blob: 488a5d97efb8e39408ce8b2dd1fd4d28f5fcfcad [file] [log] [blame]
// Copyright (c) 2013, Kenton Varda <[email protected]>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef KJ_ARRAY_H_
#define KJ_ARRAY_H_
#include "common.h"
#include <string.h>
#include <initializer_list>
namespace kj {
// =======================================================================================
// ArrayDisposer -- Implementation details.
class ArrayDisposer {
// Much like Disposer from memory.h.
protected:
// Do not declare a destructor, as doing so will force a global initializer for
// HeapArrayDisposer::instance.
virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
size_t capacity, void (*destroyElement)(void*)) const = 0;
// Disposes of the array. `destroyElement` invokes the destructor of each element, or is nullptr
// if the elements have trivial destructors. `capacity` is the amount of space that was
// allocated while `elementCount` is the number of elements that were actually constructed;
// these are always the same number for Array<T> but may be different when using ArrayBuilder<T>.
public:
template <typename T>
void dispose(T* firstElement, size_t elementCount, size_t capacity) const;
// Helper wrapper around disposeImpl().
//
// Callers must not call dispose() on the same array twice, even if the first call throws
// an exception.
private:
template <typename T, bool hasTrivialDestructor = __has_trivial_destructor(T)>
struct Dispose_;
};
// =======================================================================================
// Array
template <typename T>
class Array {
// An owned array which will automatically be disposed of (using an ArrayDisposer) in the
// destructor. Can be moved, but not copied. Much like Own<T>, but for arrays rather than
// single objects.
public:
inline Array(): ptr(nullptr), size_(0) {}
inline Array(decltype(nullptr)): ptr(nullptr), size_(0) {}
inline Array(Array&& other) noexcept
: ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
other.ptr = nullptr;
other.size_ = 0;
}
inline Array(Array<RemoveConstOrBogus<T>>&& other) noexcept
: ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
other.ptr = nullptr;
other.size_ = 0;
}
inline Array(T* firstElement, size_t size, const ArrayDisposer& disposer)
: ptr(firstElement), size_(size), disposer(&disposer) {}
KJ_DISALLOW_COPY(Array);
inline ~Array() noexcept { dispose(); }
inline operator ArrayPtr<T>() {
return ArrayPtr<T>(ptr, size_);
}
inline operator ArrayPtr<const T>() const {
return ArrayPtr<T>(ptr, size_);
}
inline ArrayPtr<T> asPtr() {
return ArrayPtr<T>(ptr, size_);
}
inline size_t size() const { return size_; }
inline T& operator[](size_t index) const {
KJ_IREQUIRE(index < size_, "Out-of-bounds Array access.");
return ptr[index];
}
inline const T* begin() const { return ptr; }
inline const T* end() const { return ptr + size_; }
inline const T& front() const { return *ptr; }
inline const T& back() const { return *(ptr + size_ - 1); }
inline T* begin() { return ptr; }
inline T* end() { return ptr + size_; }
inline T& front() { return *ptr; }
inline T& back() { return *(ptr + size_ - 1); }
inline ArrayPtr<T> slice(size_t start, size_t end) {
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
return ArrayPtr<T>(ptr + start, end - start);
}
inline ArrayPtr<const T> slice(size_t start, size_t end) const {
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
return ArrayPtr<const T>(ptr + start, end - start);
}
inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
inline Array& operator=(decltype(nullptr)) {
dispose();
return *this;
}
inline Array& operator=(Array&& other) {
dispose();
ptr = other.ptr;
size_ = other.size_;
disposer = other.disposer;
other.ptr = nullptr;
other.size_ = 0;
return *this;
}
private:
T* ptr;
size_t size_;
const ArrayDisposer* disposer;
inline void dispose() {
// Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
// dispose again.
