| // Copyright 2015-2023 Brian Smith. |
| // |
| // Permission to use, copy, modify, and/or distribute this software for any |
| // purpose with or without fee is hereby granted, provided that the above |
| // copyright notice and this permission notice appear in all copies. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
| // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
| // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| |
| //! Multi-precision integers. |
| //! |
| //! # Modular Arithmetic. |
| //! |
| //! Modular arithmetic is done in finite commutative rings ℤ/mℤ for some |
| //! modulus *m*. We work in finite commutative rings instead of finite fields |
| //! because the RSA public modulus *n* is not prime, which means ℤ/nℤ contains |
| //! nonzero elements that have no multiplicative inverse, so ℤ/nℤ is not a |
| //! finite field. |
| //! |
| //! In some calculations we need to deal with multiple rings at once. For |
| //! example, RSA private key operations operate in the rings ℤ/nℤ, ℤ/pℤ, and |
| //! ℤ/qℤ. Types and functions dealing with such rings are all parameterized |
| //! over a type `M` to ensure that we don't wrongly mix up the math, e.g. by |
| //! multiplying an element of ℤ/pℤ by an element of ℤ/qℤ modulo q. This follows |
| //! the "unit" pattern described in [Static checking of units in Servo]. |
| //! |
| //! `Elem` also uses the static unit checking pattern to statically track the |
| //! Montgomery factors that need to be canceled out in each value using it's |
| //! `E` parameter. |
| //! |
| //! [Static checking of units in Servo]: |
| //! https://blog.mozilla.org/research/2014/06/23/static-checking-of-units-in-servo/ |
| |
| use self::boxed_limbs::BoxedLimbs; |
| pub(crate) use self::{ |
| modulus::{Modulus, OwnedModulus, MODULUS_MAX_LIMBS}, |
| private_exponent::PrivateExponent, |
| }; |
| use crate::{ |
| arithmetic::montgomery::*, |
| bits::BitLength, |
| c, error, |
| limb::{self, Limb, LimbMask, LIMB_BITS}, |
| }; |
| use alloc::vec; |
| use core::{marker::PhantomData, num::NonZeroU64}; |
| |
| mod boxed_limbs; |
| mod modulus; |
| mod private_exponent; |
| |
| pub trait PublicModulus {} |
| |
| /// Elements of ℤ/mℤ for some modulus *m*. |
| // |
| // Defaulting `E` to `Unencoded` is a convenience for callers from outside this |
| // submodule. However, for maximum clarity, we always explicitly use |
| // `Unencoded` within the `bigint` submodule. |
| pub struct Elem<M, E = Unencoded> { |
| limbs: BoxedLimbs<M>, |
| |
| /// The number of Montgomery factors that need to be canceled out from |
| /// `value` to get the actual value. |
| encoding: PhantomData<E>, |
| } |
| |
| // TODO: `derive(Clone)` after https://github.com/rust-lang/rust/issues/26925 |
| // is resolved or restrict `M: Clone` and `E: Clone`. |
| impl<M, E> Clone for Elem<M, E> { |
| fn clone(&self) -> Self { |
| Self { |
| limbs: self.limbs.clone(), |
| encoding: self.encoding, |
| } |
| } |
| } |
| |
| impl<M, E> Elem<M, E> { |
| #[inline] |
| pub fn is_zero(&self) -> bool { |
| self.limbs.is_zero() |
| } |
| } |
| |
| /// Does a Montgomery reduction on `limbs` assuming they are Montgomery-encoded ('R') and assuming |
| /// they are the same size as `m`, but perhaps not reduced mod `m`. The result will be |
| /// fully reduced mod `m`. |
