| // Copyright 2015-2016 Brian Smith. |
| // |
| // Permission to use, copy, modify, and/or distribute this software for any |
| // purpose with or without fee is hereby granted, provided that the above |
| // copyright notice and this permission notice appear in all copies. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
| // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
| // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| |
| use super::{ |
| padding::RsaEncoding, KeyPairComponents, PublicExponent, PublicKey, PublicKeyComponents, N, |
| }; |
| |
| /// RSA PKCS#1 1.5 signatures. |
| use crate::{ |
| arithmetic::{ |
| bigint, |
| montgomery::{R, RR, RRR}, |
| }, |
| bits::BitLength, |
| cpu, digest, |
| error::{self, KeyRejected}, |
| io::der, |
| pkcs8, rand, signature, |
| }; |
| |
| /// An RSA key pair, used for signing. |
| pub struct KeyPair { |
| p: PrivateCrtPrime<P>, |
| q: PrivateCrtPrime<Q>, |
| qInv: bigint::Elem<P, R>, |
| public: PublicKey, |
| } |
| |
| derive_debug_via_field!(KeyPair, stringify!(RsaKeyPair), public); |
| |
| impl KeyPair { |
| /// Parses an unencrypted PKCS#8-encoded RSA private key. |
| /// |
| /// This will generate a 2048-bit RSA private key of the correct form using |
| /// OpenSSL's command line tool: |
| /// |
| /// ```sh |
| /// openssl genpkey -algorithm RSA \ |
| /// -pkeyopt rsa_keygen_bits:2048 \ |
| /// -pkeyopt rsa_keygen_pubexp:65537 | \ |
| /// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-2048-private-key.pk8 |
| /// ``` |
| /// |
| /// This will generate a 3072-bit RSA private key of the correct form: |
| /// |
| /// ```sh |
| /// openssl genpkey -algorithm RSA \ |
| /// -pkeyopt rsa_keygen_bits:3072 \ |
| /// -pkeyopt rsa_keygen_pubexp:65537 | \ |
| /// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-3072-private-key.pk8 |
| /// ``` |
| /// |
| /// Often, keys generated for use in OpenSSL-based software are stored in |
| /// the Base64 “PEM” format without the PKCS#8 wrapper. Such keys can be |
| /// converted to binary PKCS#8 form using the OpenSSL command line tool like |
| /// this: |
| /// |
| /// ```sh |
| /// openssl pkcs8 -topk8 -nocrypt -outform der \ |
| /// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8 |
| /// ``` |
| /// |
| /// Base64 (“PEM”) PKCS#8-encoded keys can be converted to the binary PKCS#8 |
| /// form like this: |
| /// |
| /// ```sh |
| /// openssl pkcs8 -nocrypt -outform der \ |
| /// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8 |
| /// ``` |
| /// |
| /// See [`Self::from_components`] for more details on how the input is |
| /// validated. |
| /// |
| /// See [RFC 5958] and [RFC 3447 Appendix A.1.2] for more details of the |
| /// encoding of the key. |
| /// |
| /// [NIST SP-800-56B rev. 1]: |
| /// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf |
| /// |
| /// [RFC 3447 Appendix A.1.2]: |
| /// https://tools.ietf.org/html/rfc3447#appendix-A.1.2 |
| /// |
| /// [RFC 5958]: |
| /// https://tools.ietf.org/html/rfc5958 |
| pub fn from_pkcs8(pkcs8: &[u8]) -> Result<Self, KeyRejected> { |
| const RSA_ENCRYPTION: &[u8] = include_bytes!("../data/alg-rsa-encryption.der"); |
| let (der, _) = pkcs8::unwrap_key_( |
| untrusted::Input::from(RSA_ENCRYPTION), |
| pkcs8::Version::V1Only, |
| untrusted::Input::from(pkcs8), |
| )?; |
| Self::from_der(der.as_slice_less_safe()) |
| } |
| |
| /// Parses an RSA private key that is not inside a PKCS#8 wrapper. |
| /// |
| /// The private key must be encoded as a binary DER-encoded ASN.1 |
| /// `RSAPrivateKey` as described in [RFC 3447 Appendix A.1.2]). In all other |
| /// respects, this is just like `from_pkcs8()`. See the documentation for |
| /// `from_pkcs8()` for more details. |
| /// |
| /// It is recommended to use `from_pkcs8()` (with a PKCS#8-encoded key) |
| /// instead. |
| /// |
| /// See [`Self::from_components()`] for more details on how the input is |
| /// validated. |
| /// |
