| // Copyright (c) 2013, Kenton Varda <[email protected]> |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR |
| // ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef KJ_ARRAY_H_ |
| #define KJ_ARRAY_H_ |
| |
| #include "common.h" |
| #include <string.h> |
| #include <initializer_list> |
| |
| namespace kj { |
| |
| // ======================================================================================= |
| // ArrayDisposer -- Implementation details. |
| |
| class ArrayDisposer { |
| // Much like Disposer from memory.h. |
| |
| protected: |
| // Do not declare a destructor, as doing so will force a global initializer for |
| // HeapArrayDisposer::instance. |
| |
| virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, |
| size_t capacity, void (*destroyElement)(void*)) const = 0; |
| // Disposes of the array. `destroyElement` invokes the destructor of each element, or is nullptr |
| // if the elements have trivial destructors. `capacity` is the amount of space that was |
| // allocated while `elementCount` is the number of elements that were actually constructed; |
| // these are always the same number for Array<T> but may be different when using ArrayBuilder<T>. |
| |
| public: |
| |
| template <typename T> |
| void dispose(T* firstElement, size_t elementCount, size_t capacity) const; |
| // Helper wrapper around disposeImpl(). |
| // |
| // Callers must not call dispose() on the same array twice, even if the first call throws |
| // an exception. |
| |
| private: |
| template <typename T, bool hasTrivialDestructor = __has_trivial_destructor(T)> |
| struct Dispose_; |
| }; |
| |
| // ======================================================================================= |
| // Array |
| |
| template <typename T> |
| class Array { |
| // An owned array which will automatically be disposed of (using an ArrayDisposer) in the |
| // destructor. Can be moved, but not copied. Much like Own<T>, but for arrays rather than |
| // single objects. |
| |
| public: |
| inline Array(): ptr(nullptr), size_(0) {} |
| inline Array(decltype(nullptr)): ptr(nullptr), size_(0) {} |
| inline Array(Array&& other) noexcept |
| : ptr(other.ptr), size_(other.size_), disposer(other.disposer) { |
| other.ptr = nullptr; |
| other.size_ = 0; |
| } |
| inline Array(Array<RemoveConstOrBogus<T>>&& other) noexcept |
| : ptr(other.ptr), size_(other.size_), disposer(other.disposer) { |
| other.ptr = nullptr; |
| other.size_ = 0; |
| } |
| inline Array(T* firstElement, size_t size, const ArrayDisposer& disposer) |
| : ptr(firstElement), size_(size), disposer(&disposer) {} |
| |
| KJ_DISALLOW_COPY(Array); |
| inline ~Array() noexcept { dispose(); } |
| |
| inline operator ArrayPtr<T>() { |
| return ArrayPtr<T>(ptr, size_); |
| } |
| inline operator ArrayPtr<const T>() const { |
| return ArrayPtr<T>(ptr, size_); |
| } |
| inline ArrayPtr<T> asPtr() { |
| return ArrayPtr<T>(ptr, size_); |
| } |
| |
| inline size_t size() const { return size_; } |
| inline T& operator[](size_t index) const { |
| KJ_IREQUIRE(index < size_, "Out-of-bounds Array access."); |
| return ptr[index]; |
| } |
| |
| inline const T* begin() const { return ptr; } |
| inline const T* end() const { return ptr + size_; } |
| inline const T& front() const { return *ptr; } |
| inline const T& back() const { return *(ptr + size_ - 1); } |
| inline T* begin() { return ptr; } |
| inline T* end() { return ptr + size_; } |
| inline T& front() { return *ptr; } |
| inline T& back() { return *(ptr + size_ - 1); } |
| |
| inline ArrayPtr<T> slice(size_t start, size_t end) { |
| KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice()."); |
| return ArrayPtr<T>(ptr + start, end - start); |
| } |
| inline ArrayPtr<const T> slice(size_t start, size_t end) const { |
| KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice()."); |
| return ArrayPtr<const T>(ptr + start, end - start); |
| } |
| |
| inline bool operator==(decltype(nullptr)) const { return size_ == 0; } |
| inline bool operator!=(decltype(nullptr)) const { return size_ != 0; } |
| |
| inline Array& operator=(decltype(nullptr)) { |
| dispose(); |
| return *this; |
| } |
| |
| inline Array& operator=(Array&& other) { |
| dispose(); |
| ptr = other.ptr; |
| size_ = other.size_; |
| disposer = other.disposer; |
| other.ptr = nullptr; |
| other.size_ = 0; |
| return *this; |
| } |
| |
| private: |
| T* ptr; |
| size_t size_; |
| const ArrayDisposer* disposer; |
| |
| inline void dispose() { |
| // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly |
| // dispose again. |
| T* ptrCopy = ptr; |
| size_t sizeCopy = size_; |
| if (ptrCopy != nullptr) { |
| ptr = nullptr; |
| size_ = 0; |
| disposer->dispose(ptrCopy, sizeCopy, sizeCopy); |
| } |
| } |
| |
| template <typename U> |
| friend class Array; |
| }; |
| |
| namespace _ { // private |
| |
| class HeapArrayDisposer final: public ArrayDisposer { |
| public: |
| template <typename T> |
| static T* allocate(size_t count); |
| template <typename T> |
| static T* allocateUninitialized(size_t count); |
| |
| static const HeapArrayDisposer instance; |
| |
| private: |
| static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity, |
| void (*constructElement)(void*), void (*destroyElement)(void*)); |
| // Allocates and constructs the array. Both function pointers are null if the constructor is |
| // trivial, otherwise destroyElement is null if the constructor doesn't throw. |
| |
| virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, |
| size_t capacity, void (*destroyElement)(void*)) const override; |
| |
| template <typename T, bool hasTrivialConstructor = __has_trivial_constructor(T), |
| bool hasNothrowConstructor = __has_nothrow_constructor(T)> |
| struct Allocate_; |
| |
| struct ExceptionGuard; |
| }; |
| |
| } // namespace _ (private) |
| |
| template <typename T> |
| inline Array<T> heapArray(size_t size) { |
| // Much like `heap<T>()` from memory.h, allocates a new array on the heap. |
| |
| return Array<T>(_::HeapArrayDisposer::allocate<T>(size), size, |
| _::HeapArrayDisposer::instance); |
| } |
| |
| template <typename T> Array<T> heapArray(const T* content, size_t size); |
| template <typename T> Array<T> heapArray(ArrayPtr<const T> content); |
| template <typename T, typename Iterator> Array<T> heapArray(Iterator begin, Iterator end); |
| template <typename T> Array<T> heapArray(std::initializer_list<T> init); |
| // Allocate a heap array containing a copy of the given content. |
| |
| template <typename T, typename Container> |
| Array<T> heapArrayFromIterable(Container&& a) { return heapArray(a.begin(), a.end()); } |
| template <typename T> |
| Array<T> heapArrayFromIterable(Array<T>&& a) { return mv(a); } |
| |
| // ======================================================================================= |
| // ArrayBuilder |
| |
| template <typename T> |
| class ArrayBuilder { |
| // Class which lets you build an Array<T> specifying the exact constructor arguments for each |
| // element, rather than starting by default-constructing them. |
| |
| public: |
| ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {} |
| ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {} |
| explicit ArrayBuilder(RemoveConst<T>* firstElement, size_t capacity, |
| const ArrayDisposer& disposer) |
| : ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity), |
| disposer(&disposer) {} |
| ArrayBuilder(ArrayBuilder&& other) |
| : ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) { |
| other.ptr = nullptr; |
| other.pos = nullptr; |
| other.endPtr = nullptr; |