| fn from_montgomery_amm<M>(limbs: BoxedLimbs<M>, m: &Modulus<M>) -> Elem<M, Unencoded> { |
| debug_assert_eq!(limbs.len(), m.limbs().len()); |
| |
| let mut limbs = limbs; |
| let mut one = [0; MODULUS_MAX_LIMBS]; |
| one[0] = 1; |
| let one = &one[..m.limbs().len()]; |
| limbs_mont_mul(&mut limbs, one, m.limbs(), m.n0(), m.cpu_features()); |
| Elem { |
| limbs, |
| encoding: PhantomData, |
| } |
| } |
| |
| #[cfg(any(test, not(target_arch = "x86_64")))] |
| impl<M> Elem<M, R> { |
| #[inline] |
| pub fn into_unencoded(self, m: &Modulus<M>) -> Elem<M, Unencoded> { |
| from_montgomery_amm(self.limbs, m) |
| } |
| } |
| |
| impl<M> Elem<M, Unencoded> { |
| pub fn from_be_bytes_padded( |
| input: untrusted::Input, |
| m: &Modulus<M>, |
| ) -> Result<Self, error::Unspecified> { |
| Ok(Self { |
| limbs: BoxedLimbs::from_be_bytes_padded_less_than(input, m)?, |
| encoding: PhantomData, |
| }) |
| } |
| |
| #[inline] |
| pub fn fill_be_bytes(&self, out: &mut [u8]) { |
| // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010. |
| limb::big_endian_from_limbs(&self.limbs, out) |
| } |
| |
| fn is_one(&self) -> bool { |
| limb::limbs_equal_limb_constant_time(&self.limbs, 1) == LimbMask::True |
| } |
| } |
| |
| pub fn elem_mul<M, AF, BF>( |
| a: &Elem<M, AF>, |
| mut b: Elem<M, BF>, |
| m: &Modulus<M>, |
| ) -> Elem<M, <(AF, BF) as ProductEncoding>::Output> |
| where |
| (AF, BF): ProductEncoding, |
| { |
| limbs_mont_mul(&mut b.limbs, &a.limbs, m.limbs(), m.n0(), m.cpu_features()); |
| Elem { |
| limbs: b.limbs, |
| encoding: PhantomData, |
| } |
| } |
| |
| // r *= 2. |
| fn elem_double<M, AF>(r: &mut Elem<M, AF>, m: &Modulus<M>) { |
| limb::limbs_double_mod(&mut r.limbs, m.limbs()) |
| } |
| |
| // TODO: This is currently unused, but we intend to eventually use this to |
| // reduce elements (x mod q) mod p in the RSA CRT. If/when we do so, we |
| // should update the testing so it is reflective of that usage, instead of |
| // the old usage. |
| pub fn elem_reduced_once<A, M>( |
| a: &Elem<A, Unencoded>, |
| m: &Modulus<M>, |
| other_modulus_len_bits: BitLength, |
| ) -> Elem<M, Unencoded> { |
| assert_eq!(m.len_bits(), other_modulus_len_bits); |
| |
| let mut r = a.limbs.clone(); |
| limb::limbs_reduce_once_constant_time(&mut r, m.limbs()); |
| Elem { |
| limbs: BoxedLimbs::new_unchecked(r.into_limbs()), |
| encoding: PhantomData, |
| } |
| } |
| |
| #[inline] |
| pub fn elem_reduced<Larger, Smaller>( |
| a: &Elem<Larger, Unencoded>, |
| m: &Modulus<Smaller>, |
| other_prime_len_bits: BitLength, |
| ) -> Elem<Smaller, RInverse> { |
| // This is stricter than required mathematically but this is what we |
| // guarantee and this is easier to check. The real requirement is that |
| // that `a < m*R` where `R` is the Montgomery `R` for `m`. |
| assert_eq!(other_prime_len_bits, m.len_bits()); |
| |
| // `limbs_from_mont_in_place` requires this. |
| assert_eq!(a.limbs.len(), m.limbs().len() * 2); |
| |
| let mut tmp = [0; MODULUS_MAX_LIMBS]; |
| let tmp = &mut tmp[..a.limbs.len()]; |
| tmp.copy_from_slice(&a.limbs); |
| |
| let mut r = m.zero(); |
| limbs_from_mont_in_place(&mut r.limbs, tmp, m.limbs(), m.n0()); |
| r |
| } |
| |
| fn elem_squared<M, E>( |
| mut a: Elem<M, E>, |
| m: &Modulus<M>, |
| ) -> Elem<M, <(E, E) as ProductEncoding>::Output> |
| where |
| (E, E): ProductEncoding, |
| { |
| limbs_mont_square(&mut a.limbs, m.limbs(), m.n0(), m.cpu_features()); |