| /// [RFC 3447 Appendix A.1.2]: |
| /// https://tools.ietf.org/html/rfc3447#appendix-A.1.2 |
| /// |
| /// [NIST SP-800-56B rev. 1]: |
| /// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf |
| pub fn from_der(input: &[u8]) -> Result<Self, KeyRejected> { |
| untrusted::Input::from(input).read_all(KeyRejected::invalid_encoding(), |input| { |
| der::nested( |
| input, |
| der::Tag::Sequence, |
| error::KeyRejected::invalid_encoding(), |
| Self::from_der_reader, |
| ) |
| }) |
| } |
| |
| fn from_der_reader(input: &mut untrusted::Reader) -> Result<Self, KeyRejected> { |
| let version = der::small_nonnegative_integer(input) |
| .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?; |
| if version != 0 { |
| return Err(KeyRejected::version_not_supported()); |
| } |
| |
| fn nonnegative_integer<'a>( |
| input: &mut untrusted::Reader<'a>, |
| ) -> Result<&'a [u8], KeyRejected> { |
| der::nonnegative_integer(input) |
| .map(|input| input.as_slice_less_safe()) |
| .map_err(|error::Unspecified| KeyRejected::invalid_encoding()) |
| } |
| |
| let n = nonnegative_integer(input)?; |
| let e = nonnegative_integer(input)?; |
| let d = nonnegative_integer(input)?; |
| let p = nonnegative_integer(input)?; |
| let q = nonnegative_integer(input)?; |
| let dP = nonnegative_integer(input)?; |
| let dQ = nonnegative_integer(input)?; |
| let qInv = nonnegative_integer(input)?; |
| |
| let components = KeyPairComponents { |
| public_key: PublicKeyComponents { n, e }, |
| d, |
| p, |
| q, |
| dP, |
| dQ, |
| qInv, |
| }; |
| |
| Self::from_components(&components) |
| } |
| |
| /// Constructs an RSA private key from its big-endian-encoded components. |
| /// |
| /// Only two-prime (not multi-prime) keys are supported. The public modulus |
| /// (n) must be at least 2047 bits. The public modulus must be no larger |
| /// than 4096 bits. It is recommended that the public modulus be exactly |
| /// 2048 or 3072 bits. The public exponent must be at least 65537 and must |
| /// be no more than 33 bits long. |
| /// |
| /// The private key is validated according to [NIST SP-800-56B rev. 1] |
| /// section 6.4.1.4.3, crt_pkv (Intended Exponent-Creation Method Unknown), |
| /// with the following exceptions: |
| /// |
| /// * Section 6.4.1.2.1, Step 1: Neither a target security level nor an |
| /// expected modulus length is provided as a parameter, so checks |
| /// regarding these expectations are not done. |
| /// * Section 6.4.1.2.1, Step 3: Since neither the public key nor the |
| /// expected modulus length is provided as a parameter, the consistency |
| /// check between these values and the private key's value of n isn't |
| /// done. |
| /// * Section 6.4.1.2.1, Step 5: No primality tests are done, both for |
| /// performance reasons and to avoid any side channels that such tests |
| /// would provide. |
| /// * Section 6.4.1.2.1, Step 6, and 6.4.1.4.3, Step 7: |
| /// * *ring* has a slightly looser lower bound for the values of `p` |
| /// and `q` than what the NIST document specifies. This looser lower |
| /// bound matches what most other crypto libraries do. The check might |
| /// be tightened to meet NIST's requirements in the future. Similarly, |
| /// the check that `p` and `q` are not too close together is skipped |
| /// currently, but may be added in the future. |
| /// - The validity of the mathematical relationship of `dP`, `dQ`, `e` |
| /// and `n` is verified only during signing. Some size checks of `d`, |
| /// `dP` and `dQ` are performed at construction, but some NIST checks |
| /// are skipped because they would be expensive and/or they would leak |
| /// information through side channels. If a preemptive check of the |
| /// consistency of `dP`, `dQ`, `e` and `n` with each other is |
| /// necessary, that can be done by signing any message with the key |
| /// pair. |
| /// |
| /// * `d` is not fully validated, neither at construction nor during |