| } |
| KJ_DISALLOW_COPY(ArrayBuilder); |
| inline ~ArrayBuilder() noexcept(false) { dispose(); } |
| |
| inline operator ArrayPtr<T>() { |
| return arrayPtr(ptr, pos); |
| } |
| inline operator ArrayPtr<const T>() const { |
| return arrayPtr(ptr, pos); |
| } |
| inline ArrayPtr<T> asPtr() { |
| return arrayPtr(ptr, pos); |
| } |
| inline ArrayPtr<const T> asPtr() const { |
| return arrayPtr(ptr, pos); |
| } |
| |
| inline size_t size() const { return pos - ptr; } |
| inline size_t capacity() const { return endPtr - ptr; } |
| inline T& operator[](size_t index) const { |
| KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access."); |
| return ptr[index]; |
| } |
| |
| inline const T* begin() const { return ptr; } |
| inline const T* end() const { return pos; } |
| inline const T& front() const { return *ptr; } |
| inline const T& back() const { return *(pos - 1); } |
| inline T* begin() { return ptr; } |
| inline T* end() { return pos; } |
| inline T& front() { return *ptr; } |
| inline T& back() { return *(pos - 1); } |
| |
| ArrayBuilder& operator=(ArrayBuilder&& other) { |
| dispose(); |
| ptr = other.ptr; |
| pos = other.pos; |
| endPtr = other.endPtr; |
| disposer = other.disposer; |
| other.ptr = nullptr; |
| other.pos = nullptr; |
| other.endPtr = nullptr; |
| return *this; |
| } |
| ArrayBuilder& operator=(decltype(nullptr)) { |
| dispose(); |
| return *this; |
| } |
| |
| template <typename... Params> |
| void add(Params&&... params) { |
| KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder."); |
| ctor(*pos, kj::fwd<Params>(params)...); |
| ++pos; |
| } |
| |
| template <typename Container> |
| void addAll(Container&& container) { |
| addAll(container.begin(), container.end()); |
| } |
| |
| template <typename Iterator> |
| void addAll(Iterator start, Iterator end); |
| |
| Array<T> finish() { |
| // We could safely remove this check as long as HeapArrayDisposer relies on operator delete |
| // (which doesn't need to know the original capacity) or if we created a custom disposer for |
| // ArrayBuilder which stores the capacity in a prefix. But that would mean we can't allow |
| // arbitrary disposers with ArrayBuilder in the future, and anyway this check might catch bugs. |
| // Probably we should just create a new Vector-like data structure if we want to allow building |
| // of arrays without knowing the final size in advance. |
| KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely."); |
| Array<T> result(reinterpret_cast<T*>(ptr), pos - ptr, _::HeapArrayDisposer::instance); |
| ptr = nullptr; |
| pos = nullptr; |
| endPtr = nullptr; |
| return result; |
| } |
| |
| inline bool isFull() const { |
| return pos == endPtr; |
| } |
| |
| private: |
| T* ptr; |
| RemoveConst<T>* pos; |
| T* endPtr; |
| const ArrayDisposer* disposer; |
| |
| inline void dispose() { |
| // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly |
| // dispose again. |
| T* ptrCopy = ptr; |
| T* posCopy = pos; |
| T* endCopy = endPtr; |
| if (ptrCopy != nullptr) { |
| ptr = nullptr; |
| pos = nullptr; |
| endPtr = nullptr; |
| disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy); |
| } |
| } |
| }; |
| |
| template <typename T> |
| inline ArrayBuilder<T> heapArrayBuilder(size_t size) { |
| // Like `heapArray<T>()` but does not default-construct the elements. You must construct them |
| // manually by calling `add()`. |
| |
| return ArrayBuilder<T>(_::HeapArrayDisposer::allocateUninitialized<RemoveConst<T>>(size), |
| size, _::HeapArrayDisposer::instance); |
| } |
| |
| // ======================================================================================= |
| // Inline Arrays |
| |
| template <typename T, size_t fixedSize> |
| class FixedArray { |
| // A fixed-width array whose storage is allocated inline rather than on the heap. |
