| //! Parallel iterator types for [inclusive ranges][std::range], | 
 | //! the type for values created by `a..=b` expressions | 
 | //! | 
 | //! You will rarely need to interact with this module directly unless you have | 
 | //! need to name one of the iterator types. | 
 | //! | 
 | //! ``` | 
 | //! use rayon::prelude::*; | 
 | //! | 
 | //! let r = (0..=100u64).into_par_iter() | 
 | //!                     .sum(); | 
 | //! | 
 | //! // compare result with sequential calculation | 
 | //! assert_eq!((0..=100).sum::<u64>(), r); | 
 | //! ``` | 
 | //! | 
 | //! [std::range]: https://doc.rust-lang.org/core/ops/struct.RangeInclusive.html | 
 |  | 
 | use crate::iter::plumbing::*; | 
 | use crate::iter::*; | 
 | use std::char; | 
 | use std::ops::RangeInclusive; | 
 |  | 
 | /// Parallel iterator over an inclusive range, implemented for all integer types and `char`. | 
 | /// | 
 | /// **Note:** The `zip` operation requires `IndexedParallelIterator` | 
 | /// which is only implemented for `u8`, `i8`, `u16`, `i16`, and `char`. | 
 | /// | 
 | /// ``` | 
 | /// use rayon::prelude::*; | 
 | /// | 
 | /// let p = (0..=25u16).into_par_iter() | 
 | ///                   .zip(0..=25u16) | 
 | ///                   .filter(|&(x, y)| x % 5 == 0 || y % 5 == 0) | 
 | ///                   .map(|(x, y)| x * y) | 
 | ///                   .sum::<u16>(); | 
 | /// | 
 | /// let s = (0..=25u16).zip(0..=25u16) | 
 | ///                   .filter(|&(x, y)| x % 5 == 0 || y % 5 == 0) | 
 | ///                   .map(|(x, y)| x * y) | 
 | ///                   .sum(); | 
 | /// | 
 | /// assert_eq!(p, s); | 
 | /// ``` | 
 | #[derive(Debug, Clone)] | 
 | pub struct Iter<T> { | 
 |     range: RangeInclusive<T>, | 
 | } | 
 |  | 
 | impl<T> Iter<T> | 
 | where | 
 |     RangeInclusive<T>: Eq, | 
 |     T: Ord + Copy, | 
 | { | 
 |     /// Returns `Some((start, end))` for `start..=end`, or `None` if it is exhausted. | 
 |     /// | 
 |     /// Note that `RangeInclusive` does not specify the bounds of an exhausted iterator, | 
 |     /// so this is a way for us to figure out what we've got.  Thankfully, all of the | 
 |     /// integer types we care about can be trivially cloned. | 
 |     fn bounds(&self) -> Option<(T, T)> { | 
 |         let start = *self.range.start(); | 
 |         let end = *self.range.end(); | 
 |         if start <= end && self.range == (start..=end) { | 
 |             // If the range is still nonempty, this is obviously true | 
 |             // If the range is exhausted, either start > end or | 
 |             // the range does not equal start..=end. | 
 |             Some((start, end)) | 
 |         } else { | 
 |             None | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /// Implemented for ranges of all primitive integer types and `char`. | 
 | impl<T> IntoParallelIterator for RangeInclusive<T> | 
 | where | 
 |     Iter<T>: ParallelIterator, | 
 | { | 
 |     type Item = <Iter<T> as ParallelIterator>::Item; | 
 |     type Iter = Iter<T>; | 
 |  | 
 |     fn into_par_iter(self) -> Self::Iter { | 
 |         Iter { range: self } | 
 |     } | 
 | } | 
 |  | 
 | /// These traits help drive integer type inference. Without them, an unknown `{integer}` type only | 
 | /// has constraints on `Iter<{integer}>`, which will probably give up and use `i32`. By adding | 
 | /// these traits on the item type, the compiler can see a more direct constraint to infer like | 