| Elem { |
| limbs: a.limbs, |
| encoding: PhantomData, |
| } |
| } |
| |
| pub fn elem_widen<Larger, Smaller>( |
| a: Elem<Smaller, Unencoded>, |
| m: &Modulus<Larger>, |
| smaller_modulus_bits: BitLength, |
| ) -> Result<Elem<Larger, Unencoded>, error::Unspecified> { |
| if smaller_modulus_bits >= m.len_bits() { |
| return Err(error::Unspecified); |
| } |
| let mut r = m.zero(); |
| r.limbs[..a.limbs.len()].copy_from_slice(&a.limbs); |
| Ok(r) |
| } |
| |
| // TODO: Document why this works for all Montgomery factors. |
| pub fn elem_add<M, E>(mut a: Elem<M, E>, b: Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> { |
| limb::limbs_add_assign_mod(&mut a.limbs, &b.limbs, m.limbs()); |
| a |
| } |
| |
| // TODO: Document why this works for all Montgomery factors. |
| pub fn elem_sub<M, E>(mut a: Elem<M, E>, b: &Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> { |
| prefixed_extern! { |
| // `r` and `a` may alias. |
| fn LIMBS_sub_mod( |
| r: *mut Limb, |
| a: *const Limb, |
| b: *const Limb, |
| m: *const Limb, |
| num_limbs: c::size_t, |
| ); |
| } |
| unsafe { |
| LIMBS_sub_mod( |
| a.limbs.as_mut_ptr(), |
| a.limbs.as_ptr(), |
| b.limbs.as_ptr(), |
| m.limbs().as_ptr(), |
| m.limbs().len(), |
| ); |
| } |
| a |
| } |
| |
| // The value 1, Montgomery-encoded some number of times. |
| pub struct One<M, E>(Elem<M, E>); |
| |
| impl<M> One<M, RR> { |
| // Returns RR = = R**2 (mod n) where R = 2**r is the smallest power of |
| // 2**LIMB_BITS such that R > m. |
| // |
| // Even though the assembly on some 32-bit platforms works with 64-bit |
| // values, using `LIMB_BITS` here, rather than `N0::LIMBS_USED * LIMB_BITS`, |
| // is correct because R**2 will still be a multiple of the latter as |
| // `N0::LIMBS_USED` is either one or two. |
| pub(crate) fn newRR(m: &Modulus<M>) -> Self { |
| // The number of limbs in the numbers involved. |
| let w = m.limbs().len(); |
| |
| // The length of the numbers involved, in bits. R = 2**r. |
| let r = w * LIMB_BITS; |
| |
| let mut acc: Elem<M, R> = m.zero(); |
| m.oneR(&mut acc.limbs); |
| |
| // 2**t * R can be calculated by t doublings starting with R. |
| // |
| // Choose a t that divides r and where t doublings are cheaper than 1 squaring. |
| // |
| // We could choose other values of t than w. But if t < d then the exponentiation that |
| // follows would require multiplications. Normally d is 1 (i.e. the modulus length is a |
| // power of two: RSA 1024, 2048, 4097, 8192) or 3 (RSA 1536, 3072). |
| // |
| // XXX(perf): Currently t = w / 2 is slightly faster. TODO(perf): Optimize `elem_double` |
| // and re-run benchmarks to rebalance this. |
| let t = w; |
| let z = w.trailing_zeros(); |
| let d = w >> z; |
| debug_assert_eq!(w, d * (1 << z)); |
| debug_assert!(d <= t); |
| debug_assert!(t < r); |
| for _ in 0..t { |
| elem_double(&mut acc, m); |
| } |
| |
| // Because t | r: |
| // |
| // MontExp(2**t * R, r / t) |
| // = (2**t)**(r / t) * R (mod m) by definition of MontExp. |
| // = (2**t)**(1/t * r) * R (mod m) |
| // = (2**(t * 1/t))**r * R (mod m) |
| // = (2**1)**r * R (mod m) |
| // = 2**r * R (mod m) |
| // = R * R (mod m) |
| // = RR |
| // |
| // Like BoringSSL, use t = w (`m.limbs.len()`) which ensures that the exponent is a power |
| // of two. Consequently, there will be no multiplications in the Montgomery exponentiation; |