| |
| public: |
| inline size_t size() const { return fixedSize; } |
| inline T* begin() { return content; } |
| inline T* end() { return content + fixedSize; } |
| inline const T* begin() const { return content; } |
| inline const T* end() const { return content + fixedSize; } |
| |
| inline operator ArrayPtr<T>() { |
| return arrayPtr(content, fixedSize); |
| } |
| inline operator ArrayPtr<const T>() const { |
| return arrayPtr(content, fixedSize); |
| } |
| |
| inline T& operator[](size_t index) { return content[index]; } |
| inline const T& operator[](size_t index) const { return content[index]; } |
| |
| private: |
| T content[fixedSize]; |
| }; |
| |
| template <typename T, size_t fixedSize> |
| class CappedArray { |
| // Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit |
| // specified by the template parameter. |
| // |
| // TODO(someday): Don't construct elements past currentSize? |
| |
| public: |
| inline constexpr CappedArray(): currentSize(fixedSize) {} |
| inline explicit constexpr CappedArray(size_t s): currentSize(s) {} |
| |
| inline size_t size() const { return currentSize; } |
| inline void setSize(size_t s) { currentSize = s; } |
| inline T* begin() { return content; } |
| inline T* end() { return content + currentSize; } |
| inline const T* begin() const { return content; } |
| inline const T* end() const { return content + currentSize; } |
| |
| inline operator ArrayPtr<T>() { |
| return arrayPtr(content, currentSize); |
| } |
| inline operator ArrayPtr<const T>() const { |
| return arrayPtr(content, currentSize); |
| } |
| |
| inline T& operator[](size_t index) { return content[index]; } |
| inline const T& operator[](size_t index) const { return content[index]; } |
| |
| private: |
| size_t currentSize; |
| T content[fixedSize]; |
| }; |
| |
| // ======================================================================================= |
| // Inline implementation details |
| |
| template <typename T> |
| struct ArrayDisposer::Dispose_<T, true> { |
| static void dispose(T* firstElement, size_t elementCount, size_t capacity, |
| const ArrayDisposer& disposer) { |
| disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement), |
| sizeof(T), elementCount, capacity, nullptr); |
| } |
| }; |
| template <typename T> |
| struct ArrayDisposer::Dispose_<T, false> { |
| static void destruct(void* ptr) { |
| kj::dtor(*reinterpret_cast<T*>(ptr)); |
| } |
| |
| static void dispose(T* firstElement, size_t elementCount, size_t capacity, |
| const ArrayDisposer& disposer) { |
| disposer.disposeImpl(firstElement, sizeof(T), elementCount, capacity, &destruct); |
| } |
| }; |
| |
| template <typename T> |
| void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const { |
| Dispose_<T>::dispose(firstElement, elementCount, capacity, *this); |
| } |
| |
| namespace _ { // private |
| |
| template <typename T> |
| struct HeapArrayDisposer::Allocate_<T, true, true> { |
| static T* allocate(size_t elementCount, size_t capacity) { |
| return reinterpret_cast<T*>(allocateImpl( |
| sizeof(T), elementCount, capacity, nullptr, nullptr)); |
| } |
| }; |
| template <typename T> |
| struct HeapArrayDisposer::Allocate_<T, false, true> { |
| static void construct(void* ptr) { |
| kj::ctor(*reinterpret_cast<T*>(ptr)); |
| } |
| static T* allocate(size_t elementCount, size_t capacity) { |
| return reinterpret_cast<T*>(allocateImpl( |
| sizeof(T), elementCount, capacity, &construct, nullptr)); |
| } |
| }; |
| template <typename T> |
| struct HeapArrayDisposer::Allocate_<T, false, false> { |
| static void construct(void* ptr) { |
| kj::ctor(*reinterpret_cast<T*>(ptr)); |
| } |
| static void destruct(void* ptr) { |
| kj::dtor(*reinterpret_cast<T*>(ptr)); |
| } |