| /// signing. This is OK as far as *ring*'s usage of the key is |
| /// concerned because *ring* never uses the value of `d` (*ring* always |
| /// uses `p`, `q`, `dP` and `dQ` via the Chinese Remainder Theorem, |
| /// instead). However, *ring*'s checks would not be sufficient for |
| /// validating a key pair for use by some other system; that other |
| /// system must check the value of `d` itself if `d` is to be used. |
| pub fn from_components<Public, Private>( |
| components: &KeyPairComponents<Public, Private>, |
| ) -> Result<Self, KeyRejected> |
| where |
| Public: AsRef<[u8]>, |
| Private: AsRef<[u8]>, |
| { |
| let components = KeyPairComponents { |
| public_key: PublicKeyComponents { |
| n: components.public_key.n.as_ref(), |
| e: components.public_key.e.as_ref(), |
| }, |
| d: components.d.as_ref(), |
| p: components.p.as_ref(), |
| q: components.q.as_ref(), |
| dP: components.dP.as_ref(), |
| dQ: components.dQ.as_ref(), |
| qInv: components.qInv.as_ref(), |
| }; |
| Self::from_components_(&components, cpu::features()) |
| } |
| |
| fn from_components_( |
| &KeyPairComponents { |
| public_key, |
| d, |
| p, |
| q, |
| dP, |
| dQ, |
| qInv, |
| }: &KeyPairComponents<&[u8]>, |
| cpu_features: cpu::Features, |
| ) -> Result<Self, KeyRejected> { |
| let d = untrusted::Input::from(d); |
| let p = untrusted::Input::from(p); |
| let q = untrusted::Input::from(q); |
| let dP = untrusted::Input::from(dP); |
| let dQ = untrusted::Input::from(dQ); |
| let qInv = untrusted::Input::from(qInv); |
| |
| // XXX: Some steps are done out of order, but the NIST steps are worded |
| // in such a way that it is clear that NIST intends for them to be done |
| // in order. TODO: Does this matter at all? |
| |
| // 6.4.1.4.3/6.4.1.2.1 - Step 1. |
| |
| // Step 1.a is omitted, as explained above. |
| |
| // Step 1.b is omitted per above. Instead, we check that the public |
| // modulus is 2048 to `PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS` bits. |
| // XXX: The maximum limit of 4096 bits is primarily due to lack of |
| // testing of larger key sizes; see, in particular, |
| // https://www.mail-archive.com/[email protected]/msg44586.html |
| // and |
| // https://www.mail-archive.com/[email protected]/msg44759.html. |
| // Also, this limit might help with memory management decisions later. |
| |
| // Step 1.c. We validate e >= 65537. |
| let n = untrusted::Input::from(public_key.n); |
| let e = untrusted::Input::from(public_key.e); |
| let public_key = PublicKey::from_modulus_and_exponent( |
| n, |
| e, |
| BitLength::from_usize_bits(2048), |
| super::PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS, |
| PublicExponent::_65537, |
| cpu_features, |
| )?; |
| |
| let n_one = public_key.inner().n().oneRR(); |
| let n = &public_key.inner().n().value(cpu_features); |
| |
| // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 2. |
| |
| // 6.4.1.4.3 Step 3. |
| |
| // Step 3.a is done below, out of order. |
| // Step 3.b is unneeded since `n_bits` is derived here from `n`. |
| |
| // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 4. (We don't need to recover |
| // the prime factors since they are already given.) |
| |
| // 6.4.1.4.3 - Step 5. |
| |
| // Steps 5.a and 5.b are omitted, as explained above. |
| |
| let n_bits = public_key.inner().n().len_bits(); |
| |
| let p = PrivatePrime::new(p, n_bits, cpu_features)?; |
| let q = PrivatePrime::new(q, n_bits, cpu_features)?; |
| |
| // TODO: Step 5.i |
| // |
| // 3.b is unneeded since `n_bits` is derived here from `n`. |
| |
| // 6.4.1.4.3 - Step 3.a (out of order). |
| // |
| // Verify that p * q == n. We restrict ourselves to modular |
| // multiplication. We rely on the fact that we've verified |
| // 0 < q < p < n. We check that q and p are close to sqrt(n) and then |
| // assume that these preconditions are enough to let us assume that |
| // checking p * q == 0 (mod n) is equivalent to checking p * q == n. |