 | /// `{integer}: RangeInteger`, which works better. See `test_issue_833` for an example. | 
 | /// | 
 | /// They have to be `pub` since they're seen in the public `impl ParallelIterator` constraints, but | 
 | /// we put them in a private modules so they're not actually reachable in our public API. | 
 | mod private { | 
 |     use super::*; | 
 |  | 
 |     /// Implementation details of `ParallelIterator for Iter<Self>` | 
 |     pub trait RangeInteger: Sized + Send { | 
 |         private_decl! {} | 
 |  | 
 |         fn drive_unindexed<C>(iter: Iter<Self>, consumer: C) -> C::Result | 
 |         where | 
 |             C: UnindexedConsumer<Self>; | 
 |  | 
 |         fn opt_len(iter: &Iter<Self>) -> Option<usize>; | 
 |     } | 
 |  | 
 |     /// Implementation details of `IndexedParallelIterator for Iter<Self>` | 
 |     pub trait IndexedRangeInteger: RangeInteger { | 
 |         private_decl! {} | 
 |  | 
 |         fn drive<C>(iter: Iter<Self>, consumer: C) -> C::Result | 
 |         where | 
 |             C: Consumer<Self>; | 
 |  | 
 |         fn len(iter: &Iter<Self>) -> usize; | 
 |  | 
 |         fn with_producer<CB>(iter: Iter<Self>, callback: CB) -> CB::Output | 
 |         where | 
 |             CB: ProducerCallback<Self>; | 
 |     } | 
 | } | 
 | use private::{IndexedRangeInteger, RangeInteger}; | 
 |  | 
 | impl<T: RangeInteger> ParallelIterator for Iter<T> { | 
 |     type Item = T; | 
 |  | 
 |     fn drive_unindexed<C>(self, consumer: C) -> C::Result | 
 |     where | 
 |         C: UnindexedConsumer<T>, | 
 |     { | 
 |         T::drive_unindexed(self, consumer) | 
 |     } | 
 |  | 
 |     #[inline] | 
 |     fn opt_len(&self) -> Option<usize> { | 
 |         T::opt_len(self) | 
 |     } | 
 | } | 
 |  | 
 | impl<T: IndexedRangeInteger> IndexedParallelIterator for Iter<T> { | 
 |     fn drive<C>(self, consumer: C) -> C::Result | 
 |     where | 
 |         C: Consumer<T>, | 
 |     { | 
 |         T::drive(self, consumer) | 
 |     } | 
 |  | 
 |     #[inline] | 
 |     fn len(&self) -> usize { | 
 |         T::len(self) | 
 |     } | 
 |  | 
 |     fn with_producer<CB>(self, callback: CB) -> CB::Output | 
 |     where | 
 |         CB: ProducerCallback<T>, | 
 |     { | 
 |         T::with_producer(self, callback) | 
 |     } | 
 | } | 
 |  | 
 | macro_rules! convert { | 
 |     ( $iter:ident . $method:ident ( $( $arg:expr ),* ) ) => { | 
 |         if let Some((start, end)) = $iter.bounds() { | 
 |             if let Some(end) = end.checked_add(1) { | 
 |                 (start..end).into_par_iter().$method($( $arg ),*) | 
 |             } else { | 
 |                 (start..end).into_par_iter().chain(once(end)).$method($( $arg ),*) | 
 |             } | 
 |         } else { | 
 |             empty::<Self>().$method($( $arg ),*) | 
 |         } | 
 |     }; | 
 | } | 
 |  | 
 | macro_rules! parallel_range_impl { | 
 |     ( $t:ty ) => { | 
 |         impl RangeInteger for $t { | 
 |             private_impl! {} | 
 |  | 
 |             fn drive_unindexed<C>(iter: Iter<$t>, consumer: C) -> C::Result | 
 |             where | 
 |                 C: UnindexedConsumer<$t>, | 
 |             { | 
 |                 convert!(iter.drive_unindexed(consumer)) | 
 |             } | 
 |  | 
 |             fn opt_len(iter: &Iter<$t>) -> Option<usize> { | 
 |                 convert!(iter.opt_len()) | 
 |             } | 
 |         } | 
 |     }; | 
