| /*! |
| Provides types for dealing with capturing groups. |
| |
| Capturing groups refer to sub-patterns of regexes that some regex engines can |
| report matching offsets for. For example, matching `[a-z]([0-9]+)` against |
| `a789` would give `a789` as the overall match (for the implicit capturing group |
| at index `0`) and `789` as the match for the capturing group `([0-9]+)` (an |
| explicit capturing group at index `1`). |
| |
| Not all regex engines can report match offsets for capturing groups. Indeed, |
| to a first approximation, regex engines that can report capturing group offsets |
| tend to be quite a bit slower than regex engines that can't. This is because |
| tracking capturing groups at search time usually requires more "power" that |
| in turn adds overhead. |
| |
| Other regex implementations might call capturing groups "submatches." |
| |
| # Overview |
| |
| The main types in this module are: |
| |
| * [`Captures`] records the capturing group offsets found during a search. It |
| provides convenience routines for looking up capturing group offsets by either |
| index or name. |
| * [`GroupInfo`] records the mapping between capturing groups and "slots," |
| where the latter are how capturing groups are recorded during a regex search. |
| This also keeps a mapping from capturing group name to index, and capture |
| group index to name. A `GroupInfo` is used by `Captures` internally to |
| provide a convenient API. It is unlikely that you'll use a `GroupInfo` |
| directly, but for example, if you've compiled an Thompson NFA, then you can use |
| [`thompson::NFA::group_info`](crate::nfa::thompson::NFA::group_info) to get its |
| underlying `GroupInfo`. |
| */ |
| |
| use alloc::{string::String, sync::Arc, vec, vec::Vec}; |
| |
| use crate::util::{ |
| interpolate, |
| primitives::{ |
| NonMaxUsize, PatternID, PatternIDError, PatternIDIter, SmallIndex, |
| }, |
| search::{Match, Span}, |
| }; |
| |
| /// The span offsets of capturing groups after a match has been found. |
| /// |
| /// This type represents the output of regex engines that can report the |
| /// offsets at which capturing groups matches or "submatches" occur. For |
| /// example, the [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM). When a match |
| /// occurs, it will at minimum contain the [`PatternID`] of the pattern that |
| /// matched. Depending upon how it was constructed, it may also contain the |
| /// start/end offsets of the entire match of the pattern and the start/end |
| /// offsets of each capturing group that participated in the match. |
| /// |
| /// Values of this type are always created for a specific [`GroupInfo`]. It is |
| /// unspecified behavior to use a `Captures` value in a search with any regex |
| /// engine that has a different `GroupInfo` than the one the `Captures` were |
| /// created with. |
| /// |
| /// # Constructors |
| /// |
| /// There are three constructors for this type that control what kind of |
| /// information is available upon a match: |
| /// |
| /// * [`Captures::all`]: Will store overall pattern match offsets in addition |
| /// to the offsets of capturing groups that participated in the match. |
| /// * [`Captures::matches`]: Will store only the overall pattern |
| /// match offsets. The offsets of capturing groups (even ones that participated |
| /// in the match) are not available. |
| /// * [`Captures::empty`]: Will only store the pattern ID that matched. No |
| /// match offsets are available at all. |
| /// |
| /// If you aren't sure which to choose, then pick the first one. The first one |
| /// is what convenience routines like, |
| /// [`PikeVM::create_captures`](crate::nfa::thompson::pikevm::PikeVM::create_captures), |
| /// will use automatically. |
| /// |
| /// The main difference between these choices is performance. Namely, if you |
| /// ask for _less_ information, then the execution of regex search may be able |
| /// to run more quickly. |
| /// |
| /// # Notes |
| /// |
| /// It is worth pointing out that this type is not coupled to any one specific |
| /// regex engine. Instead, its coupling is with [`GroupInfo`], which is the |
| /// thing that is responsible for mapping capturing groups to "slot" offsets. |
| /// Slot offsets are indices into a single sequence of memory at which matching |
| /// haystack offsets for the corresponding group are written by regex engines. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to parse a simple date and extract the components of |
| /// the date via capturing groups: |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
| /// |
| /// let re = PikeVM::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// |
| /// re.captures(&mut cache, "2010-03-14", &mut caps); |
| /// assert!(caps.is_match()); |
| /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1)); |
| /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2)); |
| /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: named capturing groups |
| /// |
| /// This example is like the one above, but leverages the ability to name |
| /// capturing groups in order to make the code a bit clearer: |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
| /// |
| /// let re = PikeVM::new(r"^(?P<y>[0-9]{4})-(?P<m>[0-9]{2})-(?P<d>[0-9]{2})$")?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// |
| /// re.captures(&mut cache, "2010-03-14", &mut caps); |
| /// assert!(caps.is_match()); |
| /// assert_eq!(Some(Span::from(0..4)), caps.get_group_by_name("y")); |
| /// assert_eq!(Some(Span::from(5..7)), caps.get_group_by_name("m")); |
| /// assert_eq!(Some(Span::from(8..10)), caps.get_group_by_name("d")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[derive(Clone)] |
| pub struct Captures { |
| /// The group info that these capture groups are coupled to. This is what |
| /// gives the "convenience" of the `Captures` API. Namely, it provides the |
| /// slot mapping and the name|-->index mapping for capture lookups by name. |
| group_info: GroupInfo, |
| /// The ID of the pattern that matched. Regex engines must set this to |
| /// None when no match occurs. |
| pid: Option<PatternID>, |
| /// The slot values, i.e., submatch offsets. |
| /// |
| /// In theory, the smallest sequence of slots would be something like |
| /// `max(groups(pattern) for pattern in regex) * 2`, but instead, we use |
| /// `sum(groups(pattern) for pattern in regex) * 2`. Why? |
| /// |
| /// Well, the former could be used in theory, because we don't generally |
| /// have any overlapping APIs that involve capturing groups. Therefore, |
| /// there's technically never any need to have slots set for multiple |
| /// patterns. However, this might change some day, in which case, we would |
| /// need to have slots available. |
| /// |
| /// The other reason is that during the execution of some regex engines, |
| /// there exists a point in time where multiple slots for different |
| /// patterns may be written to before knowing which pattern has matched. |
| /// Therefore, the regex engines themselves, in order to support multiple |
| /// patterns correctly, must have all slots available. If `Captures` |
| /// doesn't have all slots available, then regex engines can't write |
| /// directly into the caller provided `Captures` and must instead write |
| /// into some other storage and then copy the slots involved in the match |
| /// at the end of the search. |
| /// |
| /// So overall, at least as of the time of writing, it seems like the path |
| /// of least resistance is to just require allocating all possible slots |
| /// instead of the conceptual minimum. Another way to justify this is that |
| /// the most common case is a single pattern, in which case, there is no |
| /// inefficiency here since the 'max' and 'sum' calculations above are |
| /// equivalent in that case. |
| /// |
| /// N.B. The mapping from group index to slot is maintained by `GroupInfo` |
| /// and is considered an API guarantee. See `GroupInfo` for more details on |
| /// that mapping. |
| /// |
| /// N.B. `Option<NonMaxUsize>` has the same size as a `usize`. |
| slots: Vec<Option<NonMaxUsize>>, |
| } |
| |
| impl Captures { |
| /// Create new storage for the offsets of all matching capturing groups. |
| /// |
| /// This routine provides the most information for matches---namely, the |
| /// spans of matching capturing groups---but also requires the regex search |
| /// routines to do the most work. |
| /// |
| /// It is unspecified behavior to use the returned `Captures` value in a |
| /// search with a `GroupInfo` other than the one that is provided to this |
| /// constructor. |
| /// |
| /// # Example |
| /// |
| /// This example shows that all capturing groups---but only ones that |
| /// participated in a match---are available to query after a match has |
| /// been found: |
| /// |
| /// ``` |
| /// use regex_automata::{ |
| /// nfa::thompson::pikevm::PikeVM, |
| /// util::captures::Captures, |
| /// Span, Match, |
| /// }; |
| /// |
| /// let re = PikeVM::new( |
| /// r"^(?:(?P<lower>[a-z]+)|(?P<upper>[A-Z]+))(?P<digits>[0-9]+)$", |
| /// )?; |
| /// let mut cache = re.create_cache(); |
| /// let mut caps = Captures::all(re.get_nfa().group_info().clone()); |
| /// |
| /// re.captures(&mut cache, "ABC123", &mut caps); |
| /// assert!(caps.is_match()); |
| /// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match()); |
| /// // The 'lower' group didn't match, so it won't have any offsets. |
| /// assert_eq!(None, caps.get_group_by_name("lower")); |
| /// assert_eq!(Some(Span::from(0..3)), caps.get_group_by_name("upper")); |
| /// assert_eq!(Some(Span::from(3..6)), caps.get_group_by_name("digits")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn all(group_info: GroupInfo) -> Captures { |
| let slots = group_info.slot_len(); |
| Captures { group_info, pid: None, slots: vec![None; slots] } |
| } |
| |
| /// Create new storage for only the full match spans of a pattern. This |
| /// does not include any capturing group offsets. |
| /// |
| /// It is unspecified behavior to use the returned `Captures` value in a |
| /// search with a `GroupInfo` other than the one that is provided to this |
| /// constructor. |
| /// |
| /// # Example |
| /// |
| /// This example shows that only overall match offsets are reported when |
| /// this constructor is used. Accessing any capturing groups other than |
| /// the 0th will always return `None`. |
| /// |
| /// ``` |
| /// use regex_automata::{ |
| /// nfa::thompson::pikevm::PikeVM, |
| /// util::captures::Captures, |
| /// Match, |
| /// }; |
| /// |
| /// let re = PikeVM::new( |
| /// r"^(?:(?P<lower>[a-z]+)|(?P<upper>[A-Z]+))(?P<digits>[0-9]+)$", |
| /// )?; |
| /// let mut cache = re.create_cache(); |
| /// let mut caps = Captures::matches(re.get_nfa().group_info().clone()); |
| /// |
| /// re.captures(&mut cache, "ABC123", &mut caps); |
| /// assert!(caps.is_match()); |
| /// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match()); |
| /// // We didn't ask for capturing group offsets, so they aren't available. |
| /// assert_eq!(None, caps.get_group_by_name("lower")); |
| /// assert_eq!(None, caps.get_group_by_name("upper")); |
| /// assert_eq!(None, caps.get_group_by_name("digits")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn matches(group_info: GroupInfo) -> Captures { |
| // This is OK because we know there are at least this many slots, |
| // and GroupInfo construction guarantees that the number of slots fits |
| // into a usize. |
| let slots = group_info.pattern_len().checked_mul(2).unwrap(); |
| Captures { group_info, pid: None, slots: vec![None; slots] } |
| } |
| |
| /// Create new storage for only tracking which pattern matched. No offsets |
| /// are stored at all. |
| /// |
| /// It is unspecified behavior to use the returned `Captures` value in a |
| /// search with a `GroupInfo` other than the one that is provided to this |
| /// constructor. |
| /// |
| /// # Example |
| /// |
