| // Copyright 2015-2023 Brian Smith. |
| // |
| // Permission to use, copy, modify, and/or distribute this software for any |
| // purpose with or without fee is hereby granted, provided that the above |
| // copyright notice and this permission notice appear in all copies. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
| // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
| // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| |
| use super::{BoxedLimbs, Elem, PublicModulus, Unencoded, N0}; |
| use crate::{ |
| bits::BitLength, |
| cpu, error, |
| limb::{self, Limb, LimbMask, LIMB_BITS}, |
| polyfill::LeadingZerosStripped, |
| }; |
| use core::marker::PhantomData; |
| |
| /// The x86 implementation of `bn_mul_mont`, at least, requires at least 4 |
| /// limbs. For a long time we have required 4 limbs for all targets, though |
| /// this may be unnecessary. TODO: Replace this with |
| /// `n.len() < 256 / LIMB_BITS` so that 32-bit and 64-bit platforms behave the |
| /// same. |
| pub const MODULUS_MIN_LIMBS: usize = 4; |
| |
| pub const MODULUS_MAX_LIMBS: usize = super::super::BIGINT_MODULUS_MAX_LIMBS; |
| |
| /// The modulus *m* for a ring ℤ/mℤ, along with the precomputed values needed |
| /// for efficient Montgomery multiplication modulo *m*. The value must be odd |
| /// and larger than 2. The larger-than-1 requirement is imposed, at least, by |
| /// the modular inversion code. |
| pub struct OwnedModulus<M> { |
| limbs: BoxedLimbs<M>, // Also `value >= 3`. |
| |
| // n0 * N == -1 (mod r). |
| // |
| // r == 2**(N0::LIMBS_USED * LIMB_BITS) and LG_LITTLE_R == lg(r). This |
| // ensures that we can do integer division by |r| by simply ignoring |
| // `N0::LIMBS_USED` limbs. Similarly, we can calculate values modulo `r` by |
| // just looking at the lowest `N0::LIMBS_USED` limbs. This is what makes |
| // Montgomery multiplication efficient. |
| // |
| // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography |
| // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a |
| // multi-limb Montgomery multiplication of a * b (mod n), given the |
| // unreduced product t == a * b, we repeatedly calculate: |
| // |
| // t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph). |
| // t2 := t1*n0*n |
| // t3 := t + t2 |
| // t := t3 / r copy all limbs of |t3| except the lowest to |t|. |
| // |
| // In the last step, it would only make sense to ignore the lowest limb of |
| // |t3| if it were zero. The middle steps ensure that this is the case: |
| // |
| // t3 == 0 (mod r) |
| // t + t2 == 0 (mod r) |
| // t + t1*n0*n == 0 (mod r) |
| // t1*n0*n == -t (mod r) |
| // t*n0*n == -t (mod r) |
| // n0*n == -1 (mod r) |
| // n0 == -1/n (mod r) |
| // |
| // Thus, in each iteration of the loop, we multiply by the constant factor |
| // n0, the negative inverse of n (mod r). |
| // |
| // TODO(perf): Not all 32-bit platforms actually make use of n0[1]. For the |
| // ones that don't, we could use a shorter `R` value and use faster `Limb` |
| // calculations instead of double-precision `u64` calculations. |
| n0: N0, |
| |
| len_bits: BitLength, |
| } |
| |
| impl<M: PublicModulus> Clone for OwnedModulus<M> { |
| fn clone(&self) -> Self { |
| Self { |
| limbs: self.limbs.clone(), |
| n0: self.n0, |
| len_bits: self.len_bits, |
| } |
| } |
| } |
| |
| impl<M> OwnedModulus<M> { |
| pub(crate) fn from_be_bytes(input: untrusted::Input) -> Result<Self, error::KeyRejected> { |
| let n = BoxedLimbs::positive_minimal_width_from_be_bytes(input)?; |
| if n.len() > MODULUS_MAX_LIMBS { |
| return Err(error::KeyRejected::too_large()); |
| } |
| if n.len() < MODULUS_MIN_LIMBS { |
| return Err(error::KeyRejected::unexpected_error()); |
| } |
| if limb::limbs_are_even_constant_time(&n) != LimbMask::False { |
| return Err(error::KeyRejected::invalid_component()); |
| } |