| // there will only be lg(r / t) squarings. |
| // |
| // lg(r / t) |
| // = lg((w * 2**b) / t) |
| // = lg((t * 2**b) / t) |
| // = lg(2**b) |
| // = b |
| // TODO(MSRV:1.67): const B: u32 = LIMB_BITS.ilog2(); |
| const B: u32 = if cfg!(target_pointer_width = "64") { |
| 6 |
| } else if cfg!(target_pointer_width = "32") { |
| 5 |
| } else { |
| panic!("unsupported target_pointer_width") |
| }; |
| #[allow(clippy::assertions_on_constants)] |
| const _LIMB_BITS_IS_2_POW_B: () = assert!(LIMB_BITS == 1 << B); |
| debug_assert_eq!(r, t * (1 << B)); |
| for _ in 0..B { |
| acc = elem_squared(acc, m); |
| } |
| |
| Self(Elem { |
| limbs: acc.limbs, |
| encoding: PhantomData, // PhantomData<RR> |
| }) |
| } |
| } |
| |
| impl<M> One<M, RRR> { |
| pub(crate) fn newRRR(One(oneRR): One<M, RR>, m: &Modulus<M>) -> Self { |
| Self(elem_squared(oneRR, m)) |
| } |
| } |
| |
| impl<M, E> AsRef<Elem<M, E>> for One<M, E> { |
| fn as_ref(&self) -> &Elem<M, E> { |
| &self.0 |
| } |
| } |
| |
| impl<M: PublicModulus, E> Clone for One<M, E> { |
| fn clone(&self) -> Self { |
| Self(self.0.clone()) |
| } |
| } |
| |
| /// Calculates base**exponent (mod m). |
| /// |
| /// The run time is a function of the number of limbs in `m` and the bit |
| /// length and Hamming Weight of `exponent`. The bounds on `m` are pretty |
| /// obvious but the bounds on `exponent` are less obvious. Callers should |
| /// document the bounds they place on the maximum value and maximum Hamming |
| /// weight of `exponent`. |
| // TODO: The test coverage needs to be expanded, e.g. test with the largest |
| // accepted exponent and with the most common values of 65537 and 3. |
| pub(crate) fn elem_exp_vartime<M>( |
| base: Elem<M, R>, |
| exponent: NonZeroU64, |
| m: &Modulus<M>, |
| ) -> Elem<M, R> { |
| // Use what [Knuth] calls the "S-and-X binary method", i.e. variable-time |
| // square-and-multiply that scans the exponent from the most significant |
| // bit to the least significant bit (left-to-right). Left-to-right requires |
| // less storage compared to right-to-left scanning, at the cost of needing |
| // to compute `exponent.leading_zeros()`, which we assume to be cheap. |
| // |
| // As explained in [Knuth], exponentiation by squaring is the most |
| // efficient algorithm when the Hamming weight is 2 or less. It isn't the |
| // most efficient for all other, uncommon, exponent values but any |
| // suboptimality is bounded at least by the small bit length of `exponent` |
| // as enforced by its type. |
| // |
| // This implementation is slightly simplified by taking advantage of the |
| // fact that we require the exponent to be a positive integer. |
| // |
| // [Knuth]: The Art of Computer Programming, Volume 2: Seminumerical |
| // Algorithms (3rd Edition), Section 4.6.3. |
| let exponent = exponent.get(); |
| let mut acc = base.clone(); |
| let mut bit = 1 << (64 - 1 - exponent.leading_zeros()); |
| debug_assert!((exponent & bit) != 0); |
| while bit > 1 { |
| bit >>= 1; |
| acc = elem_squared(acc, m); |
| if (exponent & bit) != 0 { |
| acc = elem_mul(&base, acc, m); |
| } |
| } |
| acc |
| } |
| |
| #[cfg(not(target_arch = "x86_64"))] |
| pub fn elem_exp_consttime<M>( |
| base: Elem<M, R>, |
| exponent: &PrivateExponent, |
| m: &Modulus<M>, |
| ) -> Result<Elem<M, Unencoded>, error::Unspecified> { |