T* ptrCopy = ptr;
size_t sizeCopy = size_;
if (ptrCopy != nullptr) {
ptr = nullptr;
size_ = 0;
disposer->dispose(ptrCopy, sizeCopy, sizeCopy);
}
}
template <typename U>
friend class Array;
};
namespace _ { // private
class HeapArrayDisposer final: public ArrayDisposer {
public:
template <typename T>
static T* allocate(size_t count);
template <typename T>
static T* allocateUninitialized(size_t count);
static const HeapArrayDisposer instance;
private:
static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity,
void (*constructElement)(void*), void (*destroyElement)(void*));
// Allocates and constructs the array. Both function pointers are null if the constructor is
// trivial, otherwise destroyElement is null if the constructor doesn't throw.
virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
size_t capacity, void (*destroyElement)(void*)) const override;
template <typename T, bool hasTrivialConstructor = __has_trivial_constructor(T),
bool hasNothrowConstructor = __has_nothrow_constructor(T)>
struct Allocate_;
struct ExceptionGuard;
};
} // namespace _ (private)
template <typename T>
inline Array<T> heapArray(size_t size) {
// Much like `heap<T>()` from memory.h, allocates a new array on the heap.
return Array<T>(_::HeapArrayDisposer::allocate<T>(size), size,
_::HeapArrayDisposer::instance);
}
template <typename T> Array<T> heapArray(const T* content, size_t size);
template <typename T> Array<T> heapArray(ArrayPtr<const T> content);
template <typename T, typename Iterator> Array<T> heapArray(Iterator begin, Iterator end);
template <typename T> Array<T> heapArray(std::initializer_list<T> init);
// Allocate a heap array containing a copy of the given content.
template <typename T, typename Container>
Array<T> heapArrayFromIterable(Container&& a) { return heapArray(a.begin(), a.end()); }
template <typename T>
Array<T> heapArrayFromIterable(Array<T>&& a) { return mv(a); }
// =======================================================================================
// ArrayBuilder
template <typename T>
class ArrayBuilder {
// Class which lets you build an Array<T> specifying the exact constructor arguments for each
// element, rather than starting by default-constructing them.
public:
ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
explicit ArrayBuilder(RemoveConst<T>* firstElement, size_t capacity,
const ArrayDisposer& disposer)
: ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity),
disposer(&disposer) {}
ArrayBuilder(ArrayBuilder&& other)
: ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) {
other.ptr = nullptr;
other.pos = nullptr;
other.endPtr = nullptr;
}
KJ_DISALLOW_COPY(ArrayBuilder);
inline ~ArrayBuilder() noexcept(false) { dispose(); }
inline operator ArrayPtr<T>() {
return arrayPtr(ptr, pos);
}
inline operator ArrayPtr<const T>() const {
return arrayPtr(ptr, pos);
}
inline ArrayPtr<T> asPtr() {
return arrayPtr(ptr, pos);
}
inline ArrayPtr<const T> asPtr() const {
return arrayPtr(ptr, pos);
}
inline size_t size() const { return pos - ptr; }
inline size_t capacity() const { return endPtr - ptr; }
inline T& operator[](size_t index) const {
KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access.");
return ptr[index];
}
inline const T* begin() const { return ptr; }
inline const T* end() const { return pos; }
inline const T& front() const { return *ptr; }
inline const T& back() const { return *(pos - 1); }
inline T* begin() { return ptr; }
inline T* end() { return pos; }
inline T& front() { return *ptr; }
inline T& back() { return *(pos - 1); }
ArrayBuilder& operator=(ArrayBuilder&& other) {
dispose();
ptr = other.ptr;
pos = other.pos;
endPtr = other.endPtr;
disposer = other.disposer;
other.ptr = nullptr;
other.pos = nullptr;
other.endPtr = nullptr;
return *this;
}
ArrayBuilder& operator=(decltype(nullptr)) {
dispose();
return *this;
}
template <typename... Params>
void add(Params&&... params) {
KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder.");
ctor(*pos, kj::fwd<Params>(params)...);
++pos;
}
template <typename Container>
void addAll(Container&& container) {
addAll(container.begin(), container.end());
}
template <typename Iterator>
void addAll(Iterator start, Iterator end);
Array<T> finish() {
// We could safely remove this check as long as HeapArrayDisposer relies on operator delete
// (which doesn't need to know the original capacity) or if we created a custom disposer for
// ArrayBuilder which stores the capacity in a prefix. But that would mean we can't allow
// arbitrary disposers with ArrayBuilder in the future, and anyway this check might catch bugs.