| /// This example shows that only the pattern that matched can be accessed |
| /// from a `Captures` value created via this constructor. |
| /// |
| /// ``` |
| /// use regex_automata::{ |
| /// nfa::thompson::pikevm::PikeVM, |
| /// util::captures::Captures, |
| /// PatternID, |
| /// }; |
| /// |
| /// let re = PikeVM::new_many(&[r"[a-z]+", r"[A-Z]+"])?; |
| /// let mut cache = re.create_cache(); |
| /// let mut caps = Captures::empty(re.get_nfa().group_info().clone()); |
| /// |
| /// re.captures(&mut cache, "aABCz", &mut caps); |
| /// assert!(caps.is_match()); |
| /// assert_eq!(Some(PatternID::must(0)), caps.pattern()); |
| /// // We didn't ask for any offsets, so they aren't available. |
| /// assert_eq!(None, caps.get_match()); |
| /// |
| /// re.captures(&mut cache, &"aABCz"[1..], &mut caps); |
| /// assert!(caps.is_match()); |
| /// assert_eq!(Some(PatternID::must(1)), caps.pattern()); |
| /// // We didn't ask for any offsets, so they aren't available. |
| /// assert_eq!(None, caps.get_match()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn empty(group_info: GroupInfo) -> Captures { |
| Captures { group_info, pid: None, slots: vec![] } |
| } |
| |
| /// Returns true if and only if this capturing group represents a match. |
| /// |
| /// This is a convenience routine for `caps.pattern().is_some()`. |
| /// |
| /// # Example |
| /// |
| /// When using the PikeVM (for example), the lightest weight way of |
| /// detecting whether a match exists is to create capturing groups that |
| /// only track the ID of the pattern that match (if any): |
| /// |
| /// ``` |
| /// use regex_automata::{ |
| /// nfa::thompson::pikevm::PikeVM, |
| /// util::captures::Captures, |
| /// }; |
| /// |
| /// let re = PikeVM::new(r"[a-z]+")?; |
| /// let mut cache = re.create_cache(); |
| /// let mut caps = Captures::empty(re.get_nfa().group_info().clone()); |
| /// |
| /// re.captures(&mut cache, "aABCz", &mut caps); |
| /// assert!(caps.is_match()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn is_match(&self) -> bool { |
| self.pid.is_some() |
| } |
| |
| /// Returns the identifier of the pattern that matched when this |
| /// capturing group represents a match. If no match was found, then this |
| /// always returns `None`. |
| /// |
| /// This returns a pattern ID in precisely the cases in which `is_match` |
| /// returns `true`. Similarly, the pattern ID returned is always the |
| /// same pattern ID found in the `Match` returned by `get_match`. |
| /// |
| /// # Example |
| /// |
| /// When using the PikeVM (for example), the lightest weight way of |
| /// detecting which pattern matched is to create capturing groups that only |
| /// track the ID of the pattern that match (if any): |
| /// |
| /// ``` |
| /// use regex_automata::{ |
| /// nfa::thompson::pikevm::PikeVM, |
| /// util::captures::Captures, |
| /// PatternID, |
| /// }; |
| /// |
| /// let re = PikeVM::new_many(&[r"[a-z]+", r"[A-Z]+"])?; |
| /// let mut cache = re.create_cache(); |
| /// let mut caps = Captures::empty(re.get_nfa().group_info().clone()); |
| /// |
| /// re.captures(&mut cache, "ABC", &mut caps); |
| /// assert_eq!(Some(PatternID::must(1)), caps.pattern()); |
| /// // Recall that offsets are only available when using a non-empty |
| /// // Captures value. So even though a match occurred, this returns None! |
| /// assert_eq!(None, caps.get_match()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn pattern(&self) -> Option<PatternID> { |
| self.pid |
| } |
| |
| /// Returns the pattern ID and the span of the match, if one occurred. |
| /// |
| /// This always returns `None` when `Captures` was created with |
| /// [`Captures::empty`], even if a match was found. |
| /// |
| /// If this routine returns a non-`None` value, then `is_match` is |
| /// guaranteed to return `true` and `pattern` is also guaranteed to return |
| /// a non-`None` value. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to get the full match from a search: |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match}; |
| /// |
| /// let re = PikeVM::new_many(&[r"[a-z]+", r"[A-Z]+"])?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// |
| /// re.captures(&mut cache, "ABC", &mut caps); |
| /// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn get_match(&self) -> Option<Match> { |
| Some(Match::new(self.pattern()?, self.get_group(0)?)) |
| } |
| |
| /// Returns the span of a capturing group match corresponding to the group |
| /// index given, only if both the overall pattern matched and the capturing |
| /// group participated in that match. |
| /// |
| /// This returns `None` if `index` is invalid. `index` is valid if and only |
| /// if it's less than [`Captures::group_len`] for the matching pattern. |
| /// |
| /// This always returns `None` when `Captures` was created with |
| /// [`Captures::empty`], even if a match was found. This also always |
| /// returns `None` for any `index > 0` when `Captures` was created with |
| /// [`Captures::matches`]. |
| /// |
| /// If this routine returns a non-`None` value, then `is_match` is |
| /// guaranteed to return `true`, `pattern` is guaranteed to return a |
| /// non-`None` value and `get_match` is guaranteed to return a non-`None` |
| /// value. |
| /// |
| /// By convention, the 0th capture group will always return the same |
| /// span as the span returned by `get_match`. This is because the 0th |
| /// capture group always corresponds to the entirety of the pattern's |
| /// match. (It is similarly always unnamed because it is implicit.) This |
| /// isn't necessarily true of all regex engines. For example, one can |
| /// hand-compile a [`thompson::NFA`](crate::nfa::thompson::NFA) via a |
| /// [`thompson::Builder`](crate::nfa::thompson::Builder), which isn't |
| /// technically forced to make the 0th capturing group always correspond to |
| /// the entire match. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to get the capturing groups, by index, from a |
| /// match: |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span, Match}; |
| /// |
| /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$")?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// |
| /// re.captures(&mut cache, "Bruce Springsteen", &mut caps); |
| /// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match()); |
| /// assert_eq!(Some(Span::from(0..5)), caps.get_group(1)); |
| /// assert_eq!(Some(Span::from(6..17)), caps.get_group(2)); |
| /// // Looking for a non-existent capturing group will return None: |
| /// assert_eq!(None, caps.get_group(3)); |
| /// # // literals are too big for 32-bit usize: #1039 |
| /// # #[cfg(target_pointer_width = "64")] |
| /// assert_eq!(None, caps.get_group(9944060567225171988)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn get_group(&self, index: usize) -> Option<Span> { |
| let pid = self.pattern()?; |
| // There's a little bit of work needed to map captures to slots in the |
| // fully general case. But in the overwhelming common case of a single |
| // pattern, we can just do some simple arithmetic. |
| let (slot_start, slot_end) = if self.group_info().pattern_len() == 1 { |
| (index.checked_mul(2)?, index.checked_mul(2)?.checked_add(1)?) |
| } else { |
| self.group_info().slots(pid, index)? |
| }; |
| let start = self.slots.get(slot_start).copied()??; |
| let end = self.slots.get(slot_end).copied()??; |
| Some(Span { start: start.get(), end: end.get() }) |
| } |
| |
| /// Returns the span of a capturing group match corresponding to the group |
| /// name given, only if both the overall pattern matched and the capturing |
| /// group participated in that match. |
| /// |
| /// This returns `None` if `name` does not correspond to a valid capturing |
| /// group for the pattern that matched. |
| /// |
| /// This always returns `None` when `Captures` was created with |
| /// [`Captures::empty`], even if a match was found. This also always |
| /// returns `None` for any `index > 0` when `Captures` was created with |
| /// [`Captures::matches`]. |
| /// |
| /// If this routine returns a non-`None` value, then `is_match` is |
| /// guaranteed to return `true`, `pattern` is guaranteed to return a |
| /// non-`None` value and `get_match` is guaranteed to return a non-`None` |
| /// value. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to get the capturing groups, by name, from a |
| /// match: |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span, Match}; |
| /// |
| /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$")?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// |
| /// re.captures(&mut cache, "Bruce Springsteen", &mut caps); |
| /// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match()); |
| /// assert_eq!(Some(Span::from(0..5)), caps.get_group_by_name("first")); |
| /// assert_eq!(Some(Span::from(6..17)), caps.get_group_by_name("last")); |
| /// // Looking for a non-existent capturing group will return None: |
| /// assert_eq!(None, caps.get_group_by_name("middle")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn get_group_by_name(&self, name: &str) -> Option<Span> { |
| let index = self.group_info().to_index(self.pattern()?, name)?; |
| self.get_group(index) |
| } |
| |
| /// Returns an iterator of possible spans for every capturing group in the |
| /// matching pattern. |
| /// |
| /// If this `Captures` value does not correspond to a match, then the |
| /// iterator returned yields no elements. |
| /// |
| /// Note that the iterator returned yields elements of type `Option<Span>`. |
| /// A span is present if and only if it corresponds to a capturing group |
| /// that participated in a match. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to collect all capturing groups: |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
| /// |
| /// let re = PikeVM::new( |
| /// // Matches first/last names, with an optional middle name. |
| /// r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$", |
| /// )?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// |
| /// re.captures(&mut cache, "Harry James Potter", &mut caps); |
| /// assert!(caps.is_match()); |
| /// let groups: Vec<Option<Span>> = caps.iter().collect(); |
| /// assert_eq!(groups, vec![ |
| /// Some(Span::from(0..18)), |
| /// Some(Span::from(0..5)), |
| /// Some(Span::from(6..11)), |
| /// Some(Span::from(12..18)), |
| /// ]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// This example uses the same regex as the previous example, but with a |
| /// haystack that omits the middle name. This results in a capturing group |
| /// that is present in the elements yielded by the iterator but without a |
| /// match: |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span}; |
| /// |
| /// let re = PikeVM::new( |
| /// // Matches first/last names, with an optional middle name. |
| /// r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$", |
| /// )?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// |
| /// re.captures(&mut cache, "Harry Potter", &mut caps); |
| /// assert!(caps.is_match()); |
| /// let groups: Vec<Option<Span>> = caps.iter().collect(); |
| /// assert_eq!(groups, vec![ |
| /// Some(Span::from(0..12)), |
| /// Some(Span::from(0..5)), |
| /// None, |
| /// Some(Span::from(6..12)), |
| /// ]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn iter(&self) -> CapturesPatternIter<'_> { |
| let names = self |
| .pattern() |
| .map_or(GroupInfoPatternNames::empty().enumerate(), |pid| { |
| self.group_info().pattern_names(pid).enumerate() |
| }); |
| CapturesPatternIter { caps: self, names } |
| } |
| |
| /// Return the total number of capturing groups for the matching pattern. |
| /// |
| /// If this `Captures` value does not correspond to a match, then this |
| /// always returns `0`. |
| /// |
| /// This always returns the same number of elements yielded by |
| /// [`Captures::iter`]. That is, the number includes capturing groups even |
| /// if they don't participate in the match. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to count the total number of capturing groups |