| let q_mod_n = q |
| .modulus |
| .to_elem(n) |
| .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; |
| let p_mod_n = p |
| .modulus |
| .to_elem(n) |
| .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; |
| let p_mod_n = bigint::elem_mul(n_one, p_mod_n, n); |
| let pq_mod_n = bigint::elem_mul(&q_mod_n, p_mod_n, n); |
| if !pq_mod_n.is_zero() { |
| return Err(KeyRejected::inconsistent_components()); |
| } |
| |
| // 6.4.1.4.3/6.4.1.2.1 - Step 6. |
| |
| // Step 6.a, partial. |
| // |
| // First, validate `2**half_n_bits < d`. Since 2**half_n_bits has a bit |
| // length of half_n_bits + 1, this check gives us 2**half_n_bits <= d, |
| // and knowing d is odd makes the inequality strict. |
| let d = bigint::OwnedModulus::<D>::from_be_bytes(d) |
| .map_err(|_| error::KeyRejected::invalid_component())?; |
| if !(n_bits.half_rounded_up() < d.len_bits()) { |
| return Err(KeyRejected::inconsistent_components()); |
| } |
| // XXX: This check should be `d < LCM(p - 1, q - 1)`, but we don't have |
| // a good way of calculating LCM, so it is omitted, as explained above. |
| d.verify_less_than(n) |
| .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; |
| |
| // Step 6.b is omitted as explained above. |
| |
| let pm = &p.modulus.modulus(cpu_features); |
| |
| // 6.4.1.4.3 - Step 7. |
| |
| // Step 7.c. |
| let qInv = bigint::Elem::from_be_bytes_padded(qInv, pm) |
| .map_err(|error::Unspecified| KeyRejected::invalid_component())?; |
| |
| // Steps 7.d and 7.e are omitted per the documentation above, and |
| // because we don't (in the long term) have a good way to do modulo |
| // with an even modulus. |
| |
| // Step 7.f. |
| let qInv = bigint::elem_mul(p.oneRR.as_ref(), qInv, pm); |
| let q_mod_p = bigint::elem_reduced(&q_mod_n, pm, q.modulus.len_bits()); |
| let q_mod_p = bigint::elem_mul(p.oneRR.as_ref(), q_mod_p, pm); |
| bigint::verify_inverses_consttime(&qInv, q_mod_p, pm) |
| .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; |
| |
| // This should never fail since `n` and `e` were validated above. |
| |
| let p = PrivateCrtPrime::new(p, dP, cpu_features)?; |
| let q = PrivateCrtPrime::new(q, dQ, cpu_features)?; |
| |
| Ok(Self { |
| p, |
| q, |
| qInv, |
| public: public_key, |
| }) |
| } |
| |
| /// Returns a reference to the public key. |
| pub fn public(&self) -> &PublicKey { |
| &self.public |
| } |
| |
| /// Returns the length in bytes of the key pair's public modulus. |
| /// |
| /// A signature has the same length as the public modulus. |
| #[deprecated = "Use `public().modulus_len()`"] |
| #[inline] |
| pub fn public_modulus_len(&self) -> usize { |
| self.public().modulus_len() |
| } |
| } |
| |
| impl signature::KeyPair for KeyPair { |
| type PublicKey = PublicKey; |
| |
| fn public_key(&self) -> &Self::PublicKey { |
| self.public() |
| } |
| } |
| |
| struct PrivatePrime<M> { |
| modulus: bigint::OwnedModulus<M>, |
| oneRR: bigint::One<M, RR>, |
| } |
| |
| impl<M> PrivatePrime<M> { |
| fn new( |
| p: untrusted::Input, |
| n_bits: BitLength, |
| cpu_features: cpu::Features, |
| ) -> Result<Self, KeyRejected> { |
| let p = bigint::OwnedModulus::from_be_bytes(p)?; |
| |
| // 5.c / 5.g: |
| // |
| // TODO: First, stop if `p < (√2) * 2**((nBits/2) - 1)`. |
| // TODO: First, stop if `q < (√2) * 2**((nBits/2) - 1)`. |
| // |
| // Second, stop if `p > 2**(nBits/2) - 1`. |
| // Second, stop if `q > 2**(nBits/2) - 1`. |
| if p.len_bits() != n_bits.half_rounded_up() { |
| return Err(KeyRejected::inconsistent_components()); |
| } |
| |
| if p.len_bits().as_bits() % 512 != 0 { |
| return Err(error::KeyRejected::private_modulus_len_not_multiple_of_512_bits()); |
| } |
| |
| // TODO: Step 5.d: Verify GCD(p - 1, e) == 1. |
| // TODO: Step 5.h: Verify GCD(q - 1, e) == 1. |
| |
| // Steps 5.e and 5.f are omitted as explained above. |
| |
| let oneRR = bigint::One::newRR(&p.modulus(cpu_features)); |
| |
| Ok(Self { modulus: p, oneRR }) |