// Probably we should just create a new Vector-like data structure if we want to allow building
// of arrays without knowing the final size in advance.
KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely.");
Array<T> result(reinterpret_cast<T*>(ptr), pos - ptr, _::HeapArrayDisposer::instance);
ptr = nullptr;
pos = nullptr;
endPtr = nullptr;
return result;
}
inline bool isFull() const {
return pos == endPtr;
}
private:
T* ptr;
RemoveConst<T>* pos;
T* endPtr;
const ArrayDisposer* disposer;
inline void dispose() {
// Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
// dispose again.
T* ptrCopy = ptr;
T* posCopy = pos;
T* endCopy = endPtr;
if (ptrCopy != nullptr) {
ptr = nullptr;
pos = nullptr;
endPtr = nullptr;
disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy);
}
}
};
template <typename T>
inline ArrayBuilder<T> heapArrayBuilder(size_t size) {
// Like `heapArray<T>()` but does not default-construct the elements. You must construct them
// manually by calling `add()`.
return ArrayBuilder<T>(_::HeapArrayDisposer::allocateUninitialized<RemoveConst<T>>(size),
size, _::HeapArrayDisposer::instance);
}
// =======================================================================================
// Inline Arrays
template <typename T, size_t fixedSize>
class FixedArray {
// A fixed-width array whose storage is allocated inline rather than on the heap.
public:
inline size_t size() const { return fixedSize; }
inline T* begin() { return content; }
inline T* end() { return content + fixedSize; }
inline const T* begin() const { return content; }
inline const T* end() const { return content + fixedSize; }
inline operator ArrayPtr<T>() {
return arrayPtr(content, fixedSize);
}
inline operator ArrayPtr<const T>() const {
return arrayPtr(content, fixedSize);
}
inline T& operator[](size_t index) { return content[index]; }
inline const T& operator[](size_t index) const { return content[index]; }
private:
T content[fixedSize];
};
template <typename T, size_t fixedSize>
class CappedArray {
// Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit
// specified by the template parameter.
//
// TODO(someday): Don't construct elements past currentSize?
public:
inline constexpr CappedArray(): currentSize(fixedSize) {}
inline explicit constexpr CappedArray(size_t s): currentSize(s) {}
inline size_t size() const { return currentSize; }
inline void setSize(size_t s) { currentSize = s; }
inline T* begin() { return content; }
inline T* end() { return content + currentSize; }
inline const T* begin() const { return content; }
inline const T* end() const { return content + currentSize; }
inline operator ArrayPtr<T>() {
return arrayPtr(content, currentSize);
}
inline operator ArrayPtr<const T>() const {
return arrayPtr(content, currentSize);
}
inline T& operator[](size_t index) { return content[index]; }
inline const T& operator[](size_t index) const { return content[index]; }
private:
size_t currentSize;
T content[fixedSize];
};
// =======================================================================================
// Inline implementation details
template <typename T>
struct ArrayDisposer::Dispose_<T, true> {
static void dispose(T* firstElement, size_t elementCount, size_t capacity,
const ArrayDisposer& disposer) {
disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement),
sizeof(T), elementCount, capacity, nullptr);
}
};
template <typename T>
struct ArrayDisposer::Dispose_<T, false> {
static void destruct(void* ptr) {
kj::dtor(*reinterpret_cast<T*>(ptr));
}
static void dispose(T* firstElement, size_t elementCount, size_t capacity,
const ArrayDisposer& disposer) {
disposer.disposeImpl(firstElement, sizeof(T), elementCount, capacity, &destruct);
}
};
template <typename T>
void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const {
Dispose_<T>::dispose(firstElement, elementCount, capacity, *this);
}
namespace _ { // private
template <typename T>
struct HeapArrayDisposer::Allocate_<T, true, true> {