| /// associated with a pattern. Notice that it includes groups that did not |
| /// participate in a match (just like `Captures::iter` does). |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
| /// |
| /// let re = PikeVM::new( |
| /// // Matches first/last names, with an optional middle name. |
| /// r"^(?P<first>\pL+)\s+(?:(?P<middle>\pL+)\s+)?(?P<last>\pL+)$", |
| /// )?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// |
| /// re.captures(&mut cache, "Harry Potter", &mut caps); |
| /// assert_eq!(4, caps.group_len()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn group_len(&self) -> usize { |
| let pid = match self.pattern() { |
| None => return 0, |
| Some(pid) => pid, |
| }; |
| self.group_info().group_len(pid) |
| } |
| |
| /// Returns a reference to the underlying group info on which these |
| /// captures are based. |
| /// |
| /// The difference between `GroupInfo` and `Captures` is that the former |
| /// defines the structure of capturing groups where as the latter is what |
| /// stores the actual match information. So where as `Captures` only gives |
| /// you access to the current match, `GroupInfo` lets you query any |
| /// information about all capturing groups, even ones for patterns that |
| /// weren't involved in a match. |
| /// |
| /// Note that a `GroupInfo` uses reference counting internally, so it may |
| /// be cloned cheaply. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to get all capturing group names from the |
| /// underlying `GroupInfo`. Notice that we don't even need to run a |
| /// search. |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
| /// |
| /// let re = PikeVM::new_many(&[ |
| /// r"(?P<foo>a)", |
| /// r"(a)(b)", |
| /// r"ab", |
| /// r"(?P<bar>a)(?P<quux>a)", |
| /// r"(?P<foo>z)", |
| /// ])?; |
| /// let caps = re.create_captures(); |
| /// |
| /// let expected = vec![ |
| /// (PatternID::must(0), 0, None), |
| /// (PatternID::must(0), 1, Some("foo")), |
| /// (PatternID::must(1), 0, None), |
| /// (PatternID::must(1), 1, None), |
| /// (PatternID::must(1), 2, None), |
| /// (PatternID::must(2), 0, None), |
| /// (PatternID::must(3), 0, None), |
| /// (PatternID::must(3), 1, Some("bar")), |
| /// (PatternID::must(3), 2, Some("quux")), |
| /// (PatternID::must(4), 0, None), |
| /// (PatternID::must(4), 1, Some("foo")), |
| /// ]; |
| /// // We could also just use 're.get_nfa().group_info()'. |
| /// let got: Vec<(PatternID, usize, Option<&str>)> = |
| /// caps.group_info().all_names().collect(); |
| /// assert_eq!(expected, got); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn group_info(&self) -> &GroupInfo { |
| &self.group_info |
| } |
| |
| /// Interpolates the capture references in `replacement` with the |
| /// corresponding substrings in `haystack` matched by each reference. The |
| /// interpolated string is returned. |
| /// |
| /// See the [`interpolate` module](interpolate) for documentation on the |
| /// format of the replacement string. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to use interpolation, and also shows how it |
| /// can work with multi-pattern regexes. |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
| /// |
| /// let re = PikeVM::new_many(&[ |
| /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})", |
| /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})", |
| /// ])?; |
| /// let mut cache = re.create_cache(); |
| /// let mut caps = re.create_captures(); |
| /// |
| /// let replacement = "year=$year, month=$month, day=$day"; |
| /// |
| /// // This matches the first pattern. |
| /// let hay = "On 14-03-2010, I became a Tenneessee lamb."; |
| /// re.captures(&mut cache, hay, &mut caps); |
| /// let result = caps.interpolate_string(hay, replacement); |
| /// assert_eq!("year=2010, month=03, day=14", result); |
| /// |
| /// // And this matches the second pattern. |
| /// let hay = "On 2010-03-14, I became a Tenneessee lamb."; |
| /// re.captures(&mut cache, hay, &mut caps); |
| /// let result = caps.interpolate_string(hay, replacement); |
| /// assert_eq!("year=2010, month=03, day=14", result); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn interpolate_string( |
| &self, |
| haystack: &str, |
| replacement: &str, |
| ) -> String { |
| let mut dst = String::new(); |
| self.interpolate_string_into(haystack, replacement, &mut dst); |
| dst |
| } |
| |
| /// Interpolates the capture references in `replacement` with the |
| /// corresponding substrings in `haystack` matched by each reference. The |
| /// interpolated string is written to `dst`. |
| /// |
| /// See the [`interpolate` module](interpolate) for documentation on the |
| /// format of the replacement string. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to use interpolation, and also shows how it |
| /// can work with multi-pattern regexes. |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
| /// |
| /// let re = PikeVM::new_many(&[ |
| /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})", |
| /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})", |
| /// ])?; |
| /// let mut cache = re.create_cache(); |
| /// let mut caps = re.create_captures(); |
| /// |
| /// let replacement = "year=$year, month=$month, day=$day"; |
| /// |
| /// // This matches the first pattern. |
| /// let hay = "On 14-03-2010, I became a Tenneessee lamb."; |
| /// re.captures(&mut cache, hay, &mut caps); |
| /// let mut dst = String::new(); |
| /// caps.interpolate_string_into(hay, replacement, &mut dst); |
| /// assert_eq!("year=2010, month=03, day=14", dst); |
| /// |
| /// // And this matches the second pattern. |
| /// let hay = "On 2010-03-14, I became a Tenneessee lamb."; |
| /// re.captures(&mut cache, hay, &mut caps); |
| /// let mut dst = String::new(); |
| /// caps.interpolate_string_into(hay, replacement, &mut dst); |
| /// assert_eq!("year=2010, month=03, day=14", dst); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn interpolate_string_into( |
| &self, |
| haystack: &str, |
| replacement: &str, |
| dst: &mut String, |
| ) { |
| interpolate::string( |
| replacement, |
| |index, dst| { |
| let span = match self.get_group(index) { |
| None => return, |
| Some(span) => span, |
| }; |
| dst.push_str(&haystack[span]); |
| }, |
| |name| self.group_info().to_index(self.pattern()?, name), |
| dst, |
| ); |
| } |
| |
| /// Interpolates the capture references in `replacement` with the |
| /// corresponding substrings in `haystack` matched by each reference. The |
| /// interpolated byte string is returned. |
| /// |
| /// See the [`interpolate` module](interpolate) for documentation on the |
| /// format of the replacement string. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to use interpolation, and also shows how it |
| /// can work with multi-pattern regexes. |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
| /// |
| /// let re = PikeVM::new_many(&[ |
| /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})", |
| /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})", |
| /// ])?; |
| /// let mut cache = re.create_cache(); |
| /// let mut caps = re.create_captures(); |
| /// |
| /// let replacement = b"year=$year, month=$month, day=$day"; |
| /// |
| /// // This matches the first pattern. |
| /// let hay = b"On 14-03-2010, I became a Tenneessee lamb."; |
| /// re.captures(&mut cache, hay, &mut caps); |
| /// let result = caps.interpolate_bytes(hay, replacement); |
| /// assert_eq!(&b"year=2010, month=03, day=14"[..], result); |
| /// |
| /// // And this matches the second pattern. |
| /// let hay = b"On 2010-03-14, I became a Tenneessee lamb."; |
| /// re.captures(&mut cache, hay, &mut caps); |
| /// let result = caps.interpolate_bytes(hay, replacement); |
| /// assert_eq!(&b"year=2010, month=03, day=14"[..], result); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn interpolate_bytes( |
| &self, |
| haystack: &[u8], |
| replacement: &[u8], |
| ) -> Vec<u8> { |
| let mut dst = vec![]; |
| self.interpolate_bytes_into(haystack, replacement, &mut dst); |
| dst |
| } |
| |
| /// Interpolates the capture references in `replacement` with the |
| /// corresponding substrings in `haystack` matched by each reference. The |
| /// interpolated byte string is written to `dst`. |
| /// |
| /// See the [`interpolate` module](interpolate) for documentation on the |
| /// format of the replacement string. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to use interpolation, and also shows how it |
| /// can work with multi-pattern regexes. |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::pikevm::PikeVM, PatternID}; |
| /// |
| /// let re = PikeVM::new_many(&[ |
| /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})", |
| /// r"(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})", |
| /// ])?; |
| /// let mut cache = re.create_cache(); |
| /// let mut caps = re.create_captures(); |
| /// |
| /// let replacement = b"year=$year, month=$month, day=$day"; |
| /// |
| /// // This matches the first pattern. |
| /// let hay = b"On 14-03-2010, I became a Tenneessee lamb."; |
| /// re.captures(&mut cache, hay, &mut caps); |
| /// let mut dst = vec![]; |
| /// caps.interpolate_bytes_into(hay, replacement, &mut dst); |
| /// assert_eq!(&b"year=2010, month=03, day=14"[..], dst); |
| /// |
| /// // And this matches the second pattern. |
| /// let hay = b"On 2010-03-14, I became a Tenneessee lamb."; |
| /// re.captures(&mut cache, hay, &mut caps); |
| /// let mut dst = vec![]; |
| /// caps.interpolate_bytes_into(hay, replacement, &mut dst); |
| /// assert_eq!(&b"year=2010, month=03, day=14"[..], dst); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn interpolate_bytes_into( |
| &self, |
| haystack: &[u8], |
| replacement: &[u8], |
| dst: &mut Vec<u8>, |
| ) { |
| interpolate::bytes( |
| replacement, |
| |index, dst| { |
| let span = match self.get_group(index) { |
| None => return, |
| Some(span) => span, |
| }; |
| dst.extend_from_slice(&haystack[span]); |
| }, |
| |name| self.group_info().to_index(self.pattern()?, name), |
| dst, |
| ); |
| } |
| |
| /// This is a convenience routine for extracting the substrings |
| /// corresponding to matching capture groups in the given `haystack`. The |
| /// `haystack` should be the same substring used to find the match spans in |
| /// this `Captures` value. |
| /// |
| /// This is identical to [`Captures::extract_bytes`], except it works with |
| /// `&str` instead of `&[u8]`. |
| /// |
| /// # Panics |
| /// |
| /// This panics if the number of explicit matching groups in this |
| /// `Captures` value is less than `N`. This also panics if this `Captures` |
| /// value does not correspond to a match. |
| /// |
| /// Note that this does *not* panic if the number of explicit matching |
| /// groups is bigger than `N`. In that case, only the first `N` matching |
| /// groups are extracted. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
| /// |
| /// let re = PikeVM::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})")?; |
| /// let mut cache = re.create_cache(); |
| /// let mut caps = re.create_captures(); |
| /// |
| /// let hay = "On 2010-03-14, I became a Tenneessee lamb."; |
| /// re.captures(&mut cache, hay, &mut caps); |
| /// assert!(caps.is_match()); |
| /// let (full, [year, month, day]) = caps.extract(hay); |
| /// assert_eq!("2010-03-14", full); |
| /// assert_eq!("2010", year); |
| /// assert_eq!("03", month); |
| /// assert_eq!("14", day); |
| /// |
| /// // We can also ask for fewer than all capture groups. |
| /// let (full, [year]) = caps.extract(hay); |
| /// assert_eq!("2010-03-14", full); |
| /// assert_eq!("2010", year); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn extract<'h, const N: usize>( |
| &self, |
| haystack: &'h str, |
| ) -> (&'h str, [&'h str; N]) { |
| let mut matched = self.iter().flatten(); |
| let whole_match = &haystack[matched.next().expect("a match")]; |
| let group_matches = [0; N].map(|_| { |
| let sp = matched.next().expect("too few matching groups"); |