| use crate::{bssl, limb::Window}; |
| |
| const WINDOW_BITS: usize = 5; |
| const TABLE_ENTRIES: usize = 1 << WINDOW_BITS; |
| |
| let num_limbs = m.limbs().len(); |
| |
| let mut table = vec![0; TABLE_ENTRIES * num_limbs]; |
| |
| fn gather<M>(table: &[Limb], acc: &mut Elem<M, R>, i: Window) { |
| prefixed_extern! { |
| fn LIMBS_select_512_32( |
| r: *mut Limb, |
| table: *const Limb, |
| num_limbs: c::size_t, |
| i: Window, |
| ) -> bssl::Result; |
| } |
| Result::from(unsafe { |
| LIMBS_select_512_32(acc.limbs.as_mut_ptr(), table.as_ptr(), acc.limbs.len(), i) |
| }) |
| .unwrap(); |
| } |
| |
| fn power<M>( |
| table: &[Limb], |
| mut acc: Elem<M, R>, |
| m: &Modulus<M>, |
| i: Window, |
| mut tmp: Elem<M, R>, |
| ) -> (Elem<M, R>, Elem<M, R>) { |
| for _ in 0..WINDOW_BITS { |
| acc = elem_squared(acc, m); |
| } |
| gather(table, &mut tmp, i); |
| let acc = elem_mul(&tmp, acc, m); |
| (acc, tmp) |
| } |
| |
| fn entry(table: &[Limb], i: usize, num_limbs: usize) -> &[Limb] { |
| &table[(i * num_limbs)..][..num_limbs] |
| } |
| fn entry_mut(table: &mut [Limb], i: usize, num_limbs: usize) -> &mut [Limb] { |
| &mut table[(i * num_limbs)..][..num_limbs] |
| } |
| |
| // table[0] = base**0 (i.e. 1). |
| m.oneR(entry_mut(&mut table, 0, num_limbs)); |
| |
| entry_mut(&mut table, 1, num_limbs).copy_from_slice(&base.limbs); |
| for i in 2..TABLE_ENTRIES { |
| let (src1, src2) = if i % 2 == 0 { |
| (i / 2, i / 2) |
| } else { |
| (i - 1, 1) |
| }; |
| let (previous, rest) = table.split_at_mut(num_limbs * i); |
| let src1 = entry(previous, src1, num_limbs); |
| let src2 = entry(previous, src2, num_limbs); |
| let dst = entry_mut(rest, 0, num_limbs); |
| limbs_mont_product(dst, src1, src2, m.limbs(), m.n0(), m.cpu_features()); |
| } |
| |
| let tmp = m.zero(); |
| let mut acc = Elem { |
| limbs: base.limbs, |
| encoding: PhantomData, |
| }; |
| let (acc, _) = limb::fold_5_bit_windows( |
| exponent.limbs(), |
| |initial_window| { |
| gather(&table, &mut acc, initial_window); |
| (acc, tmp) |
| }, |
| |(acc, tmp), window| power(&table, acc, m, window, tmp), |
| ); |
| |
| Ok(acc.into_unencoded(m)) |
| } |
| |
| #[cfg(target_arch = "x86_64")] |
| pub fn elem_exp_consttime<M>( |
| base: Elem<M, R>, |
| exponent: &PrivateExponent, |
| m: &Modulus<M>, |
| ) -> Result<Elem<M, Unencoded>, error::Unspecified> { |
| use crate::{cpu, limb::LIMB_BYTES}; |
| |
| // Pretty much all the math here requires CPU feature detection to have |
| // been done. `cpu_features` isn't threaded through all the internal |
| // functions, so just make it clear that it has been done at this point. |
| let cpu_features = m.cpu_features(); |
| |
| // The x86_64 assembly was written under the assumption that the input data |
| // is aligned to `MOD_EXP_CTIME_ALIGN` bytes, which was/is 64 in OpenSSL. |
| // Similarly, OpenSSL uses the x86_64 assembly functions by giving it only |
| // inputs `tmp`, `am`, and `np` that immediately follow the table. All the |
| // awkwardness here stems from trying to use the assembly code like OpenSSL |
| // does. |
| |
| use crate::limb::Window; |
| |
| const WINDOW_BITS: usize = 5; |
| const TABLE_ENTRIES: usize = 1 << WINDOW_BITS; |
| |
| let num_limbs = m.limbs().len(); |
| |
| const ALIGNMENT: usize = 64; |
| assert_eq!(ALIGNMENT % LIMB_BYTES, 0); |
| let mut table = vec![0; ((TABLE_ENTRIES + 3) * num_limbs) + ALIGNMENT]; |