| static T* allocate(size_t elementCount, size_t capacity) { |
| return reinterpret_cast<T*>(allocateImpl( |
| sizeof(T), elementCount, capacity, &construct, &destruct)); |
| } |
| }; |
| |
| template <typename T> |
| T* HeapArrayDisposer::allocate(size_t count) { |
| return Allocate_<T>::allocate(count, count); |
| } |
| |
| template <typename T> |
| T* HeapArrayDisposer::allocateUninitialized(size_t count) { |
| return Allocate_<T, true, true>::allocate(0, count); |
| } |
| |
| template <typename Element, typename Iterator, |
| bool trivial = __has_trivial_copy(Element) && __has_trivial_assign(Element)> |
| struct CopyConstructArray_; |
| |
| template <typename T> |
| struct CopyConstructArray_<T, T*, true> { |
| static inline T* apply(T* __restrict__ pos, T* start, T* end) { |
| memcpy(pos, start, reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start)); |
| return pos + (end - start); |
| } |
| }; |
| |
| template <typename T> |
| struct CopyConstructArray_<T, const T*, true> { |
| static inline T* apply(T* __restrict__ pos, const T* start, const T* end) { |
| memcpy(pos, start, reinterpret_cast<const byte*>(end) - reinterpret_cast<const byte*>(start)); |
| return pos + (end - start); |
| } |
| }; |
| |
| template <typename T, typename Iterator> |
| struct CopyConstructArray_<T, Iterator, true> { |
| static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) { |
| // Since both the copy constructor and assignment operator are trivial, we know that assignment |
| // is equivalent to copy-constructing. So we can make this case somewhat easier for the |
| // compiler to optimize. |
| while (start != end) { |
| *pos++ = *start++; |
| } |
| return pos; |
| } |
| }; |
| |
| template <typename T, typename Iterator> |
| struct CopyConstructArray_<T, Iterator, false> { |
| struct ExceptionGuard { |
| T* start; |
| T* pos; |
| inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {} |
| ~ExceptionGuard() noexcept(false) { |
| while (pos > start) { |
| dtor(*--pos); |
| } |
| } |
| }; |
| |
| static T* apply(T* __restrict__ pos, Iterator start, Iterator end) { |
| if (noexcept(T(instance<const T&>()))) { |
| while (start != end) { |
| ctor(*pos++, implicitCast<const T&>(*start++)); |
| } |
| return pos; |
| } else { |
| // Crap. This is complicated. |
| ExceptionGuard guard(pos); |
| while (start != end) { |
| ctor(*guard.pos, implicitCast<const T&>(*start++)); |
| ++guard.pos; |
| } |
| guard.start = guard.pos; |
| return guard.pos; |
| } |
| } |
| }; |
| |
| template <typename T, typename Iterator> |
| inline T* copyConstructArray(T* dst, Iterator start, Iterator end) { |
| return CopyConstructArray_<T, Decay<Iterator>>::apply(dst, start, end); |
| } |
| |
| } // namespace _ (private) |
| |
| template <typename T> |
| template <typename Iterator> |
| void ArrayBuilder<T>::addAll(Iterator start, Iterator end) { |
| pos = _::copyConstructArray(pos, start, end); |
| } |
| |
| template <typename T> |
| Array<T> heapArray(const T* content, size_t size) { |
| ArrayBuilder<T> builder = heapArrayBuilder<T>(size); |
| builder.addAll(content, content + size); |
| return builder.finish(); |
| } |
| |
| template <typename T> |
| Array<T> heapArray(ArrayPtr<const T> content) { |
| ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size()); |
| builder.addAll(content); |
| return builder.finish(); |
| } |
| |
| template <typename T, typename Iterator> Array<T> |
| heapArray(Iterator begin, Iterator end) { |
| ArrayBuilder<T> builder = heapArrayBuilder<T>(end - begin); |
| builder.addAll(begin, end); |
| return builder.finish(); |
| } |
| |
| template <typename T> |
| inline Array<T> heapArray(std::initializer_list<T> init) { |
| return heapArray<T>(init.begin(), init.end()); |
| } |
| |
| } // namespace kj |
| |
| #endif // KJ_ARRAY_H_ |