 | } | 
 |  | 
 | macro_rules! indexed_range_impl { | 
 |     ( $t:ty ) => { | 
 |         parallel_range_impl! { $t } | 
 |  | 
 |         impl IndexedRangeInteger for $t { | 
 |             private_impl! {} | 
 |  | 
 |             fn drive<C>(iter: Iter<$t>, consumer: C) -> C::Result | 
 |             where | 
 |                 C: Consumer<$t>, | 
 |             { | 
 |                 convert!(iter.drive(consumer)) | 
 |             } | 
 |  | 
 |             fn len(iter: &Iter<$t>) -> usize { | 
 |                 iter.range.len() | 
 |             } | 
 |  | 
 |             fn with_producer<CB>(iter: Iter<$t>, callback: CB) -> CB::Output | 
 |             where | 
 |                 CB: ProducerCallback<$t>, | 
 |             { | 
 |                 convert!(iter.with_producer(callback)) | 
 |             } | 
 |         } | 
 |     }; | 
 | } | 
 |  | 
 | // all RangeInclusive<T> with ExactSizeIterator | 
 | indexed_range_impl! {u8} | 
 | indexed_range_impl! {u16} | 
 | indexed_range_impl! {i8} | 
 | indexed_range_impl! {i16} | 
 |  | 
 | // other RangeInclusive<T> with just Iterator | 
 | parallel_range_impl! {usize} | 
 | parallel_range_impl! {isize} | 
 | parallel_range_impl! {u32} | 
 | parallel_range_impl! {i32} | 
 | parallel_range_impl! {u64} | 
 | parallel_range_impl! {i64} | 
 | parallel_range_impl! {u128} | 
 | parallel_range_impl! {i128} | 
 |  | 
 | // char is special | 
 | macro_rules! convert_char { | 
 |     ( $self:ident . $method:ident ( $( $arg:expr ),* ) ) => { | 
 |         if let Some((start, end)) = $self.bounds() { | 
 |             let start = start as u32; | 
 |             let end = end as u32; | 
 |             if start < 0xD800 && 0xE000 <= end { | 
 |                 // chain the before and after surrogate range fragments | 
 |                 (start..0xD800) | 
 |                     .into_par_iter() | 
 |                     .chain(0xE000..end + 1) // cannot use RangeInclusive, so add one to end | 
 |                     .map(|codepoint| unsafe { char::from_u32_unchecked(codepoint) }) | 
 |                     .$method($( $arg ),*) | 
 |             } else { | 
 |                 // no surrogate range to worry about | 
 |                 (start..end + 1) // cannot use RangeInclusive, so add one to end | 
 |                     .into_par_iter() | 
 |                     .map(|codepoint| unsafe { char::from_u32_unchecked(codepoint) }) | 
 |                     .$method($( $arg ),*) | 
 |             } | 
 |         } else { | 
 |             empty::<char>().$method($( $arg ),*) | 
 |         } | 
 |     }; | 
 | } | 
 |  | 
 | impl ParallelIterator for Iter<char> { | 
 |     type Item = char; | 
 |  | 
 |     fn drive_unindexed<C>(self, consumer: C) -> C::Result | 
 |     where | 
 |         C: UnindexedConsumer<Self::Item>, | 
 |     { | 
 |         convert_char!(self.drive(consumer)) | 
 |     } | 
 |  | 
 |     fn opt_len(&self) -> Option<usize> { | 
 |         Some(self.len()) | 
 |     } | 
 | } | 
 |  | 
 | // Range<u32> is broken on 16 bit platforms, may as well benefit from it | 
 | impl IndexedParallelIterator for Iter<char> { | 
 |     // Split at the surrogate range first if we're allowed to | 
 |     fn drive<C>(self, consumer: C) -> C::Result | 
 |     where | 
 |         C: Consumer<Self::Item>, | 
 |     { | 
 |         convert_char!(self.drive(consumer)) | 
 |     } | 
 |  | 
 |     fn len(&self) -> usize { | 