| let (table, state) = { |
| let misalignment = (table.as_ptr() as usize) % ALIGNMENT; |
| let table = &mut table[((ALIGNMENT - misalignment) / LIMB_BYTES)..]; |
| assert_eq!((table.as_ptr() as usize) % ALIGNMENT, 0); |
| table.split_at_mut(TABLE_ENTRIES * num_limbs) |
| }; |
| |
| fn scatter(table: &mut [Limb], acc: &[Limb], i: Window, num_limbs: usize) { |
| prefixed_extern! { |
| fn bn_scatter5(a: *const Limb, a_len: c::size_t, table: *mut Limb, i: Window); |
| } |
| unsafe { bn_scatter5(acc.as_ptr(), num_limbs, table.as_mut_ptr(), i) } |
| } |
| |
| fn gather(table: &[Limb], acc: &mut [Limb], i: Window, num_limbs: usize) { |
| prefixed_extern! { |
| fn bn_gather5(r: *mut Limb, a_len: c::size_t, table: *const Limb, i: Window); |
| } |
| unsafe { bn_gather5(acc.as_mut_ptr(), num_limbs, table.as_ptr(), i) } |
| } |
| |
| fn limbs_mul_mont_gather5_amm( |
| table: &[Limb], |
| acc: &mut [Limb], |
| base: &[Limb], |
| m: &[Limb], |
| n0: &N0, |
| i: Window, |
| num_limbs: usize, |
| ) { |
| prefixed_extern! { |
| fn bn_mul_mont_gather5( |
| rp: *mut Limb, |
| ap: *const Limb, |
| table: *const Limb, |
| np: *const Limb, |
| n0: &N0, |
| num: c::size_t, |
| power: Window, |
| ); |
| } |
| unsafe { |
| bn_mul_mont_gather5( |
| acc.as_mut_ptr(), |
| base.as_ptr(), |
| table.as_ptr(), |
| m.as_ptr(), |
| n0, |
| num_limbs, |
| i, |
| ); |
| } |
| } |
| |
| fn power_amm( |
| table: &[Limb], |
| acc: &mut [Limb], |
| m_cached: &[Limb], |
| n0: &N0, |
| i: Window, |
| num_limbs: usize, |
| ) { |
| prefixed_extern! { |
| fn bn_power5( |
| r: *mut Limb, |
| a: *const Limb, |
| table: *const Limb, |
| n: *const Limb, |
| n0: &N0, |
| num: c::size_t, |
| i: Window, |
| ); |
| } |
| unsafe { |
| bn_power5( |
| acc.as_mut_ptr(), |
| acc.as_ptr(), |
| table.as_ptr(), |
| m_cached.as_ptr(), |
| n0, |
| num_limbs, |
| i, |
| ); |
| } |
| } |
| |
| // These are named `(tmp, am, np)` in BoringSSL. |
| let (acc, base_cached, m_cached): (&mut [Limb], &[Limb], &[Limb]) = { |
| let (acc, rest) = state.split_at_mut(num_limbs); |
| let (base_cached, rest) = rest.split_at_mut(num_limbs); |
| |
| // Upstream, the input `base` is not Montgomery-encoded, so they compute a |
| // Montgomery-encoded copy and store it here. |
| base_cached.copy_from_slice(&base.limbs); |
| |
| let m_cached = &mut rest[..num_limbs]; |
| // "To improve cache locality" according to upstream. |
| m_cached.copy_from_slice(m.limbs()); |
| |
| (acc, base_cached, m_cached) |
| }; |
| |
| let n0 = m.n0(); |
| |
| // Fill in all the powers of 2 of `acc` into the table using only squaring and without any |
| // gathering, storing the last calculated power into `acc`. |
| fn scatter_powers_of_2( |
| table: &mut [Limb], |
| acc: &mut [Limb], |
| m_cached: &[Limb], |
| n0: &N0, |
| mut i: Window, |
| num_limbs: usize, |
| cpu_features: cpu::Features, |
| ) { |
| loop { |
| scatter(table, acc, i, num_limbs); |
| i *= 2; |
| if i >= (TABLE_ENTRIES as Window) { |
| break; |
| } |
| limbs_mont_square(acc, m_cached, n0, cpu_features); |
| } |
| } |
| |
| // All entries in `table` will be Montgomery encoded. |
| |
| // acc = table[0] = base**0 (i.e. 1). |
| m.oneR(acc); |
| scatter(table, acc, 0, num_limbs); |
| |
| // acc = base**1 (i.e. base). |
| acc.copy_from_slice(base_cached); |
| |
| // Fill in entries 1, 2, 4, 8, 16. |