| &haystack[sp] |
| }); |
| (whole_match, group_matches) |
| } |
| |
| /// This is a convenience routine for extracting the substrings |
| /// corresponding to matching capture groups in the given `haystack`. The |
| /// `haystack` should be the same substring used to find the match spans in |
| /// this `Captures` value. |
| /// |
| /// This is identical to [`Captures::extract`], except it works with |
| /// `&[u8]` instead of `&str`. |
| /// |
| /// # Panics |
| /// |
| /// This panics if the number of explicit matching groups in this |
| /// `Captures` value is less than `N`. This also panics if this `Captures` |
| /// value does not correspond to a match. |
| /// |
| /// Note that this does *not* panic if the number of explicit matching |
| /// groups is bigger than `N`. In that case, only the first `N` matching |
| /// groups are extracted. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
| /// |
| /// let re = PikeVM::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})")?; |
| /// let mut cache = re.create_cache(); |
| /// let mut caps = re.create_captures(); |
| /// |
| /// let hay = b"On 2010-03-14, I became a Tenneessee lamb."; |
| /// re.captures(&mut cache, hay, &mut caps); |
| /// assert!(caps.is_match()); |
| /// let (full, [year, month, day]) = caps.extract_bytes(hay); |
| /// assert_eq!(b"2010-03-14", full); |
| /// assert_eq!(b"2010", year); |
| /// assert_eq!(b"03", month); |
| /// assert_eq!(b"14", day); |
| /// |
| /// // We can also ask for fewer than all capture groups. |
| /// let (full, [year]) = caps.extract_bytes(hay); |
| /// assert_eq!(b"2010-03-14", full); |
| /// assert_eq!(b"2010", year); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn extract_bytes<'h, const N: usize>( |
| &self, |
| haystack: &'h [u8], |
| ) -> (&'h [u8], [&'h [u8]; N]) { |
| let mut matched = self.iter().flatten(); |
| let whole_match = &haystack[matched.next().expect("a match")]; |
| let group_matches = [0; N].map(|_| { |
| let sp = matched.next().expect("too few matching groups"); |
| &haystack[sp] |
| }); |
| (whole_match, group_matches) |
| } |
| } |
| |
| /// Lower level "slot" oriented APIs. One does not typically need to use these |
| /// when executing a search. They are instead mostly intended for folks that |
| /// are writing their own regex engine while reusing this `Captures` type. |
| impl Captures { |
| /// Clear this `Captures` value. |
| /// |
| /// After clearing, all slots inside this `Captures` value will be set to |
| /// `None`. Similarly, any pattern ID that it was previously associated |
| /// with (for a match) is erased. |
| /// |
| /// It is not usually necessary to call this routine. Namely, a `Captures` |
| /// value only provides high level access to the capturing groups of the |
| /// pattern that matched, and only low level access to individual slots. |
| /// Thus, even if slots corresponding to groups that aren't associated |
| /// with the matching pattern are set, then it won't impact the higher |
| /// level APIs. Namely, higher level APIs like [`Captures::get_group`] will |
| /// return `None` if no pattern ID is present, even if there are spans set |
| /// in the underlying slots. |
| /// |
| /// Thus, to "clear" a `Captures` value of a match, it is usually only |
| /// necessary to call [`Captures::set_pattern`] with `None`. |
| /// |
| /// # Example |
| /// |
| /// This example shows what happens when a `Captures` value is cleared. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
| /// |
| /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$")?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// |
| /// re.captures(&mut cache, "Bruce Springsteen", &mut caps); |
| /// assert!(caps.is_match()); |
| /// let slots: Vec<Option<usize>> = |
| /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
| /// // Note that the following ordering is considered an API guarantee. |
| /// assert_eq!(slots, vec![ |
| /// Some(0), |
| /// Some(17), |
| /// Some(0), |
| /// Some(5), |
| /// Some(6), |
| /// Some(17), |
| /// ]); |
| /// |
| /// // Now clear the slots. Everything is gone and it is no longer a match. |
| /// caps.clear(); |
| /// assert!(!caps.is_match()); |
| /// let slots: Vec<Option<usize>> = |
| /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
| /// assert_eq!(slots, vec![ |
| /// None, |
| /// None, |
| /// None, |
| /// None, |
| /// None, |
| /// None, |
| /// ]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn clear(&mut self) { |
| self.pid = None; |
| for slot in self.slots.iter_mut() { |
| *slot = None; |
| } |
| } |
| |
| /// Set the pattern on this `Captures` value. |
| /// |
| /// When the pattern ID is `None`, then this `Captures` value does not |
| /// correspond to a match (`is_match` will return `false`). Otherwise, it |
| /// corresponds to a match. |
| /// |
| /// This is useful in search implementations where you might want to |
| /// initially call `set_pattern(None)` in order to avoid the cost of |
| /// calling `clear()` if it turns out to not be necessary. |
| /// |
| /// # Example |
| /// |
| /// This example shows that `set_pattern` merely overwrites the pattern ID. |
| /// It does not actually change the underlying slot values. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::nfa::thompson::pikevm::PikeVM; |
| /// |
| /// let re = PikeVM::new(r"^(?P<first>\pL+)\s+(?P<last>\pL+)$")?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// |
| /// re.captures(&mut cache, "Bruce Springsteen", &mut caps); |
| /// assert!(caps.is_match()); |
| /// assert!(caps.pattern().is_some()); |
| /// let slots: Vec<Option<usize>> = |
| /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
| /// // Note that the following ordering is considered an API guarantee. |
| /// assert_eq!(slots, vec![ |
| /// Some(0), |
| /// Some(17), |
| /// Some(0), |
| /// Some(5), |
| /// Some(6), |
| /// Some(17), |
| /// ]); |
| /// |
| /// // Now set the pattern to None. Note that the slot values remain. |
| /// caps.set_pattern(None); |
| /// assert!(!caps.is_match()); |
| /// assert!(!caps.pattern().is_some()); |
| /// let slots: Vec<Option<usize>> = |
| /// caps.slots().iter().map(|s| s.map(|x| x.get())).collect(); |
| /// // Note that the following ordering is considered an API guarantee. |
| /// assert_eq!(slots, vec![ |
| /// Some(0), |
| /// Some(17), |
| /// Some(0), |
| /// Some(5), |
| /// Some(6), |
| /// Some(17), |
| /// ]); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn set_pattern(&mut self, pid: Option<PatternID>) { |
| self.pid = pid; |
| } |
| |
| /// Returns the underlying slots, where each slot stores a single offset. |
| /// |
| /// Every matching capturing group generally corresponds to two slots: one |
| /// slot for the starting position and another for the ending position. |
| /// Typically, either both are present or neither are. (The weasel word |
| /// "typically" is used here because it really depends on the regex engine |
| /// implementation. Every sensible regex engine likely adheres to this |
| /// invariant, and every regex engine in this crate is sensible.) |
| /// |
| /// Generally speaking, callers should prefer to use higher level routines |
| /// like [`Captures::get_match`] or [`Captures::get_group`]. |
| /// |
| /// An important note here is that a regex engine may not reset all of the |
| /// slots to `None` values when no match occurs, or even when a match of |
| /// a different pattern occurs. But this depends on how the regex engine |
| /// implementation deals with slots. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to get the underlying slots from a regex match. |
| /// |
| /// ``` |
| /// use regex_automata::{ |
| /// nfa::thompson::pikevm::PikeVM, |
| /// util::primitives::{PatternID, NonMaxUsize}, |
| /// }; |
| /// |
| /// let re = PikeVM::new_many(&[ |
| /// r"[a-z]+", |
| /// r"[0-9]+", |
| /// ])?; |
| /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); |
| /// |
| /// re.captures(&mut cache, "123", &mut caps); |
| /// assert_eq!(Some(PatternID::must(1)), caps.pattern()); |
| /// // Note that the only guarantee we have here is that slots 2 and 3 |
| /// // are set to correct values. The contents of the first two slots are |
| /// // unspecified since the 0th pattern did not match. |
| /// let expected = &[ |
| /// None, |
| /// None, |
| /// NonMaxUsize::new(0), |
| /// NonMaxUsize::new(3), |
| /// ]; |
| /// assert_eq!(expected, caps.slots()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn slots(&self) -> &[Option<NonMaxUsize>] { |
| &self.slots |
| } |
| |
| /// Returns the underlying slots as a mutable slice, where each slot stores |
| /// a single offset. |
| /// |
| /// This tends to be most useful for regex engine implementations for |
| /// writing offsets for matching capturing groups to slots. |
| /// |
| /// See [`Captures::slots`] for more information about slots. |
| #[inline] |
| pub fn slots_mut(&mut self) -> &mut [Option<NonMaxUsize>] { |
| &mut self.slots |
| } |
| } |
| |
| impl core::fmt::Debug for Captures { |
| fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| let mut dstruct = f.debug_struct("Captures"); |
| dstruct.field("pid", &self.pid); |
| if let Some(pid) = self.pid { |
| dstruct.field("spans", &CapturesDebugMap { pid, caps: self }); |
| } |
| dstruct.finish() |
| } |
| } |
| |
| /// A little helper type to provide a nice map-like debug representation for |
| /// our capturing group spans. |
| struct CapturesDebugMap<'a> { |
| pid: PatternID, |
| caps: &'a Captures, |
| } |
| |
| impl<'a> core::fmt::Debug for CapturesDebugMap<'a> { |
| fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| struct Key<'a>(usize, Option<&'a str>); |
| |
| impl<'a> core::fmt::Debug for Key<'a> { |
| fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| write!(f, "{}", self.0)?; |
| if let Some(name) = self.1 { |
| write!(f, "/{:?}", name)?; |
| } |
| Ok(()) |
| } |
| } |
| |
| let mut map = f.debug_map(); |
| let names = self.caps.group_info().pattern_names(self.pid); |
| for (group_index, maybe_name) in names.enumerate() { |
| let key = Key(group_index, maybe_name); |
| match self.caps.get_group(group_index) { |
| None => map.entry(&key, &None::<()>), |
| Some(span) => map.entry(&key, &span), |
| }; |
| } |
| map.finish() |
| } |
| } |
| |
| /// An iterator over all capturing groups in a `Captures` value. |
| /// |
| /// This iterator includes capturing groups that did not participate in a |
| /// match. See the [`Captures::iter`] method documentation for more details |
| /// and examples. |
| /// |
| /// The lifetime parameter `'a` refers to the lifetime of the underlying |
| /// `Captures` value. |
| #[derive(Clone, Debug)] |
| pub struct CapturesPatternIter<'a> { |
| caps: &'a Captures, |
| names: core::iter::Enumerate<GroupInfoPatternNames<'a>>, |
| } |
| |
| impl<'a> Iterator for CapturesPatternIter<'a> { |
| type Item = Option<Span>; |
| |
| fn next(&mut self) -> Option<Option<Span>> { |
| let (group_index, _) = self.names.next()?; |
| Some(self.caps.get_group(group_index)) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.names.size_hint() |
| } |
| |
| fn count(self) -> usize { |
| self.names.count() |
| } |
| } |
| |
| impl<'a> ExactSizeIterator for CapturesPatternIter<'a> {} |
| impl<'a> core::iter::FusedIterator for CapturesPatternIter<'a> {} |
| |
| /// Represents information about capturing groups in a compiled regex. |
| /// |
| /// The information encapsulated by this type consists of the following. For |
| /// each pattern: |
| /// |
| /// * A map from every capture group name to its corresponding capture group |
| /// index. |
| /// * A map from every capture group index to its corresponding capture group |
| /// name. |
| /// * A map from capture group index to its corresponding slot index. A slot |
| /// refers to one half of a capturing group. That is, a capture slot is either |
| /// the start or end of a capturing group. A slot is usually the mechanism |
| /// by which a regex engine records offsets for each capturing group during a |