| } |
| } |
| |
| struct PrivateCrtPrime<M> { |
| modulus: bigint::OwnedModulus<M>, |
| oneRRR: bigint::One<M, RRR>, |
| exponent: bigint::PrivateExponent, |
| } |
| |
| impl<M> PrivateCrtPrime<M> { |
| /// Constructs a `PrivateCrtPrime` from the private prime `p` and `dP` where |
| /// dP == d % (p - 1). |
| fn new( |
| p: PrivatePrime<M>, |
| dP: untrusted::Input, |
| cpu_features: cpu::Features, |
| ) -> Result<Self, KeyRejected> { |
| let m = &p.modulus.modulus(cpu_features); |
| // [NIST SP-800-56B rev. 1] 6.4.1.4.3 - Steps 7.a & 7.b. |
| let dP = bigint::PrivateExponent::from_be_bytes_padded(dP, m) |
| .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; |
| |
| // XXX: Steps 7.d and 7.e are omitted. We don't check that |
| // `dP == d % (p - 1)` because we don't (in the long term) have a good |
| // way to do modulo with an even modulus. Instead we just check that |
| // `1 <= dP < p - 1`. We'll check it, to some unknown extent, when we |
| // do the private key operation, since we verify that the result of the |
| // private key operation using the CRT parameters is consistent with `n` |
| // and `e`. TODO: Either prove that what we do is sufficient, or make |
| // it so. |
| |
| let oneRRR = bigint::One::newRRR(p.oneRR, m); |
| |
| Ok(Self { |
| modulus: p.modulus, |
| oneRRR, |
| exponent: dP, |
| }) |
| } |
| } |
| |
| fn elem_exp_consttime<M>( |
| c: &bigint::Elem<N>, |
| p: &PrivateCrtPrime<M>, |
| other_prime_len_bits: BitLength, |
| cpu_features: cpu::Features, |
| ) -> Result<bigint::Elem<M>, error::Unspecified> { |
| let m = &p.modulus.modulus(cpu_features); |
| let c_mod_m = bigint::elem_reduced(c, m, other_prime_len_bits); |
| let c_mod_m = bigint::elem_mul(p.oneRRR.as_ref(), c_mod_m, m); |
| bigint::elem_exp_consttime(c_mod_m, &p.exponent, m) |
| } |
| |
| // Type-level representations of the different moduli used in RSA signing, in |
| // addition to `super::N`. See `super::bigint`'s modulue-level documentation. |
| |
| enum P {} |
| |
| enum Q {} |
| |
| enum D {} |
| |
| impl KeyPair { |
| /// Computes the signature of `msg` and writes it into `signature`. |
| /// |
| /// `msg` is digested using the digest algorithm from `padding_alg` and the |
| /// digest is then padded using the padding algorithm from `padding_alg`. |
| /// |
| /// The signature it written into `signature`; `signature`'s length must be |
| /// exactly the length returned by `self::public().modulus_len()` or else |
| /// an error will be returned. On failure, `signature` may contain |
| /// intermediate results, but won't contain anything that would endanger the |
| /// private key. |
| /// |
| /// `rng` may be used to randomize the padding (e.g. for PSS). |
| /// |
| /// Many other crypto libraries have signing functions that takes a |
| /// precomputed digest as input, instead of the message to digest. This |
| /// function does *not* take a precomputed digest; instead, `sign` |
| /// calculates the digest itself. |
| pub fn sign( |
| &self, |
| padding_alg: &'static dyn RsaEncoding, |
| rng: &dyn rand::SecureRandom, |
| msg: &[u8], |
| signature: &mut [u8], |
| ) -> Result<(), error::Unspecified> { |
| let cpu_features = cpu::features(); |
| |
| if signature.len() != self.public().modulus_len() { |
| return Err(error::Unspecified); |
| } |
| |
| let m_hash = digest::digest(padding_alg.digest_alg(), msg); |
| |
| // Use the output buffer as the scratch space for the signature to |
| // reduce the required stack space. |
| padding_alg.encode(m_hash, signature, self.public().inner().n().len_bits(), rng)?; |
| |
| // RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem |
| // with Garner's algorithm. |
| |
| // Steps 1 and 2. |
| let m = self.private_exponentiate(signature, cpu_features)?; |
| |
| // Step 3. |
| m.fill_be_bytes(signature); |
| |
| Ok(()) |
| } |
| |
| /// Returns base**d (mod n). |
| /// |