| scatter_powers_of_2(table, acc, m_cached, n0, 1, num_limbs, cpu_features); |
| // Fill in entries 3, 6, 12, 24; 5, 10, 20, 30; 7, 14, 28; 9, 18; 11, 22; 13, 26; 15, 30; |
| // 17; 19; 21; 23; 25; 27; 29; 31. |
| for i in (3..(TABLE_ENTRIES as Window)).step_by(2) { |
| limbs_mul_mont_gather5_amm(table, acc, base_cached, m_cached, n0, i - 1, num_limbs); |
| scatter_powers_of_2(table, acc, m_cached, n0, i, num_limbs, cpu_features); |
| } |
| |
| let acc = limb::fold_5_bit_windows( |
| exponent.limbs(), |
| |initial_window| { |
| gather(table, acc, initial_window, num_limbs); |
| acc |
| }, |
| |acc, window| { |
| power_amm(table, acc, m_cached, n0, window, num_limbs); |
| acc |
| }, |
| ); |
| |
| let mut r_amm = base.limbs; |
| r_amm.copy_from_slice(acc); |
| |
| Ok(from_montgomery_amm(r_amm, m)) |
| } |
| |
| /// Verified a == b**-1 (mod m), i.e. a**-1 == b (mod m). |
| pub fn verify_inverses_consttime<M>( |
| a: &Elem<M, R>, |
| b: Elem<M, Unencoded>, |
| m: &Modulus<M>, |
| ) -> Result<(), error::Unspecified> { |
| if elem_mul(a, b, m).is_one() { |
| Ok(()) |
| } else { |
| Err(error::Unspecified) |
| } |
| } |
| |
| #[inline] |
| pub fn elem_verify_equal_consttime<M, E>( |
| a: &Elem<M, E>, |
| b: &Elem<M, E>, |
| ) -> Result<(), error::Unspecified> { |
| if limb::limbs_equal_limbs_consttime(&a.limbs, &b.limbs) == LimbMask::True { |
| Ok(()) |
| } else { |
| Err(error::Unspecified) |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| use crate::{cpu, test}; |
| |
| // Type-level representation of an arbitrary modulus. |
| struct M {} |
| |
| impl PublicModulus for M {} |
| |
| #[test] |
| fn test_elem_exp_consttime() { |
| let cpu_features = cpu::features(); |
| test::run( |
| test_file!("../../crypto/fipsmodule/bn/test/mod_exp_tests.txt"), |
| |section, test_case| { |
| assert_eq!(section, ""); |
| |
| let m = consume_modulus::<M>(test_case, "M"); |
| let m = m.modulus(cpu_features); |
| let expected_result = consume_elem(test_case, "ModExp", &m); |
| let base = consume_elem(test_case, "A", &m); |
| let e = { |
| let bytes = test_case.consume_bytes("E"); |
| PrivateExponent::from_be_bytes_for_test_only(untrusted::Input::from(&bytes), &m) |
| .expect("valid exponent") |
| }; |
| let base = into_encoded(base, &m); |
| let actual_result = elem_exp_consttime(base, &e, &m).unwrap(); |
| assert_elem_eq(&actual_result, &expected_result); |
| |
| Ok(()) |
| }, |
| ) |
| } |
| |
| // TODO: fn test_elem_exp_vartime() using |
| // "src/rsa/bigint_elem_exp_vartime_tests.txt". See that file for details. |
| // In the meantime, the function is tested indirectly via the RSA |
| // verification and signing tests. |
| #[test] |
| fn test_elem_mul() { |
| let cpu_features = cpu::features(); |
| test::run( |
| test_file!("../../crypto/fipsmodule/bn/test/mod_mul_tests.txt"), |
| |section, test_case| { |
| assert_eq!(section, ""); |
| |
| let m = consume_modulus::<M>(test_case, "M"); |
| let m = m.modulus(cpu_features); |
| let expected_result = consume_elem(test_case, "ModMul", &m); |
| let a = consume_elem(test_case, "A", &m); |
| let b = consume_elem(test_case, "B", &m); |
| |
| let b = into_encoded(b, &m); |
| let a = into_encoded(a, &m); |
| let actual_result = elem_mul(&a, b, &m); |
| let actual_result = actual_result.into_unencoded(&m); |
| assert_elem_eq(&actual_result, &expected_result); |
| |
| Ok(()) |