| if limb::limbs_less_than_limb_constant_time(&n, 3) != LimbMask::False { |
| return Err(error::KeyRejected::unexpected_error()); |
| } |
| |
| // n_mod_r = n % r. As explained in the documentation for `n0`, this is |
| // done by taking the lowest `N0::LIMBS_USED` limbs of `n`. |
| #[allow(clippy::useless_conversion)] |
| let n0 = { |
| prefixed_extern! { |
| fn bn_neg_inv_mod_r_u64(n: u64) -> u64; |
| } |
| |
| // XXX: u64::from isn't guaranteed to be constant time. |
| let mut n_mod_r: u64 = u64::from(n[0]); |
| |
| if N0::LIMBS_USED == 2 { |
| // XXX: If we use `<< LIMB_BITS` here then 64-bit builds |
| // fail to compile because of `deny(exceeding_bitshifts)`. |
| debug_assert_eq!(LIMB_BITS, 32); |
| n_mod_r |= u64::from(n[1]) << 32; |
| } |
| N0::precalculated(unsafe { bn_neg_inv_mod_r_u64(n_mod_r) }) |
| }; |
| |
| let len_bits = limb::limbs_minimal_bits(&n); |
| |
| Ok(Self { |
| limbs: n, |
| n0, |
| len_bits, |
| }) |
| } |
| |
| pub fn verify_less_than<L>(&self, l: &Modulus<L>) -> Result<(), error::Unspecified> { |
| if self.len_bits() > l.len_bits() |
| || (self.limbs.len() == l.limbs().len() |
| && limb::limbs_less_than_limbs_consttime(&self.limbs, l.limbs()) != LimbMask::True) |
| { |
| return Err(error::Unspecified); |
| } |
| Ok(()) |
| } |
| |
| pub fn to_elem<L>(&self, l: &Modulus<L>) -> Result<Elem<L, Unencoded>, error::Unspecified> { |
| self.verify_less_than(l)?; |
| let mut limbs = BoxedLimbs::zero(l.limbs.len()); |
| limbs[..self.limbs.len()].copy_from_slice(&self.limbs); |
| Ok(Elem { |
| limbs, |
| encoding: PhantomData, |
| }) |
| } |
| pub(crate) fn modulus(&self, cpu_features: cpu::Features) -> Modulus<M> { |
| Modulus { |
| limbs: &self.limbs, |
| n0: self.n0, |
| len_bits: self.len_bits, |
| m: PhantomData, |
| cpu_features, |
| } |
| } |
| |
| pub fn len_bits(&self) -> BitLength { |
| self.len_bits |
| } |
| } |
| |
| impl<M: PublicModulus> OwnedModulus<M> { |
| pub fn be_bytes(&self) -> LeadingZerosStripped<impl ExactSizeIterator<Item = u8> + Clone + '_> { |
| LeadingZerosStripped::new(limb::unstripped_be_bytes(&self.limbs)) |
| } |
| } |
| |
| pub struct Modulus<'a, M> { |
| limbs: &'a [Limb], |
| n0: N0, |
| len_bits: BitLength, |
| m: PhantomData<M>, |
| cpu_features: cpu::Features, |
| } |
| |
| impl<M> Modulus<'_, M> { |
| pub(super) fn oneR(&self, out: &mut [Limb]) { |
| assert_eq!(self.limbs.len(), out.len()); |
| |
| let r = self.limbs.len() * LIMB_BITS; |
| |
| // out = 2**r - m where m = self. |
| limb::limbs_negative_odd(out, self.limbs); |
| |
| let lg_m = self.len_bits().as_bits(); |
| let leading_zero_bits_in_m = r - lg_m; |
| |
| // When m's length is a multiple of LIMB_BITS, which is the case we |
| // most want to optimize for, then we already have |
| // out == 2**r - m == 2**r (mod m). |
| if leading_zero_bits_in_m != 0 { |
| debug_assert!(leading_zero_bits_in_m < LIMB_BITS); |
| // Correct out to 2**(lg m) (mod m). `limbs_negative_odd` flipped |
| // all the leading zero bits to ones. Flip them back. |
| *out.last_mut().unwrap() &= (!0) >> leading_zero_bits_in_m; |
| |
| // Now we have out == 2**(lg m) (mod m). Keep doubling until we get |
| // to 2**r (mod m). |
| for _ in 0..leading_zero_bits_in_m { |
| limb::limbs_double_mod(out, self.limbs) |
| } |
| } |
| |
| // Now out == 2**r (mod m) == 1*R. |
| } |
| |
| // TODO: XXX Avoid duplication with `Modulus`. |
| pub(super) fn zero<E>(&self) -> Elem<M, E> { |
| Elem { |
| limbs: BoxedLimbs::zero(self.limbs.len()), |
| encoding: PhantomData, |
| } |
| } |
| |
| #[inline] |
| pub(super) fn limbs(&self) -> &[Limb] { |
| self.limbs |
| } |
| |
| #[inline] |
| pub(super) fn n0(&self) -> &N0 { |
| &self.n0 |
| } |
| |
| pub fn len_bits(&self) -> BitLength { |
| self.len_bits |
| } |
| |
| #[inline] |
| pub(crate) fn cpu_features(&self) -> cpu::Features { |
| self.cpu_features |
| } |
| } |