| /// This does not return or write any intermediate results into any buffers |
| /// that are provided by the caller so that no intermediate state will be |
| /// leaked that would endanger the private key. |
| /// |
| /// Panics if `in_out` is not `self.public().modulus_len()`. |
| fn private_exponentiate( |
| &self, |
| base: &[u8], |
| cpu_features: cpu::Features, |
| ) -> Result<bigint::Elem<N>, error::Unspecified> { |
| assert_eq!(base.len(), self.public().modulus_len()); |
| |
| // RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem |
| // with Garner's algorithm. |
| |
| let n = &self.public.inner().n().value(cpu_features); |
| let n_one = self.public.inner().n().oneRR(); |
| |
| // Step 1. The value zero is also rejected. |
| let base = bigint::Elem::from_be_bytes_padded(untrusted::Input::from(base), n)?; |
| |
| // Step 2 |
| let c = base; |
| |
| // Step 2.b.i. |
| let q_bits = self.q.modulus.len_bits(); |
| let m_1 = elem_exp_consttime(&c, &self.p, q_bits, cpu_features)?; |
| let m_2 = elem_exp_consttime(&c, &self.q, self.p.modulus.len_bits(), cpu_features)?; |
| |
| // Step 2.b.ii isn't needed since there are only two primes. |
| |
| // Step 2.b.iii. |
| let h = { |
| let p = &self.p.modulus.modulus(cpu_features); |
| let m_2 = bigint::elem_reduced_once(&m_2, p, q_bits); |
| let m_1_minus_m_2 = bigint::elem_sub(m_1, &m_2, p); |
| bigint::elem_mul(&self.qInv, m_1_minus_m_2, p) |
| }; |
| |
| // Step 2.b.iv. The reduction in the modular multiplication isn't |
| // necessary because `h < p` and `p * q == n` implies `h * q < n`. |
| // Modular arithmetic is used simply to avoid implementing |
| // non-modular arithmetic. |
| let p_bits = self.p.modulus.len_bits(); |
| let h = bigint::elem_widen(h, n, p_bits)?; |
| let q_mod_n = self.q.modulus.to_elem(n)?; |
| let q_mod_n = bigint::elem_mul(n_one, q_mod_n, n); |
| let q_times_h = bigint::elem_mul(&q_mod_n, h, n); |
| let m_2 = bigint::elem_widen(m_2, n, q_bits)?; |
| let m = bigint::elem_add(m_2, q_times_h, n); |
| |
| // Step 2.b.v isn't needed since there are only two primes. |
| |
| // Verify the result to protect against fault attacks as described |
| // in "On the Importance of Checking Cryptographic Protocols for |
| // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. |
| // This check is cheap assuming `e` is small, which is ensured during |
| // `KeyPair` construction. Note that this is the only validation of `e` |
| // that is done other than basic checks on its size, oddness, and |
| // minimum value, since the relationship of `e` to `d`, `p`, and `q` is |
| // not verified during `KeyPair` construction. |
| { |
| let verify = self.public.inner().exponentiate_elem(&m, cpu_features); |
| bigint::elem_verify_equal_consttime(&verify, &c)?; |
| } |
| |
| // Step 3 will be done by the caller. |
| |
| Ok(m) |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| use crate::test; |
| use alloc::vec; |
| |
| #[test] |
| fn test_rsakeypair_private_exponentiate() { |
| let cpu = cpu::features(); |
| test::run( |
| test_file!("keypair_private_exponentiate_tests.txt"), |
| |section, test_case| { |
| assert_eq!(section, ""); |
| |
| let key = test_case.consume_bytes("Key"); |
| let key = KeyPair::from_pkcs8(&key).unwrap(); |
| let test_cases = &[ |
| test_case.consume_bytes("p"), |
| test_case.consume_bytes("p_plus_1"), |
| test_case.consume_bytes("p_minus_1"), |
| test_case.consume_bytes("q"), |
| test_case.consume_bytes("q_plus_1"), |
| test_case.consume_bytes("q_minus_1"), |
| ]; |
| for test_case in test_cases { |
| // THe call to `elem_verify_equal_consttime` will cause |
| // `private_exponentiate` to fail if the computation is |
| // incorrect. |
| let mut padded = vec![0; key.public.modulus_len()]; |
| let zeroes = padded.len() - test_case.len(); |
| padded[zeroes..].copy_from_slice(test_case); |
| let _: bigint::Elem<_> = key.private_exponentiate(&padded, cpu).unwrap(); |
| } |
| Ok(()) |
| }, |
| ); |
| } |
| } |