| /// search. |
| /// |
| /// A `GroupInfo` uses reference counting internally and is thus cheap to |
| /// clone. |
| /// |
| /// # Mapping from capture groups to slots |
| /// |
| /// One of the main responsibilities of a `GroupInfo` is to build a mapping |
| /// from `(PatternID, u32)` (where the `u32` is a capture index) to something |
| /// called a "slot." As mentioned above, a slot refers to one half of a |
| /// capturing group. Both combined provide the start and end offsets of |
| /// a capturing group that participated in a match. |
| /// |
| /// **The mapping between group indices and slots is an API guarantee.** That |
| /// is, the mapping won't change within a semver compatible release. |
| /// |
| /// Slots exist primarily because this is a convenient mechanism by which |
| /// regex engines report group offsets at search time. For example, the |
| /// [`nfa::thompson::State::Capture`](crate::nfa::thompson::State::Capture) |
| /// NFA state includes the slot index. When a regex engine transitions through |
| /// this state, it will likely use the slot index to write the current haystack |
| /// offset to some region of memory. When a match is found, those slots are |
| /// then reported to the caller, typically via a convenient abstraction like a |
| /// [`Captures`] value. |
| /// |
| /// Because this crate provides first class support for multi-pattern regexes, |
| /// and because of some performance related reasons, the mapping between |
| /// capturing groups and slots is a little complex. However, in the case of a |
| /// single pattern, the mapping can be described very simply: for all capture |
| /// group indices `i`, its corresponding slots are at `i * 2` and `i * 2 + 1`. |
| /// Notice that the pattern ID isn't involved at all here, because it only |
| /// applies to a single-pattern regex, it is therefore always `0`. |
| /// |
| /// In the multi-pattern case, the mapping is a bit more complicated. To talk |
| /// about it, we must define what we mean by "implicit" vs "explicit" |
| /// capturing groups: |
| /// |
| /// * An **implicit** capturing group refers to the capturing group that is |
| /// present for every pattern automatically, and corresponds to the overall |
| /// match of a pattern. Every pattern has precisely one implicit capturing |
| /// group. It is always unnamed and it always corresponds to the capture group |
| /// index `0`. |
| /// * An **explicit** capturing group refers to any capturing group that |
| /// appears in the concrete syntax of the pattern. (Or, if an NFA was hand |
| /// built without any concrete syntax, it refers to any capturing group with an |
| /// index greater than `0`.) |
| /// |
| /// Some examples: |
| /// |
| /// * `\w+` has one implicit capturing group and zero explicit capturing |
| /// groups. |
| /// * `(\w+)` has one implicit group and one explicit group. |
| /// * `foo(\d+)(?:\pL+)(\d+)` has one implicit group and two explicit groups. |
| /// |
| /// Turning back to the slot mapping, we can now state it as follows: |
| /// |
| /// * Given a pattern ID `pid`, the slots for its implicit group are always |
| /// at `pid * 2` and `pid * 2 + 1`. |
| /// * Given a pattern ID `0`, the slots for its explicit groups start |
| /// at `group_info.pattern_len() * 2`. |
| /// * Given a pattern ID `pid > 0`, the slots for its explicit groups start |
| /// immediately following where the slots for the explicit groups of `pid - 1` |
| /// end. |
| /// |
| /// In particular, while there is a concrete formula one can use to determine |
| /// where the slots for the implicit group of any pattern are, there is no |
| /// general formula for determining where the slots for explicit capturing |
| /// groups are. This is because each pattern can contain a different number |
| /// of groups. |
| /// |
| /// The intended way of getting the slots for a particular capturing group |
| /// (whether implicit or explicit) is via the [`GroupInfo::slot`] or |
| /// [`GroupInfo::slots`] method. |
| /// |
| /// See below for a concrete example of how capturing groups get mapped to |
| /// slots. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to build a new `GroupInfo` and query it for |
| /// information. |
| /// |
| /// ``` |
| /// use regex_automata::util::{captures::GroupInfo, primitives::PatternID}; |
| /// |
| /// let info = GroupInfo::new(vec![ |
| /// vec![None, Some("foo")], |
| /// vec![None], |
| /// vec![None, None, None, Some("bar"), None], |
| /// vec![None, None, Some("foo")], |
| /// ])?; |
| /// // The number of patterns being tracked. |
| /// assert_eq!(4, info.pattern_len()); |
| /// // We can query the number of groups for any pattern. |
| /// assert_eq!(2, info.group_len(PatternID::must(0))); |
| /// assert_eq!(1, info.group_len(PatternID::must(1))); |
| /// assert_eq!(5, info.group_len(PatternID::must(2))); |
| /// assert_eq!(3, info.group_len(PatternID::must(3))); |
| /// // An invalid pattern always has zero groups. |
| /// assert_eq!(0, info.group_len(PatternID::must(999))); |
| /// // 2 slots per group |
| /// assert_eq!(22, info.slot_len()); |
| /// |
| /// // We can map a group index for a particular pattern to its name, if |
| /// // one exists. |
| /// assert_eq!(Some("foo"), info.to_name(PatternID::must(3), 2)); |
| /// assert_eq!(None, info.to_name(PatternID::must(2), 4)); |
| /// // Or map a name to its group index. |
| /// assert_eq!(Some(1), info.to_index(PatternID::must(0), "foo")); |
| /// assert_eq!(Some(2), info.to_index(PatternID::must(3), "foo")); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: mapping from capture groups to slots |
| /// |
| /// This example shows the specific mapping from capture group indices for |
| /// each pattern to their corresponding slots. The slot values shown in this |
| /// example are considered an API guarantee. |
| /// |
| /// ``` |
| /// use regex_automata::util::{captures::GroupInfo, primitives::PatternID}; |
| /// |
| /// let info = GroupInfo::new(vec![ |
| /// vec![None, Some("foo")], |
| /// vec![None], |
| /// vec![None, None, None, Some("bar"), None], |
| /// vec![None, None, Some("foo")], |
| /// ])?; |
| /// |
| /// // We first show the slots for each pattern's implicit group. |
| /// assert_eq!(Some((0, 1)), info.slots(PatternID::must(0), 0)); |
| /// assert_eq!(Some((2, 3)), info.slots(PatternID::must(1), 0)); |
| /// assert_eq!(Some((4, 5)), info.slots(PatternID::must(2), 0)); |
| /// assert_eq!(Some((6, 7)), info.slots(PatternID::must(3), 0)); |
| /// |
| /// // And now we show the slots for each pattern's explicit group. |
| /// assert_eq!(Some((8, 9)), info.slots(PatternID::must(0), 1)); |
| /// assert_eq!(Some((10, 11)), info.slots(PatternID::must(2), 1)); |
| /// assert_eq!(Some((12, 13)), info.slots(PatternID::must(2), 2)); |
| /// assert_eq!(Some((14, 15)), info.slots(PatternID::must(2), 3)); |
| /// assert_eq!(Some((16, 17)), info.slots(PatternID::must(2), 4)); |
| /// assert_eq!(Some((18, 19)), info.slots(PatternID::must(3), 1)); |
| /// assert_eq!(Some((20, 21)), info.slots(PatternID::must(3), 2)); |
| /// |
| /// // Asking for the slots for an invalid pattern ID or even for an invalid |
| /// // group index for a specific pattern will return None. So for example, |
| /// // you're guaranteed to not get the slots for a different pattern than the |
| /// // one requested. |
| /// assert_eq!(None, info.slots(PatternID::must(5), 0)); |
| /// assert_eq!(None, info.slots(PatternID::must(1), 1)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[derive(Clone, Debug, Default)] |
| pub struct GroupInfo(Arc<GroupInfoInner>); |
| |
| impl GroupInfo { |
| /// Creates a new group info from a sequence of patterns, where each |
| /// sequence of patterns yields a sequence of possible group names. The |
| /// index of each pattern in the sequence corresponds to its `PatternID`, |
| /// and the index of each group in each pattern's sequence corresponds to |
| /// its corresponding group index. |
| /// |
| /// While this constructor is very generic and therefore perhaps hard to |
| /// chew on, an example of a valid concrete type that can be passed to |
| /// this constructor is `Vec<Vec<Option<String>>>`. The outer `Vec` |
| /// corresponds to the patterns, i.e., one `Vec<Option<String>>` per |
| /// pattern. The inner `Vec` corresponds to the capturing groups for |
| /// each pattern. The `Option<String>` corresponds to the name of the |
| /// capturing group, if present. |
| /// |
| /// It is legal to pass an empty iterator to this constructor. It will |
| /// return an empty group info with zero slots. An empty group info is |
| /// useful for cases where you have no patterns or for cases where slots |
| /// aren't being used at all (e.g., for most DFAs in this crate). |
| /// |
| /// # Errors |
| /// |
| /// This constructor returns an error if the given capturing groups are |
| /// invalid in some way. Those reasons include, but are not necessarily |
| /// limited to: |
| /// |
| /// * Too many patterns (i.e., `PatternID` would overflow). |
| /// * Too many capturing groups (e.g., `u32` would overflow). |
| /// * A pattern is given that has no capturing groups. (All patterns must |
| /// have at least an implicit capturing group at index `0`.) |
| /// * The capturing group at index `0` has a name. It must be unnamed. |
| /// * There are duplicate capturing group names within the same pattern. |
| /// (Multiple capturing groups with the same name may exist, but they |
| /// must be in different patterns.) |
| /// |
| /// An example below shows how to trigger some of the above error |
| /// conditions. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to build a new `GroupInfo` and query it for |
| /// information. |
| /// |
| /// ``` |
| /// use regex_automata::util::captures::GroupInfo; |
| /// |
| /// let info = GroupInfo::new(vec![ |
| /// vec![None, Some("foo")], |
| /// vec![None], |
| /// vec![None, None, None, Some("bar"), None], |
| /// vec![None, None, Some("foo")], |
| /// ])?; |
| /// // The number of patterns being tracked. |
| /// assert_eq!(4, info.pattern_len()); |
| /// // 2 slots per group |
| /// assert_eq!(22, info.slot_len()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: empty `GroupInfo` |
| /// |
| /// This example shows how to build a new `GroupInfo` and query it for |
| /// information. |
| /// |
| /// ``` |
| /// use regex_automata::util::captures::GroupInfo; |
| /// |
| /// let info = GroupInfo::empty(); |
| /// // Everything is zero. |
| /// assert_eq!(0, info.pattern_len()); |
| /// assert_eq!(0, info.slot_len()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// # Example: error conditions |
| /// |
| /// This example shows how to provoke some of the ways in which building |
| /// a `GroupInfo` can fail. |
| /// |
| /// ``` |
| /// use regex_automata::util::captures::GroupInfo; |
| /// |
| /// // Either the group info is empty, or all patterns must have at least |
| /// // one capturing group. |
| /// assert!(GroupInfo::new(vec![ |
| /// vec![None, Some("a")], // ok |
| /// vec![None], // ok |
| /// vec![], // not ok |
| /// ]).is_err()); |
| /// // Note that building an empty group info is OK. |
| /// assert!(GroupInfo::new(Vec::<Vec<Option<String>>>::new()).is_ok()); |
| /// |
| /// // The first group in each pattern must correspond to an implicit |
| /// // anonymous group. i.e., One that is not named. By convention, this |
| /// // group corresponds to the overall match of a regex. Every other group |
| /// // in a pattern is explicit and optional. |
| /// assert!(GroupInfo::new(vec![vec![Some("foo")]]).is_err()); |
| /// |
| /// // There must not be duplicate group names within the same pattern. |
| /// assert!(GroupInfo::new(vec![ |
| /// vec![None, Some("foo"), Some("foo")], |
| /// ]).is_err()); |
| /// // But duplicate names across distinct patterns is OK. |
| /// assert!(GroupInfo::new(vec![ |
| /// vec![None, Some("foo")], |
| /// vec![None, Some("foo")], |