| }, |
| ) |
| } |
| |
| #[test] |
| fn test_elem_squared() { |
| let cpu_features = cpu::features(); |
| test::run( |
| test_file!("bigint_elem_squared_tests.txt"), |
| |section, test_case| { |
| assert_eq!(section, ""); |
| |
| let m = consume_modulus::<M>(test_case, "M"); |
| let m = m.modulus(cpu_features); |
| let expected_result = consume_elem(test_case, "ModSquare", &m); |
| let a = consume_elem(test_case, "A", &m); |
| |
| let a = into_encoded(a, &m); |
| let actual_result = elem_squared(a, &m); |
| let actual_result = actual_result.into_unencoded(&m); |
| assert_elem_eq(&actual_result, &expected_result); |
| |
| Ok(()) |
| }, |
| ) |
| } |
| |
| #[test] |
| fn test_elem_reduced() { |
| let cpu_features = cpu::features(); |
| test::run( |
| test_file!("bigint_elem_reduced_tests.txt"), |
| |section, test_case| { |
| assert_eq!(section, ""); |
| |
| struct M {} |
| |
| let m_ = consume_modulus::<M>(test_case, "M"); |
| let m = m_.modulus(cpu_features); |
| let expected_result = consume_elem(test_case, "R", &m); |
| let a = |
| consume_elem_unchecked::<M>(test_case, "A", expected_result.limbs.len() * 2); |
| let other_modulus_len_bits = m_.len_bits(); |
| |
| let actual_result = elem_reduced(&a, &m, other_modulus_len_bits); |
| let oneRR = One::newRR(&m); |
| let actual_result = elem_mul(oneRR.as_ref(), actual_result, &m); |
| assert_elem_eq(&actual_result, &expected_result); |
| |
| Ok(()) |
| }, |
| ) |
| } |
| |
| #[test] |
| fn test_elem_reduced_once() { |
| let cpu_features = cpu::features(); |
| test::run( |
| test_file!("bigint_elem_reduced_once_tests.txt"), |
| |section, test_case| { |
| assert_eq!(section, ""); |
| |
| struct M {} |
| struct O {} |
| let m = consume_modulus::<M>(test_case, "m"); |
| let m = m.modulus(cpu_features); |
| let a = consume_elem_unchecked::<O>(test_case, "a", m.limbs().len()); |
| let expected_result = consume_elem::<M>(test_case, "r", &m); |
| let other_modulus_len_bits = m.len_bits(); |
| |
| let actual_result = elem_reduced_once(&a, &m, other_modulus_len_bits); |
| assert_elem_eq(&actual_result, &expected_result); |
| |
| Ok(()) |
| }, |
| ) |
| } |
| |
| fn consume_elem<M>( |
| test_case: &mut test::TestCase, |
| name: &str, |
| m: &Modulus<M>, |
| ) -> Elem<M, Unencoded> { |
| let value = test_case.consume_bytes(name); |
| Elem::from_be_bytes_padded(untrusted::Input::from(&value), m).unwrap() |
| } |
| |
| fn consume_elem_unchecked<M>( |
| test_case: &mut test::TestCase, |
| name: &str, |
| num_limbs: usize, |
| ) -> Elem<M, Unencoded> { |
| let bytes = test_case.consume_bytes(name); |
| let mut limbs = BoxedLimbs::zero(num_limbs); |
| limb::parse_big_endian_and_pad_consttime(untrusted::Input::from(&bytes), &mut limbs) |
| .unwrap(); |
| Elem { |
| limbs, |
| encoding: PhantomData, |
| } |
| } |
| |
| fn consume_modulus<M>(test_case: &mut test::TestCase, name: &str) -> OwnedModulus<M> { |
| let value = test_case.consume_bytes(name); |
| OwnedModulus::from_be_bytes(untrusted::Input::from(&value)).unwrap() |
| } |
| |
| fn assert_elem_eq<M, E>(a: &Elem<M, E>, b: &Elem<M, E>) { |
| if elem_verify_equal_consttime(a, b).is_err() { |
| panic!("{:x?} != {:x?}", &*a.limbs, &*b.limbs); |
| } |
| } |
| |
| fn into_encoded<M>(a: Elem<M, Unencoded>, m: &Modulus<M>) -> Elem<M, R> { |
| let oneRR = One::newRR(m); |
| elem_mul(oneRR.as_ref(), a, m) |
| } |
| } |