 |         if let Some((start, end)) = self.bounds() { | 
 |             // Taken from <char as Step>::steps_between | 
 |             let start = start as u32; | 
 |             let end = end as u32; | 
 |             let mut count = end - start; | 
 |             if start < 0xD800 && 0xE000 <= end { | 
 |                 count -= 0x800 | 
 |             } | 
 |             (count + 1) as usize // add one for inclusive | 
 |         } else { | 
 |             0 | 
 |         } | 
 |     } | 
 |  | 
 |     fn with_producer<CB>(self, callback: CB) -> CB::Output | 
 |     where | 
 |         CB: ProducerCallback<Self::Item>, | 
 |     { | 
 |         convert_char!(self.with_producer(callback)) | 
 |     } | 
 | } | 
 |  | 
 | #[test] | 
 | #[cfg(target_pointer_width = "64")] | 
 | fn test_u32_opt_len() { | 
 |     use std::u32; | 
 |     assert_eq!(Some(101), (0..=100u32).into_par_iter().opt_len()); | 
 |     assert_eq!( | 
 |         Some(u32::MAX as usize), | 
 |         (0..=u32::MAX - 1).into_par_iter().opt_len() | 
 |     ); | 
 |     assert_eq!( | 
 |         Some(u32::MAX as usize + 1), | 
 |         (0..=u32::MAX).into_par_iter().opt_len() | 
 |     ); | 
 | } | 
 |  | 
 | #[test] | 
 | fn test_u64_opt_len() { | 
 |     use std::{u64, usize}; | 
 |     assert_eq!(Some(101), (0..=100u64).into_par_iter().opt_len()); | 
 |     assert_eq!( | 
 |         Some(usize::MAX), | 
 |         (0..=usize::MAX as u64 - 1).into_par_iter().opt_len() | 
 |     ); | 
 |     assert_eq!(None, (0..=usize::MAX as u64).into_par_iter().opt_len()); | 
 |     assert_eq!(None, (0..=u64::MAX).into_par_iter().opt_len()); | 
 | } | 
 |  | 
 | #[test] | 
 | fn test_u128_opt_len() { | 
 |     use std::{u128, usize}; | 
 |     assert_eq!(Some(101), (0..=100u128).into_par_iter().opt_len()); | 
 |     assert_eq!( | 
 |         Some(usize::MAX), | 
 |         (0..=usize::MAX as u128 - 1).into_par_iter().opt_len() | 
 |     ); | 
 |     assert_eq!(None, (0..=usize::MAX as u128).into_par_iter().opt_len()); | 
 |     assert_eq!(None, (0..=u128::MAX).into_par_iter().opt_len()); | 
 | } | 
 |  | 
 | // `usize as i64` can overflow, so make sure to wrap it appropriately | 
 | // when using the `opt_len` "indexed" mode. | 
 | #[test] | 
 | #[cfg(target_pointer_width = "64")] | 
 | fn test_usize_i64_overflow() { | 
 |     use crate::ThreadPoolBuilder; | 
 |     use std::i64; | 
 |  | 
 |     let iter = (-2..=i64::MAX).into_par_iter(); | 
 |     assert_eq!(iter.opt_len(), Some(i64::MAX as usize + 3)); | 
 |  | 
 |     // always run with multiple threads to split into, or this will take forever... | 
 |     let pool = ThreadPoolBuilder::new().num_threads(8).build().unwrap(); | 
 |     pool.install(|| assert_eq!(iter.find_last(|_| true), Some(i64::MAX))); | 
 | } | 
 |  | 
 | #[test] | 
 | fn test_issue_833() { | 
 |     fn is_even(n: i64) -> bool { | 
 |         n % 2 == 0 | 
 |     } | 
 |  | 
 |     // The integer type should be inferred from `is_even` | 
 |     let v: Vec<_> = (1..=100).into_par_iter().filter(|&x| is_even(x)).collect(); | 
 |     assert!(v.into_iter().eq((2..=100).step_by(2))); | 
 |  | 
 |     // Try examples with indexed iterators too | 
 |     let pos = (0..=100).into_par_iter().position_any(|x| x == 50i16); | 
 |     assert_eq!(pos, Some(50usize)); | 
 |  | 
 |     assert!((0..=100) | 
 |         .into_par_iter() | 
 |         .zip(0..=100) | 
 |         .all(|(a, b)| i16::eq(&a, &b))); | 
 | } |