static T* allocate(size_t elementCount, size_t capacity) {
return reinterpret_cast<T*>(allocateImpl(
sizeof(T), elementCount, capacity, nullptr, nullptr));
}
};
template <typename T>
struct HeapArrayDisposer::Allocate_<T, false, true> {
static void construct(void* ptr) {
kj::ctor(*reinterpret_cast<T*>(ptr));
}
static T* allocate(size_t elementCount, size_t capacity) {
return reinterpret_cast<T*>(allocateImpl(
sizeof(T), elementCount, capacity, &construct, nullptr));
}
};
template <typename T>
struct HeapArrayDisposer::Allocate_<T, false, false> {
static void construct(void* ptr) {
kj::ctor(*reinterpret_cast<T*>(ptr));
}
static void destruct(void* ptr) {
kj::dtor(*reinterpret_cast<T*>(ptr));
}
static T* allocate(size_t elementCount, size_t capacity) {
return reinterpret_cast<T*>(allocateImpl(
sizeof(T), elementCount, capacity, &construct, &destruct));
}
};
template <typename T>
T* HeapArrayDisposer::allocate(size_t count) {
return Allocate_<T>::allocate(count, count);
}
template <typename T>
T* HeapArrayDisposer::allocateUninitialized(size_t count) {
return Allocate_<T, true, true>::allocate(0, count);
}
template <typename Element, typename Iterator,
bool trivial = __has_trivial_copy(Element) && __has_trivial_assign(Element)>
struct CopyConstructArray_;
template <typename T>
struct CopyConstructArray_<T, T*, true> {
static inline T* apply(T* __restrict__ pos, T* start, T* end) {
memcpy(pos, start, reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start));
return pos + (end - start);
}
};
template <typename T>
struct CopyConstructArray_<T, const T*, true> {
static inline T* apply(T* __restrict__ pos, const T* start, const T* end) {
memcpy(pos, start, reinterpret_cast<const byte*>(end) - reinterpret_cast<const byte*>(start));
return pos + (end - start);
}
};
template <typename T, typename Iterator>
struct CopyConstructArray_<T, Iterator, true> {
static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
// Since both the copy constructor and assignment operator are trivial, we know that assignment
// is equivalent to copy-constructing. So we can make this case somewhat easier for the
// compiler to optimize.
while (start != end) {
*pos++ = *start++;
}
return pos;
}
};
template <typename T, typename Iterator>
struct CopyConstructArray_<T, Iterator, false> {
struct ExceptionGuard {
T* start;
T* pos;
inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
~ExceptionGuard() noexcept(false) {
while (pos > start) {
dtor(*--pos);
}
}
};
static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
if (noexcept(T(instance<const T&>()))) {
while (start != end) {
ctor(*pos++, implicitCast<const T&>(*start++));
}
return pos;
} else {
// Crap. This is complicated.
ExceptionGuard guard(pos);
while (start != end) {
ctor(*guard.pos, implicitCast<const T&>(*start++));
++guard.pos;
}
guard.start = guard.pos;
return guard.pos;
}
}
};
template <typename T, typename Iterator>
inline T* copyConstructArray(T* dst, Iterator start, Iterator end) {
return CopyConstructArray_<T, Decay<Iterator>>::apply(dst, start, end);
}
} // namespace _ (private)
template <typename T>
template <typename Iterator>
void ArrayBuilder<T>::addAll(Iterator start, Iterator end) {
pos = _::copyConstructArray(pos, start, end);
}
template <typename T>
Array<T> heapArray(const T* content, size_t size) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
builder.addAll(content, content + size);
return builder.finish();
}
template <typename T>
Array<T> heapArray(ArrayPtr<const T> content) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
builder.addAll(content);
return builder.finish();
}
template <typename T, typename Iterator> Array<T>
heapArray(Iterator begin, Iterator end) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(end - begin);
builder.addAll(begin, end);
return builder.finish();
}
template <typename T>
inline Array<T> heapArray(std::initializer_list<T> init) {
return heapArray<T>(init.begin(), init.end());
}
} // namespace kj
#endif // KJ_ARRAY_H_