| /// ]).is_ok()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// There are other ways for building a `GroupInfo` to fail but are |
| /// difficult to show. For example, if the number of patterns given would |
| /// overflow `PatternID`. |
| pub fn new<P, G, N>(pattern_groups: P) -> Result<GroupInfo, GroupInfoError> |
| where |
| P: IntoIterator<Item = G>, |
| G: IntoIterator<Item = Option<N>>, |
| N: AsRef<str>, |
| { |
| let mut group_info = GroupInfoInner { |
| slot_ranges: vec![], |
| name_to_index: vec![], |
| index_to_name: vec![], |
| memory_extra: 0, |
| }; |
| for (pattern_index, groups) in pattern_groups.into_iter().enumerate() { |
| // If we can't convert the pattern index to an ID, then the caller |
| // tried to build capture info for too many patterns. |
| let pid = PatternID::new(pattern_index) |
| .map_err(GroupInfoError::too_many_patterns)?; |
| |
| let mut groups_iter = groups.into_iter().enumerate(); |
| match groups_iter.next() { |
| None => return Err(GroupInfoError::missing_groups(pid)), |
| Some((_, Some(_))) => { |
| return Err(GroupInfoError::first_must_be_unnamed(pid)) |
| } |
| Some((_, None)) => {} |
| } |
| group_info.add_first_group(pid); |
| // Now iterate over the rest, which correspond to all of the |
| // (conventionally) explicit capture groups in a regex pattern. |
| for (group_index, maybe_name) in groups_iter { |
| // Just like for patterns, if the group index can't be |
| // converted to a "small" index, then the caller has given too |
| // many groups for a particular pattern. |
| let group = SmallIndex::new(group_index).map_err(|_| { |
| GroupInfoError::too_many_groups(pid, group_index) |
| })?; |
| group_info.add_explicit_group(pid, group, maybe_name)?; |
| } |
| } |
| group_info.fixup_slot_ranges()?; |
| Ok(GroupInfo(Arc::new(group_info))) |
| } |
| |
| /// This creates an empty `GroupInfo`. |
| /// |
| /// This is a convenience routine for calling `GroupInfo::new` with an |
| /// iterator that yields no elements. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to build a new empty `GroupInfo` and query it |
| /// for information. |
| /// |
| /// ``` |
| /// use regex_automata::util::captures::GroupInfo; |
| /// |
| /// let info = GroupInfo::empty(); |
| /// // Everything is zero. |
| /// assert_eq!(0, info.pattern_len()); |
| /// assert_eq!(0, info.all_group_len()); |
| /// assert_eq!(0, info.slot_len()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| pub fn empty() -> GroupInfo { |
| GroupInfo::new(core::iter::empty::<[Option<&str>; 0]>()) |
| .expect("empty group info is always valid") |
| } |
| |
| /// Return the capture group index corresponding to the given name in the |
| /// given pattern. If no such capture group name exists in the given |
| /// pattern, then this returns `None`. |
| /// |
| /// If the given pattern ID is invalid, then this returns `None`. |
| /// |
| /// This also returns `None` for all inputs if these captures are empty |
| /// (e.g., built from an empty [`GroupInfo`]). To check whether captures |
| /// are are present for a specific pattern, use [`GroupInfo::group_len`]. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to find the capture index for the given pattern |
| /// and group name. |
| /// |
| /// Remember that capture indices are relative to the pattern, such that |
| /// the same capture index value may refer to different capturing groups |
| /// for distinct patterns. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
| /// |
| /// let (pid0, pid1) = (PatternID::must(0), PatternID::must(1)); |
| /// |
| /// let nfa = NFA::new_many(&[ |
| /// r"a(?P<quux>\w+)z(?P<foo>\s+)", |
| /// r"a(?P<foo>\d+)z", |
| /// ])?; |
| /// let groups = nfa.group_info(); |
| /// assert_eq!(Some(2), groups.to_index(pid0, "foo")); |
| /// // Recall that capture index 0 is always unnamed and refers to the |
| /// // entire pattern. So the first capturing group present in the pattern |
| /// // itself always starts at index 1. |
| /// assert_eq!(Some(1), groups.to_index(pid1, "foo")); |
| /// |
| /// // And if a name does not exist for a particular pattern, None is |
| /// // returned. |
| /// assert!(groups.to_index(pid0, "quux").is_some()); |
| /// assert!(groups.to_index(pid1, "quux").is_none()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn to_index(&self, pid: PatternID, name: &str) -> Option<usize> { |
| let indices = self.0.name_to_index.get(pid.as_usize())?; |
| indices.get(name).cloned().map(|i| i.as_usize()) |
| } |
| |
| /// Return the capture name for the given index and given pattern. If the |
| /// corresponding group does not have a name, then this returns `None`. |
| /// |
| /// If the pattern ID is invalid, then this returns `None`. |
| /// |
| /// If the group index is invalid for the given pattern, then this returns |
| /// `None`. A group `index` is valid for a pattern `pid` in an `nfa` if and |
| /// only if `index < nfa.pattern_capture_len(pid)`. |
| /// |
| /// This also returns `None` for all inputs if these captures are empty |
| /// (e.g., built from an empty [`GroupInfo`]). To check whether captures |
| /// are are present for a specific pattern, use [`GroupInfo::group_len`]. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to find the capture group name for the given |
| /// pattern and group index. |
| /// |
| /// ``` |
| /// # if cfg!(miri) { return Ok(()); } // miri takes too long |
| /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
| /// |
| /// let (pid0, pid1) = (PatternID::must(0), PatternID::must(1)); |
| /// |
| /// let nfa = NFA::new_many(&[ |
| /// r"a(?P<foo>\w+)z(\s+)x(\d+)", |
| /// r"a(\d+)z(?P<foo>\s+)", |
| /// ])?; |
| /// let groups = nfa.group_info(); |
| /// assert_eq!(None, groups.to_name(pid0, 0)); |
| /// assert_eq!(Some("foo"), groups.to_name(pid0, 1)); |
| /// assert_eq!(None, groups.to_name(pid0, 2)); |
| /// assert_eq!(None, groups.to_name(pid0, 3)); |
| /// |
| /// assert_eq!(None, groups.to_name(pid1, 0)); |
| /// assert_eq!(None, groups.to_name(pid1, 1)); |
| /// assert_eq!(Some("foo"), groups.to_name(pid1, 2)); |
| /// // '3' is not a valid capture index for the second pattern. |
| /// assert_eq!(None, groups.to_name(pid1, 3)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn to_name(&self, pid: PatternID, group_index: usize) -> Option<&str> { |
| let pattern_names = self.0.index_to_name.get(pid.as_usize())?; |
| pattern_names.get(group_index)?.as_deref() |
| } |
| |
| /// Return an iterator of all capture groups and their names (if present) |
| /// for a particular pattern. |
| /// |
| /// If the given pattern ID is invalid or if this `GroupInfo` is empty, |
| /// then the iterator yields no elements. |
| /// |
| /// The number of elements yielded by this iterator is always equal to |
| /// the result of calling [`GroupInfo::group_len`] with the same |
| /// `PatternID`. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to get a list of all capture group names for |
| /// a particular pattern. |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
| /// |
| /// let nfa = NFA::new(r"(a)(?P<foo>b)(c)(d)(?P<bar>e)")?; |
| /// // The first is the implicit group that is always unnammed. The next |
| /// // 5 groups are the explicit groups found in the concrete syntax above. |
| /// let expected = vec![None, None, Some("foo"), None, None, Some("bar")]; |
| /// let got: Vec<Option<&str>> = |
| /// nfa.group_info().pattern_names(PatternID::ZERO).collect(); |
| /// assert_eq!(expected, got); |
| /// |
| /// // Using an invalid pattern ID will result in nothing yielded. |
| /// let got = nfa.group_info().pattern_names(PatternID::must(999)).count(); |
| /// assert_eq!(0, got); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn pattern_names(&self, pid: PatternID) -> GroupInfoPatternNames<'_> { |
| GroupInfoPatternNames { |
| it: self |
| .0 |
| .index_to_name |
| .get(pid.as_usize()) |
| .map(|indices| indices.iter()) |
| .unwrap_or([].iter()), |
| } |
| } |
| |
| /// Return an iterator of all capture groups for all patterns supported by |
| /// this `GroupInfo`. Each item yielded is a triple of the group's pattern |
| /// ID, index in the pattern and the group's name, if present. |
| /// |
| /// # Example |
| /// |
| /// This example shows how to get a list of all capture groups found in |
| /// one NFA, potentially spanning multiple patterns. |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
| /// |
| /// let nfa = NFA::new_many(&[ |
| /// r"(?P<foo>a)", |
| /// r"a", |
| /// r"(a)", |
| /// ])?; |
| /// let expected = vec![ |
| /// (PatternID::must(0), 0, None), |
| /// (PatternID::must(0), 1, Some("foo")), |
| /// (PatternID::must(1), 0, None), |
| /// (PatternID::must(2), 0, None), |
| /// (PatternID::must(2), 1, None), |
| /// ]; |
| /// let got: Vec<(PatternID, usize, Option<&str>)> = |
| /// nfa.group_info().all_names().collect(); |
| /// assert_eq!(expected, got); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| /// |
| /// Unlike other capturing group related routines, this routine doesn't |
| /// panic even if captures aren't enabled on this NFA: |
| /// |
| /// ``` |
| /// use regex_automata::nfa::thompson::{NFA, WhichCaptures}; |
| /// |
| /// let nfa = NFA::compiler() |
| /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
| /// .build_many(&[ |
| /// r"(?P<foo>a)", |
| /// r"a", |
| /// r"(a)", |
| /// ])?; |
| /// // When captures aren't enabled, there's nothing to return. |
| /// assert_eq!(0, nfa.group_info().all_names().count()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn all_names(&self) -> GroupInfoAllNames<'_> { |
| GroupInfoAllNames { |
| group_info: self, |
| pids: PatternID::iter(self.pattern_len()), |
| current_pid: None, |
| names: None, |
| } |
| } |
| |
| /// Returns the starting and ending slot corresponding to the given |
| /// capturing group for the given pattern. The ending slot is always one |
| /// more than the starting slot returned. |
| /// |
| /// Note that this is like [`GroupInfo::slot`], except that it also returns |
| /// the ending slot value for convenience. |
| /// |
| /// If either the pattern ID or the capture index is invalid, then this |
| /// returns None. |
| /// |
| /// # Example |
| /// |
| /// This example shows that the starting slots for the first capturing |
| /// group of each pattern are distinct. |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
| /// |
| /// let nfa = NFA::new_many(&["a", "b"])?; |
| /// assert_ne!( |
| /// nfa.group_info().slots(PatternID::must(0), 0), |
| /// nfa.group_info().slots(PatternID::must(1), 0), |
| /// ); |
| /// |
| /// // Also, the start and end slot values are never equivalent. |
| /// let (start, end) = nfa.group_info().slots(PatternID::ZERO, 0).unwrap(); |
| /// assert_ne!(start, end); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn slots( |
| &self, |
| pid: PatternID, |
| group_index: usize, |
| ) -> Option<(usize, usize)> { |
| // Since 'slot' only even returns valid starting slots, we know that |
| // there must also be an end slot and that end slot is always one more |
| // than the start slot. |
| self.slot(pid, group_index).map(|start| (start, start + 1)) |
| } |
| |
| /// Returns the starting slot corresponding to the given capturing group |
| /// for the given pattern. The ending slot is always one more than the |
| /// value returned. |
| /// |
| /// If either the pattern ID or the capture index is invalid, then this |
| /// returns None. |
| /// |
| /// # Example |
| /// |
| /// This example shows that the starting slots for the first capturing |
| /// group of each pattern are distinct. |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::NFA, PatternID}; |
| /// |
| /// let nfa = NFA::new_many(&["a", "b"])?; |
| /// assert_ne!( |
| /// nfa.group_info().slot(PatternID::must(0), 0), |
| /// nfa.group_info().slot(PatternID::must(1), 0), |
| /// ); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn slot(&self, pid: PatternID, group_index: usize) -> Option<usize> { |
| if group_index >= self.group_len(pid) { |
| return None; |
| } |
