InsertionOrderIndex {
// Table index which allows iterating over elements in order of insertion. This index cannot
// be used for Table::find(), but can be used for Table::ordered().
struct Link;
public:
InsertionOrderIndex();
InsertionOrderIndex(const InsertionOrderIndex&) = delete;
InsertionOrderIndex& operator=(const InsertionOrderIndex&) = delete;
InsertionOrderIndex(InsertionOrderIndex&& other);
InsertionOrderIndex& operator=(InsertionOrderIndex&& other);
~InsertionOrderIndex() noexcept(false);
class Iterator {
public:
Iterator(const Link* links, uint pos)
: links(links), pos(pos) {}
inline size_t operator*() const {
KJ_TABLE_IREQUIRE(pos != 0, "can't dereference end() iterator");
return pos - 1;
};
inline Iterator& operator++() {
pos = links[pos].next;
return *this;
}
inline Iterator operator++(int) {
Iterator result = *this;
++*this;
return result;
}
inline Iterator& operator--() {
pos = links[pos].prev;
return *this;
}
inline Iterator operator--(int) {
Iterator result = *this;
--*this;
return result;
}
inline bool operator==(const Iterator& other) const {
return pos == other.pos;
}
inline bool operator!=(const Iterator& other) const {
return pos != other.pos;
}
private:
const Link* links;
uint pos;
};
template <typename Row>
Row& keyForRow(Row& row) const { return row; }
void reserve(size_t size);
void clear();
inline Iterator begin() const { return Iterator(links, links[0].next); }
inline Iterator end() const { return Iterator(links, 0); }
template <typename Row>
kj::Maybe<size_t> insert(kj::ArrayPtr<Row> table, size_t pos, const Row& row) {
return insertImpl(pos);
}
template <typename Row>
void erase(kj::ArrayPtr<Row> table, size_t pos, const Row& row) {
eraseImpl(pos);
}
template <typename Row>
void move(kj::ArrayPtr<Row> table, size_t oldPos, size_t newPos, const Row& row) {
return moveImpl(oldPos, newPos);
}
private:
struct Link {
uint next;
uint prev;
};
uint capacity;
Link* links;
// links[0] is special: links[0].next points to the first link, links[0].prev points to the last.
// links[n+1] corresponds to row n.
kj::Maybe<size_t> insertImpl(size_t pos);
void eraseImpl(size_t pos);
void moveImpl(size_t oldPos, size_t newPos);
static const Link EMPTY_LINK;
};
} // namespace kj
KJ_END_HEADER