| // At this point, we know that 'pid' refers to a real pattern and that |
| // 'group_index' refers to a real group. We therefore also know that |
| // the pattern and group can be combined to return a correct slot. |
| // That's why we don't need to use checked arithmetic below. |
| if group_index == 0 { |
| Some(pid.as_usize() * 2) |
| } else { |
| // As above, we don't need to check that our slot is less than the |
| // end of our range since we already know the group index is a |
| // valid index for the given pattern. |
| let (start, _) = self.0.slot_ranges[pid]; |
| Some(start.as_usize() + ((group_index - 1) * 2)) |
| } |
| } |
| |
| /// Returns the total number of patterns in this `GroupInfo`. |
| /// |
| /// This may return zero if the `GroupInfo` was constructed with no |
| /// patterns. |
| /// |
| /// This is guaranteed to be no bigger than [`PatternID::LIMIT`] because |
| /// `GroupInfo` construction will fail if too many patterns are added. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use regex_automata::nfa::thompson::NFA; |
| /// |
| /// let nfa = NFA::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?; |
| /// assert_eq!(3, nfa.group_info().pattern_len()); |
| /// |
| /// let nfa = NFA::never_match(); |
| /// assert_eq!(0, nfa.group_info().pattern_len()); |
| /// |
| /// let nfa = NFA::always_match(); |
| /// assert_eq!(1, nfa.group_info().pattern_len()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn pattern_len(&self) -> usize { |
| self.0.pattern_len() |
| } |
| |
| /// Return the number of capture groups in a pattern. |
| /// |
| /// If the pattern ID is invalid, then this returns `0`. |
| /// |
| /// # Example |
| /// |
| /// This example shows how the values returned by this routine may vary |
| /// for different patterns and NFA configurations. |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::{NFA, WhichCaptures}, PatternID}; |
| /// |
| /// let nfa = NFA::new(r"(a)(b)(c)")?; |
| /// // There are 3 explicit groups in the pattern's concrete syntax and |
| /// // 1 unnamed and implicit group spanning the entire pattern. |
| /// assert_eq!(4, nfa.group_info().group_len(PatternID::ZERO)); |
| /// |
| /// let nfa = NFA::new(r"abc")?; |
| /// // There is just the unnamed implicit group. |
| /// assert_eq!(1, nfa.group_info().group_len(PatternID::ZERO)); |
| /// |
| /// let nfa = NFA::compiler() |
| /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
| /// .build(r"abc")?; |
| /// // We disabled capturing groups, so there are none. |
| /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO)); |
| /// |
| /// let nfa = NFA::compiler() |
| /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
| /// .build(r"(a)(b)(c)")?; |
| /// // We disabled capturing groups, so there are none, even if there are |
| /// // explicit groups in the concrete syntax. |
| /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn group_len(&self, pid: PatternID) -> usize { |
| self.0.group_len(pid) |
| } |
| |
| /// Return the total number of capture groups across all patterns. |
| /// |
| /// This includes implicit groups that represent the entire match of a |
| /// pattern. |
| /// |
| /// # Example |
| /// |
| /// This example shows how the values returned by this routine may vary |
| /// for different patterns and NFA configurations. |
| /// |
| /// ``` |
| /// use regex_automata::{nfa::thompson::{NFA, WhichCaptures}, PatternID}; |
| /// |
| /// let nfa = NFA::new(r"(a)(b)(c)")?; |
| /// // There are 3 explicit groups in the pattern's concrete syntax and |
| /// // 1 unnamed and implicit group spanning the entire pattern. |
| /// assert_eq!(4, nfa.group_info().all_group_len()); |
| /// |
| /// let nfa = NFA::new(r"abc")?; |
| /// // There is just the unnamed implicit group. |
| /// assert_eq!(1, nfa.group_info().all_group_len()); |
| /// |
| /// let nfa = NFA::new_many(&["(a)", "b", "(c)"])?; |
| /// // Each pattern has one implicit groups, and two |
| /// // patterns have one explicit group each. |
| /// assert_eq!(5, nfa.group_info().all_group_len()); |
| /// |
| /// let nfa = NFA::compiler() |
| /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
| /// .build(r"abc")?; |
| /// // We disabled capturing groups, so there are none. |
| /// assert_eq!(0, nfa.group_info().all_group_len()); |
| /// |
| /// let nfa = NFA::compiler() |
| /// .configure(NFA::config().which_captures(WhichCaptures::None)) |
| /// .build(r"(a)(b)(c)")?; |
| /// // We disabled capturing groups, so there are none, even if there are |
| /// // explicit groups in the concrete syntax. |
| /// assert_eq!(0, nfa.group_info().group_len(PatternID::ZERO)); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn all_group_len(&self) -> usize { |
| self.slot_len() / 2 |
| } |
| |
| /// Returns the total number of slots in this `GroupInfo` across all |
| /// patterns. |
| /// |
| /// The total number of slots is always twice the total number of capturing |
| /// groups, including both implicit and explicit groups. |
| /// |
| /// # Example |
| /// |
| /// This example shows the relationship between the number of capturing |
| /// groups and slots. |
| /// |
| /// ``` |
| /// use regex_automata::util::captures::GroupInfo; |
| /// |
| /// // There are 11 total groups here. |
| /// let info = GroupInfo::new(vec![ |
| /// vec![None, Some("foo")], |
| /// vec![None], |
| /// vec![None, None, None, Some("bar"), None], |
| /// vec![None, None, Some("foo")], |
| /// ])?; |
| /// // 2 slots per group gives us 11*2=22 slots. |
| /// assert_eq!(22, info.slot_len()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn slot_len(&self) -> usize { |
| self.0.small_slot_len().as_usize() |
| } |
| |
| /// Returns the total number of slots for implicit capturing groups. |
| /// |
| /// This is like [`GroupInfo::slot_len`], except it doesn't include the |
| /// explicit slots for each pattern. Since there are always exactly 2 |
| /// implicit slots for each pattern, the number of implicit slots is always |
| /// equal to twice the number of patterns. |
| /// |
| /// # Example |
| /// |
| /// This example shows the relationship between the number of capturing |
| /// groups, implicit slots and explicit slots. |
| /// |
| /// ``` |
| /// use regex_automata::util::captures::GroupInfo; |
| /// |
| /// // There are 11 total groups here. |
| /// let info = GroupInfo::new(vec![vec![None, Some("foo"), Some("bar")]])?; |
| /// // 2 slots per group gives us 11*2=22 slots. |
| /// assert_eq!(6, info.slot_len()); |
| /// // 2 implicit slots per pattern gives us 2 implicit slots since there |
| /// // is 1 pattern. |
| /// assert_eq!(2, info.implicit_slot_len()); |
| /// // 2 explicit capturing groups gives us 2*2=4 explicit slots. |
| /// assert_eq!(4, info.explicit_slot_len()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn implicit_slot_len(&self) -> usize { |
| self.pattern_len() * 2 |
| } |
| |
| /// Returns the total number of slots for explicit capturing groups. |
| /// |
| /// This is like [`GroupInfo::slot_len`], except it doesn't include the |
| /// implicit slots for each pattern. (There are always 2 implicit slots for |
| /// each pattern.) |
| /// |
| /// For a non-empty `GroupInfo`, it is always the case that `slot_len` is |
| /// strictly greater than `explicit_slot_len`. For an empty `GroupInfo`, |
| /// both the total number of slots and the number of explicit slots is |
| /// `0`. |
| /// |
| /// # Example |
| /// |
| /// This example shows the relationship between the number of capturing |
| /// groups, implicit slots and explicit slots. |
| /// |
| /// ``` |
| /// use regex_automata::util::captures::GroupInfo; |
| /// |
| /// // There are 11 total groups here. |
| /// let info = GroupInfo::new(vec![vec![None, Some("foo"), Some("bar")]])?; |
| /// // 2 slots per group gives us 11*2=22 slots. |
| /// assert_eq!(6, info.slot_len()); |
| /// // 2 implicit slots per pattern gives us 2 implicit slots since there |
| /// // is 1 pattern. |
| /// assert_eq!(2, info.implicit_slot_len()); |
| /// // 2 explicit capturing groups gives us 2*2=4 explicit slots. |
| /// assert_eq!(4, info.explicit_slot_len()); |
| /// |
| /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| /// ``` |
| #[inline] |
| pub fn explicit_slot_len(&self) -> usize { |
| self.slot_len().saturating_sub(self.implicit_slot_len()) |
| } |
| |
| /// Returns the memory usage, in bytes, of this `GroupInfo`. |
| /// |
| /// This does **not** include the stack size used up by this `GroupInfo`. |
| /// To compute that, use `std::mem::size_of::<GroupInfo>()`. |
| #[inline] |
| pub fn memory_usage(&self) -> usize { |
| use core::mem::size_of as s; |
| |
| s::<GroupInfoInner>() |
| + self.0.slot_ranges.len() * s::<(SmallIndex, SmallIndex)>() |
| + self.0.name_to_index.len() * s::<CaptureNameMap>() |
| + self.0.index_to_name.len() * s::<Vec<Option<Arc<str>>>>() |
| + self.0.memory_extra |
| } |
| } |
| |
| /// A map from capture group name to its corresponding capture group index. |
| /// |
| /// This type is actually wrapped inside a Vec indexed by pattern ID on a |
| /// `GroupInfo`, since multiple patterns may have the same capture group name. |
| /// That is, each pattern gets its own namespace of capture group names. |
| /// |
| /// Perhaps a more memory efficient representation would be |
| /// HashMap<(PatternID, Arc<str>), usize>, but this makes it difficult to look |
| /// up a capture index by name without producing a `Arc<str>`, which requires |
| /// an allocation. To fix this, I think we'd need to define our own unsized |
| /// type or something? Anyway, I didn't give this much thought since it |
| /// probably doesn't matter much in the grand scheme of things. But it did |
| /// stand out to me as mildly wasteful. |
| #[cfg(feature = "std")] |
| type CaptureNameMap = std::collections::HashMap<Arc<str>, SmallIndex>; |
| #[cfg(not(feature = "std"))] |
| type CaptureNameMap = alloc::collections::BTreeMap<Arc<str>, SmallIndex>; |
| |
| /// The inner guts of `GroupInfo`. This type only exists so that it can |
| /// be wrapped in an `Arc` to make `GroupInfo` reference counted. |
| #[derive(Debug, Default)] |
| struct GroupInfoInner { |
| slot_ranges: Vec<(SmallIndex, SmallIndex)>, |
| name_to_index: Vec<CaptureNameMap>, |
| index_to_name: Vec<Vec<Option<Arc<str>>>>, |
| memory_extra: usize, |
| } |
| |
| impl GroupInfoInner { |
| /// This adds the first unnamed group for the given pattern ID. The given |
| /// pattern ID must be zero if this is the first time this method is |
| /// called, or must be exactly one more than the pattern ID supplied to the |
| /// previous call to this method. (This method panics if this rule is |
| /// violated.) |
| /// |
| /// This can be thought of as initializing the GroupInfo state for the |
| /// given pattern and closing off the state for any previous pattern. |
| fn add_first_group(&mut self, pid: PatternID) { |
| assert_eq!(pid.as_usize(), self.slot_ranges.len()); |
| assert_eq!(pid.as_usize(), self.name_to_index.len()); |
| assert_eq!(pid.as_usize(), self.index_to_name.len()); |
| // This is the start of our slots for the explicit capturing groups. |
| // Note that since the slots for the 0th group for every pattern appear |
| // before any slots for the nth group (where n > 0) in any pattern, we |
| // will have to fix up the slot ranges once we know how many patterns |
| // we've added capture groups for. |
| let slot_start = self.small_slot_len(); |
| self.slot_ranges.push((slot_start, slot_start)); |
| self.name_to_index.push(CaptureNameMap::new()); |
| self.index_to_name.push(vec![None]); |
| self.memory_extra += core::mem::size_of::<Option<Arc<str>>>(); |
| } |
| |
| /// Add an explicit capturing group for the given pattern with the given |
| /// index. If the group has a name, then that must be given as well. |
| /// |
| /// Note that every capturing group except for the first or zeroth group is |
| /// explicit. |
| /// |
| /// This returns an error if adding this group would result in overflowing |
| /// slot indices or if a capturing group with the same name for this |
| /// pattern has already been added. |
| fn add_explicit_group<N: AsRef<str>>( |
| &mut self, |
| pid: PatternID, |
| group: SmallIndex, |
| maybe_name: Option<N>, |
| ) -> Result<(), GroupInfoError> { |
| // We also need to check that the slot index generated for |
| // this group is also valid. Although, this is a little weird |
| // because we offset these indices below, at which point, we'll |
| // have to recheck them. Gosh this is annoying. Note that |
| // the '+2' below is OK because 'end' is guaranteed to be less |
| // than isize::MAX. |
| let end = &mut self.slot_ranges[pid].1; |
| *end = SmallIndex::new(end.as_usize() + 2).map_err(|_| { |
| GroupInfoError::too_many_groups(pid, group.as_usize()) |
| })?; |
| if let Some(name) = maybe_name { |
| let name = Arc::<str>::from(name.as_ref()); |
| if self.name_to_index[pid].contains_key(&*name) { |
| return Err(GroupInfoError::duplicate(pid, &name)); |
| } |
| let len = name.len(); |
| self.name_to_index[pid].insert(Arc::clone(&name), group); |
| self.index_to_name[pid].push(Some(name)); |
| // Adds the memory used by the Arc<str> in both maps. |
| self.memory_extra += |
| 2 * (len + core::mem::size_of::<Option<Arc<str>>>()); |
| // And also the value entry for the 'name_to_index' map. |
| // This is probably an underestimate for 'name_to_index' since |
| // hashmaps/btrees likely have some non-zero overhead, but we |
| // assume here that they have zero overhead. |
| self.memory_extra += core::mem::size_of::<SmallIndex>(); |
| } else { |
| self.index_to_name[pid].push(None); |
| self.memory_extra += core::mem::size_of::<Option<Arc<str>>>(); |
| } |
| // This is a sanity assert that checks that our group index |
| // is in line with the number of groups added so far for this |
| // pattern. |
| assert_eq!(group.one_more(), self.group_len(pid)); |
| // And is also in line with the 'index_to_name' map. |
| assert_eq!(group.one_more(), self.index_to_name[pid].len()); |
| Ok(()) |
| } |
| |
| /// This corrects the slot ranges to account for the slots corresponding |
| /// to the zeroth group of each pattern. That is, every slot range is |
| /// offset by 'pattern_len() * 2', since each pattern uses two slots to |
| /// represent the zeroth group. |
| fn fixup_slot_ranges(&mut self) -> Result<(), GroupInfoError> { |
| use crate::util::primitives::IteratorIndexExt; |
| // Since we know number of patterns fits in PatternID and |
| // PatternID::MAX < isize::MAX, it follows that multiplying by 2 will |
| // never overflow usize. |
| let offset = self.pattern_len().checked_mul(2).unwrap(); |
| for (pid, &mut (ref mut start, ref mut end)) in |
| self.slot_ranges.iter_mut().with_pattern_ids() |
| { |
| let group_len = 1 + ((end.as_usize() - start.as_usize()) / 2); |
| let new_end = match end.as_usize().checked_add(offset) { |
| Some(new_end) => new_end, |
| None => { |
| return Err(GroupInfoError::too_many_groups( |
| pid, group_len, |
| )) |
| } |
| }; |
| *end = SmallIndex::new(new_end).map_err(|_| { |
| GroupInfoError::too_many_groups(pid, group_len) |
| })?; |
| // Since start <= end, if end is valid then start must be too. |
| *start = SmallIndex::new(start.as_usize() + offset).unwrap(); |
| } |
| Ok(()) |
| } |
| |
| /// Return the total number of patterns represented by this capture slot |
| /// info. |
| fn pattern_len(&self) -> usize { |
| self.slot_ranges.len() |
| } |
| |
| /// Return the total number of capturing groups for the given pattern. If |
| /// the given pattern isn't valid for this capture slot info, then 0 is |
| /// returned. |
| fn group_len(&self, pid: PatternID) -> usize { |
| let (start, end) = match self.slot_ranges.get(pid.as_usize()) { |
| None => return 0, |
| Some(range) => range, |
| }; |
| // The difference between any two SmallIndex values always fits in a |
| // usize since we know that SmallIndex::MAX <= isize::MAX-1. We also |
| // know that start<=end by construction and that the number of groups |
| // never exceeds SmallIndex and thus never overflows usize. |
| 1 + ((end.as_usize() - start.as_usize()) / 2) |
| } |
| |
| /// Return the total number of slots in this capture slot info as a |
| /// "small index." |
| fn small_slot_len(&self) -> SmallIndex { |
| // Since slots are allocated in order of pattern (starting at 0) and |
| // then in order of capture group, it follows that the number of slots |
| // is the end of the range of slots for the last pattern. This is |
| // true even when the last pattern has no capturing groups, since |
| // 'slot_ranges' will still represent it explicitly with an empty |
| // range. |
| self.slot_ranges.last().map_or(SmallIndex::ZERO, |&(_, end)| end) |
| } |
| } |
| |
| /// An error that may occur when building a `GroupInfo`. |
| /// |
| /// Building a `GroupInfo` does a variety of checks to make sure the |
| /// capturing groups satisfy a number of invariants. This includes, but is not |
| /// limited to, ensuring that the first capturing group is unnamed and that |
| /// there are no duplicate capture groups for a specific pattern. |
| #[derive(Clone, Debug)] |
| pub struct GroupInfoError { |
| kind: GroupInfoErrorKind, |
| } |
| |
| /// The kind of error that occurs when building a `GroupInfo` fails. |
| /// |
| /// We keep this un-exported because it's not clear how useful it is to |
| /// export it. |
| #[derive(Clone, Debug)] |
| enum GroupInfoErrorKind { |
| /// This occurs when too many patterns have been added. i.e., It would |
| /// otherwise overflow a `PatternID`. |
| TooManyPatterns { err: PatternIDError }, |
| /// This occurs when too many capturing groups have been added for a |
| /// particular pattern. |
| TooManyGroups { |
| /// The ID of the pattern that had too many groups. |
| pattern: PatternID, |
| /// The minimum number of groups that the caller has tried to add for |
| /// a pattern. |
| minimum: usize, |
| }, |
| /// An error that occurs when a pattern has no capture groups. Either the |
| /// group info must be empty, or all patterns must have at least one group |
| /// (corresponding to the unnamed group for the entire pattern). |
| MissingGroups { |
| /// The ID of the pattern that had no capturing groups. |
| pattern: PatternID, |
| }, |
| /// An error that occurs when one tries to provide a name for the capture |
| /// group at index 0. This capturing group must currently always be |
| /// unnamed. |
| FirstMustBeUnnamed { |
| /// The ID of the pattern that was found to have a named first |
| /// capturing group. |
| pattern: PatternID, |
| }, |
| /// An error that occurs when duplicate capture group names for the same |
| /// pattern are added. |
| /// |
| /// NOTE: At time of writing, this error can never occur if you're using |
| /// regex-syntax, since the parser itself will reject patterns with |
| /// duplicate capture group names. This error can only occur when the |
| /// builder is used to hand construct NFAs. |
| Duplicate { |
| /// The pattern in which the duplicate capture group name was found. |
| pattern: PatternID, |
| /// The duplicate name. |
| name: String, |
| }, |
| } |
| |
| impl GroupInfoError { |
| fn too_many_patterns(err: PatternIDError) -> GroupInfoError { |
| GroupInfoError { kind: GroupInfoErrorKind::TooManyPatterns { err } } |
| } |
| |
| fn too_many_groups(pattern: PatternID, minimum: usize) -> GroupInfoError { |
| GroupInfoError { |
| kind: GroupInfoErrorKind::TooManyGroups { pattern, minimum }, |
| } |
| } |
| |
| fn missing_groups(pattern: PatternID) -> GroupInfoError { |
| GroupInfoError { kind: GroupInfoErrorKind::MissingGroups { pattern } } |
| } |
| |
| fn first_must_be_unnamed(pattern: PatternID) -> GroupInfoError { |
| GroupInfoError { |
| kind: GroupInfoErrorKind::FirstMustBeUnnamed { pattern }, |
| } |
| } |
| |
| fn duplicate(pattern: PatternID, name: &str) -> GroupInfoError { |
| GroupInfoError { |
| kind: GroupInfoErrorKind::Duplicate { |
| pattern, |
| name: String::from(name), |
| }, |
| } |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| impl std::error::Error for GroupInfoError { |
| fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { |
| match self.kind { |
| GroupInfoErrorKind::TooManyPatterns { .. } |
| | GroupInfoErrorKind::TooManyGroups { .. } |
| | GroupInfoErrorKind::MissingGroups { .. } |
| | GroupInfoErrorKind::FirstMustBeUnnamed { .. } |
| | GroupInfoErrorKind::Duplicate { .. } => None, |
| } |
| } |
| } |
| |
| impl core::fmt::Display for GroupInfoError { |
| fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| use self::GroupInfoErrorKind::*; |
| |
| match self.kind { |
| TooManyPatterns { ref err } => { |
| write!(f, "too many patterns to build capture info: {}", err) |
| } |
| TooManyGroups { pattern, minimum } => { |
| write!( |
| f, |
| "too many capture groups (at least {}) were \ |
| found for pattern {}", |
| minimum, |
| pattern.as_usize() |
| ) |
| } |
| MissingGroups { pattern } => write!( |
| f, |
| "no capturing groups found for pattern {} \ |
| (either all patterns have zero groups or all patterns have \ |
| at least one group)", |
| pattern.as_usize(), |
| ), |
| FirstMustBeUnnamed { pattern } => write!( |
| f, |
| "first capture group (at index 0) for pattern {} has a name \ |
| (it must be unnamed)", |
| pattern.as_usize(), |
| ), |
| Duplicate { pattern, ref name } => write!( |
| f, |
| "duplicate capture group name '{}' found for pattern {}", |
| name, |
| pattern.as_usize(), |
| ), |
| } |
| } |
| } |
| |
| /// An iterator over capturing groups and their names for a specific pattern. |
| /// |
| /// This iterator is created by [`GroupInfo::pattern_names`]. |
| /// |
| /// The lifetime parameter `'a` refers to the lifetime of the `GroupInfo` |
| /// from which this iterator was created. |
| #[derive(Clone, Debug)] |
| pub struct GroupInfoPatternNames<'a> { |
| it: core::slice::Iter<'a, Option<Arc<str>>>, |
| } |
| |
| impl GroupInfoPatternNames<'static> { |
| fn empty() -> GroupInfoPatternNames<'static> { |
| GroupInfoPatternNames { it: [].iter() } |
| } |
| } |
| |
| impl<'a> Iterator for GroupInfoPatternNames<'a> { |
| type Item = Option<&'a str>; |
| |
| fn next(&mut self) -> Option<Option<&'a str>> { |
| self.it.next().map(|x| x.as_deref()) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.it.size_hint() |
| } |
| |
| fn count(self) -> usize { |
| self.it.count() |
| } |
| } |
| |
| impl<'a> ExactSizeIterator for GroupInfoPatternNames<'a> {} |
| impl<'a> core::iter::FusedIterator for GroupInfoPatternNames<'a> {} |
| |
| /// An iterator over capturing groups and their names for a `GroupInfo`. |
| /// |
| /// This iterator is created by [`GroupInfo::all_names`]. |
| /// |
| /// The lifetime parameter `'a` refers to the lifetime of the `GroupInfo` |
| /// from which this iterator was created. |
| #[derive(Debug)] |
| pub struct GroupInfoAllNames<'a> { |
| group_info: &'a GroupInfo, |
| pids: PatternIDIter, |
| current_pid: Option<PatternID>, |
| names: Option<core::iter::Enumerate<GroupInfoPatternNames<'a>>>, |
| } |
| |
| impl<'a> Iterator for GroupInfoAllNames<'a> { |
| type Item = (PatternID, usize, Option<&'a str>); |
| |
| fn next(&mut self) -> Option<(PatternID, usize, Option<&'a str>)> { |
| // If the group info has no captures, then we never have anything |
| // to yield. We need to consider this case explicitly (at time of |
| // writing) because 'pattern_capture_names' will panic if captures |
| // aren't enabled. |
| if self.group_info.0.index_to_name.is_empty() { |
| return None; |
| } |
| if self.current_pid.is_none() { |
| self.current_pid = Some(self.pids.next()?); |
| } |
| let pid = self.current_pid.unwrap(); |
| if self.names.is_none() { |
| self.names = Some(self.group_info.pattern_names(pid).enumerate()); |
| } |
| let (group_index, name) = match self.names.as_mut().unwrap().next() { |
| Some((group_index, name)) => (group_index, name), |
| None => { |
| self.current_pid = None; |
| self.names = None; |
| return self.next(); |
| } |
| }; |
| Some((pid, group_index, name)) |
| } |
| } |